浙江省寧波市東恩中學(xué)2024屆中考數(shù)學(xué)考前最后一卷含解析_第1頁
浙江省寧波市東恩中學(xué)2024屆中考數(shù)學(xué)考前最后一卷含解析_第2頁
浙江省寧波市東恩中學(xué)2024屆中考數(shù)學(xué)考前最后一卷含解析_第3頁
浙江省寧波市東恩中學(xué)2024屆中考數(shù)學(xué)考前最后一卷含解析_第4頁
浙江省寧波市東恩中學(xué)2024屆中考數(shù)學(xué)考前最后一卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

浙江省寧波市東恩中學(xué)2024屆中考數(shù)學(xué)考前最后一卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,,且.、是上兩點,,.若,,,則的長為()A. B. C. D.2.如圖是某幾何體的三視圖,則該幾何體的全面積等于()A.112 B.136 C.124 D.843.從﹣1,2,3,﹣6這四個數(shù)中任選兩數(shù),分別記作m,n,那么點(m,n)在函數(shù)y=圖象上的概率是()A. B. C. D.4.如圖,在△ABC中,∠C=90°,AC=BC=3cm.動點P從點A出發(fā),以cm/s的速度沿AB方向運動到點B.動點Q同時從點A出發(fā),以1cm/s的速度沿折線ACCB方向運動到點B.設(shè)△APQ的面積為y(cm2).運動時間為x(s),則下列圖象能反映y與x之間關(guān)系的是()A. B.C. D.5.剪紙是我國傳統(tǒng)的民間藝術(shù),下列剪紙作品中既不是軸對稱圖形,也不是中心對稱圖形的是()A. B. C. D.6.“車輛隨機到達一個路口,遇到紅燈”這個事件是()A.不可能事件 B.不確定事件 C.確定事件 D.必然事件7.不等式2x﹣1<1的解集在數(shù)軸上表示正確的是()A. B.C. D.8.如圖,一張半徑為的圓形紙片在邊長為的正方形內(nèi)任意移動,則在該正方形內(nèi),這張圓形紙片“能接觸到的部分”的面積是()A. B. C. D.9.反比例函數(shù)y=1-6txA.t<16B.t>16C.t≤110.如圖,在平行線l1、l2之間放置一塊直角三角板,三角板的銳角頂點A,B分別在直線l1、l2上,若∠l=65°,則∠2的度數(shù)是()A.25° B.35° C.45° D.65°二、填空題(共7小題,每小題3分,滿分21分)11.若a,b互為相反數(shù),則a2﹣b2=_____.12.如圖,ΔABC中,∠ACB=90°,∠ABC=25°,以點C為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)后得到ΔA′B′C′,且點A在A′B′上,則旋轉(zhuǎn)角為________________°.13.在實數(shù)范圍內(nèi)分解因式:x2y﹣2y=_____.14.如圖,四邊形ABCD中,∠D=∠B=90°,AB=BC,CD=4,AC=8,設(shè)Q、R分別是AB、AD上的動點,則△CQR的周長的最小值為_________.15.邊長為3的正方形網(wǎng)格中,⊙O的圓心在格點上,半徑為3,則tan∠AED=_______.16.甲乙兩人進行飛鏢比賽,每人各投5次,所得平均環(huán)數(shù)相等,其中甲所得環(huán)數(shù)的方差為15,乙所得環(huán)數(shù)如下:0,1,5,9,10,那么成績較穩(wěn)定的是_____(填“甲”或“乙”).17.如圖所示,過y軸正半軸上的任意一點P,作x軸的平行線,分別與反比例函數(shù)的圖象交于點A和點B,若點C是x軸上任意一點,連接AC、BC,則△ABC的面積為_________.三、解答題(共7小題,滿分69分)18.(10分)△ABC在平面直角坐標(biāo)系中的位置如圖所示.畫出△ABC關(guān)于y軸對稱的△A1B1C1;將△ABC向右平移6個單位,作出平移后的△A2B2C2,并寫出△A2B2C2各頂點的坐標(biāo);觀察△A1B1C1和△A2B2C2,它們是否關(guān)于某條直線對稱?若是,請在圖上畫出這條對稱軸.19.(5分)問題提出(1).如圖1,在四邊形ABCD中,AB=BC,AD=CD=3,∠BAD=∠BCD=90°,∠ADC=60°,則四邊形ABCD的面積為_;問題探究(2).如圖2,在四邊形ABCD中,∠BAD=∠BCD=90°,∠ABC=135°,AB=22,BC=3,在AD、CD上分別找一點E、F,使得△BEF的周長最小,作出圖像即可.20.(8分)如圖,△ABC中,CD是邊AB上的高,且.求證:△ACD∽△CBD;求∠ACB的大?。?1.(10分)某村大力發(fā)展經(jīng)濟作物,其中果樹種植已初具規(guī)模,該村果農(nóng)小張種植了黃桃樹和蘋果樹,為進一步優(yōu)化種植結(jié)構(gòu),小張將前年和去年兩種水果的銷售情況進行了對比:前年黃桃的市場銷售量為1000千克,銷售均價為6元/千克,去年黃桃的市場銷售量比前年減少了m%(m≠0),銷售均價與前年相同;前年蘋果的市場銷售量為2000千克,銷售均價為4元/千克,去年蘋果的市場銷售量比前年增加了2m%,但銷售均價比前年減少了m%.如果去年黃桃和蘋果的市場銷售總金額與前年黃桃和蘋果的市場銷售總金額相同,求m的值.22.(10分)如圖,某數(shù)學(xué)活動小組為測量學(xué)校旗桿AB的高度,沿旗桿正前方米處的點C出發(fā),沿斜面坡度的斜坡CD前進4米到達點D,在點D處安置測角儀,測得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內(nèi),AB⊥BC,AB//DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈.計算結(jié)果保留根號)23.(12分)某公司生產(chǎn)的某種產(chǎn)品每件成本為40元,經(jīng)市場調(diào)查整理出如下信息:①該產(chǎn)品90天售量(n件)與時間(第x天)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:時間(第x天)12310…日銷售量(n件)198196194?…②該產(chǎn)品90天內(nèi)每天的銷售價格與時間(第x天)的關(guān)系如下表:時間(第x天)1≤x<5050≤x≤90銷售價格(元/件)x+60100(1)求出第10天日銷售量;(2)設(shè)銷售該產(chǎn)品每天利潤為y元,請寫出y關(guān)于x的函數(shù)表達式,并求出在90天內(nèi)該產(chǎn)品的銷售利潤最大?最大利潤是多少?(提示:每天銷售利潤=日銷售量×(每件銷售價格-每件成本))(3)在該產(chǎn)品銷售的過程中,共有多少天銷售利潤不低于5400元,請直接寫出結(jié)果.24.(14分)已知:在△ABC中,AC=BC,D,E,F(xiàn)分別是AB,AC,CB的中點.求證:四邊形DECF是菱形.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】分析:詳解:如圖,∵AB⊥CD,CE⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故選:D.點睛:本題主要考查全等三角形的判定與性質(zhì),證明△ABF≌△CDE是關(guān)鍵.2、B【解析】試題解析:該幾何體是三棱柱.如圖:由勾股定理全面積為:故該幾何體的全面積等于1.故選B.3、B【解析】

首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與點(m,n)恰好在反比例函數(shù)y=圖象上的情況,再利用概率公式即可求得答案.【詳解】解:畫樹狀圖得:∵共有12種等可能的結(jié)果,點(m,n)恰好在反比例函數(shù)y=圖象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴點(m,n)在函數(shù)y=圖象上的概率是:.故選B.【點睛】此題考查了列表法或樹狀圖法求概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.4、D【解析】

在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,分當(dāng)0<x≤3(點Q在AC上運動,點P在AB上運動)和當(dāng)3≤x≤6時(點P與點B重合,點Q在CB上運動)兩種情況求出y與x的函數(shù)關(guān)系式,再結(jié)合圖象即可解答.【詳解】在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,當(dāng)0<x≤3時,點Q在AC上運動,點P在AB上運動(如圖1),由題意可得AP=x,AQ=x,過點Q作QN⊥AB于點N,在等腰直角三角形AQN中,求得QN=x,所以y==(0<x≤3),即當(dāng)0<x≤3時,y隨x的變化關(guān)系是二次函數(shù)關(guān)系,且當(dāng)x=3時,y=4.5;當(dāng)3≤x≤6時,點P與點B重合,點Q在CB上運動(如圖2),由題意可得PQ=6-x,AP=3,過點Q作QN⊥BC于點N,在等腰直角三角形PQN中,求得QN=(6-x),所以y==(3≤x≤6),即當(dāng)3≤x≤6時,y隨x的變化關(guān)系是一次函數(shù),且當(dāng)x=6時,y=0.由此可得,只有選項D符合要求,故選D.【點睛】本題考查了動點函數(shù)圖象,解決本題要正確分析動線運動過程,然后再正確計算其對應(yīng)的函數(shù)解析式,由函數(shù)的解析式對應(yīng)其圖象,由此即可解答.5、C【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】A、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;B、不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;C、既不是中心對稱圖形,也不是軸對稱圖形,故本選項正確;D、是中心對稱圖形,不是軸對稱圖形,故本選項錯誤,故選C.【點睛】本題主要考查軸對稱圖形和中心對稱圖形,在平面內(nèi),如果一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形;在平面內(nèi),如果把一個圖形繞某個點旋轉(zhuǎn)180°后,能與原圖形重合,那么就說這個圖形是中心對稱圖形.6、B【解析】

根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類型即可.【詳解】“車輛隨機到達一個路口,遇到紅燈”是隨機事件.故選:.【點睛】本題考查了隨機事件,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的實際;不可能事件是指在一定條件下,一定不發(fā)生的事件;不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.7、D【解析】

先求出不等式的解集,再在數(shù)軸上表示出來即可.【詳解】移項得,2x<1+1,合并同類項得,2x<2,x的系數(shù)化為1得,x<1.在數(shù)軸上表示為:.故選D.【點睛】本題考查了解一元一次不等式,熟練掌握運算法則是解題的關(guān)鍵.8、C【解析】

這張圓形紙片減去“不能接觸到的部分”的面積是就是這張圓形紙片“能接觸到的部分”的面積.【詳解】解:如圖:∵正方形的面積是:4×4=16;扇形BAO的面積是:,∴則這張圓形紙片“不能接觸到的部分”的面積是4×1-4×=4-π,∴這張圓形紙片“能接觸到的部分”的面積是16-(4-π)=12+π,故選C.【點睛】本題主要考查了正方形和扇形的面積的計算公式,正確記憶公式是解題的關(guān)鍵.9、B【解析】

將一次函數(shù)解析式代入到反比例函數(shù)解析式中,整理得出x2﹣2x+1﹣6t=0,又因兩函數(shù)圖象有兩個交點,且兩交點橫坐標(biāo)的積為負(fù)數(shù),根據(jù)根的判別式以及根與系數(shù)的關(guān)系可求解.【詳解】由題意可得:﹣x+2=1-6tx所以x2﹣2x+1﹣6t=0,∵兩函數(shù)圖象有兩個交點,且兩交點橫坐標(biāo)的積為負(fù)數(shù),∴(-解不等式組,得t>16故選:B.點睛:此題主要考查了反比例函數(shù)與一次函數(shù)的交點問題,關(guān)鍵是利用兩個函數(shù)的解析式構(gòu)成方程,再利用一元二次方程的根與系數(shù)的關(guān)系求解.10、A【解析】

如圖,過點C作CD∥a,再由平行線的性質(zhì)即可得出結(jié)論.【詳解】如圖,過點C作CD∥a,則∠1=∠ACD,∵a∥b,∴CD∥b,∴∠2=∠DCB,∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°,故選A.【點睛】本題考查了平行線的性質(zhì)與判定,根據(jù)題意作出輔助線,構(gòu)造出平行線是解答此題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】【分析】直接利用平方差公式分解因式進而結(jié)合相反數(shù)的定義分析得出答案.【詳解】∵a,b互為相反數(shù),∴a+b=1,∴a2﹣b2=(a+b)(a﹣b)=1,故答案為1.【點睛】本題考查了公式法分解因式以及相反數(shù)的定義,正確分解因式是解題關(guān)鍵.12、50度【解析】

由將△ACB繞點C順時針旋轉(zhuǎn)得到△A′B′C′,即可得△ACB≌△A′B′C′,則可得∠A'=∠BAC,△AA'C是等腰三角形,又由△ACB中,∠ACB=90°,∠ABC=25°,即可求得∠A'、∠B'AB的度數(shù),即可求得∠ACB'的度數(shù),繼而求得∠B'CB的度數(shù).【詳解】∵將△ACB繞點C順時針旋轉(zhuǎn)得到,∴△ACB≌,∴∠A′=∠BAC,AC=CA′,∴∠BAC=∠CAA′,∵△ACB中,∠ACB=90°,∠ABC=25°,∴∠BAC=90°?∠ABC=65°,∴∠BAC=∠CAA′=65°,∴∠B′AB=180°?65°?65°=50°,∴∠ACB′=180°?25°?50°?65°=40°,∴∠B′CB=90°?40°=50°.故答案為50.【點睛】此題考查了旋轉(zhuǎn)的性質(zhì)、直角三角形的性質(zhì)以及等腰三角形的性質(zhì).此題難度不大,注意掌握旋轉(zhuǎn)前后圖形的對應(yīng)關(guān)系,注意數(shù)形結(jié)合思想的應(yīng)用.13、y(x+)(x﹣)【解析】

先提取公因式y(tǒng)后,再把剩下的式子寫成x2-()2,符合平方差公式的特點,可以繼續(xù)分解.【詳解】x2y-2y=y(x2-2)=y(x+)(x-).故答案為y(x+)(x-).【點睛】本題考查實數(shù)范圍內(nèi)的因式分解,因式分解的步驟為:一提公因式;二看公式.在實數(shù)范圍內(nèi)進行因式分解的式子的結(jié)果一般要分到出現(xiàn)無理數(shù)為止.14、【解析】

作C關(guān)于AB的對稱點G,關(guān)于AD的對稱點F,可得三角形CQR的周長=CQ+QR+CR=GQ+QR+RF≥GF.根據(jù)圓周角定理可得∠CDB=∠CAB=45°,∠CBD=∠CAD=30°,由于GF=2BD,在三角形CBD中,作CH⊥BD于H,可求BD的長,從而求出△CQR的周長的最小值.【詳解】解:作C關(guān)于AB的對稱點G,關(guān)于AD的對稱點F,則三角形CQR的周長=CQ+QR+CR=GQ+QR+RF=GF,在Rt△ADC中,∵sin∠DAC=,∴∠DAC=30°,∵BA=BC,∠ABC=90°,∴∠BAC=∠BCA=45°,∵∠ADC=∠ABC=90°,∴A,B,C,D四點共圓,∴∠CDB=∠CAB=45°,∠CBD=∠CAD=30°在三角形CBD中,作CH⊥BD于H,BD=DH+BH=4×cos45°+×cos30°=,∵CD=DF,CB=BG,∴GF=2BD=,△CQR的周長的最小值為.【點睛】本題考查了軸對稱問題,關(guān)鍵是根據(jù)軸對稱的性質(zhì)和兩點之間線段最短解答.15、【解析】

根據(jù)同弧或等弧所對的圓周角相等知∠AED=∠ABD,所以tan∠AED的值就是tanB的值.【詳解】解:∵∠AED=∠ABD(同弧所對的圓周角相等),∴tan∠AED=tanB=.故答案為:.【點睛】本題主要考查了圓周角定理、銳角三角函數(shù)的定義.解答網(wǎng)格中的角的三角函數(shù)值時,一般是將所求的角與直角三角形中的等角聯(lián)系起來,通過解直角三角形中的三角函數(shù)值來解答問題.16、甲.【解析】乙所得環(huán)數(shù)的平均數(shù)為:=5,S2=[+++…+]=[++++]=16.4,甲的方差<乙的方差,所以甲較穩(wěn)定.故答案為甲.點睛:要比較成績穩(wěn)定即比方差大小,方差越大,越不穩(wěn)定;方差越小,越穩(wěn)定.17、1.【解析】

設(shè)P(0,b),∵直線APB∥x軸,∴A,B兩點的縱坐標(biāo)都為b,而點A在反比例函數(shù)y=的圖象上,∴當(dāng)y=b,x=-,即A點坐標(biāo)為(-,b),又∵點B在反比例函數(shù)y=的圖象上,∴當(dāng)y=b,x=,即B點坐標(biāo)為(,b),∴AB=-(-)=,∴S△ABC=?AB?OP=??b=1.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)見解析,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是軸對稱圖形,對稱軸為圖中直線l:x=1,見解析.【解析】

(1)根據(jù)軸對稱圖形的性質(zhì),找出A、B、C的對稱點A1、B1、C1,畫出圖形即可;(2)根據(jù)平移的性質(zhì),△ABC向右平移6個單位,A、B、C三點的橫坐標(biāo)加6,縱坐標(biāo)不變;(1)根據(jù)軸對稱圖形的性質(zhì)和頂點坐標(biāo),可得其對稱軸是l:x=1.【詳解】(1)由圖知,A(0,4),B(﹣2,2),C(﹣1,1),∴點A、B、C關(guān)于y軸對稱的對稱點為A1(0,4)、B1(2,2)、C1(1,1),連接A1B1,A1C1,B1C1,得△A1B1C1;(2)∵△ABC向右平移6個單位,∴A、B、C三點的橫坐標(biāo)加6,縱坐標(biāo)不變,作出△A2B2C2,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是軸對稱圖形,對稱軸為圖中直線l:x=1.【點睛】本題考查了軸對稱圖形的性質(zhì)和作圖﹣平移變換,作圖時要先找到圖形的關(guān)鍵點,分別把這幾個關(guān)鍵點按照平移的方向和距離確定對應(yīng)點后,再順次連接對應(yīng)點即可得到平移后的圖形.19、(1)3,(2)見解析【解析】

(1)易證△ABD≌△CBD,再利用含30°的直角三角形求出AB、BD的長,即可求出面積.(2)作點B關(guān)于AD的對稱點B’,點B關(guān)于CD的對應(yīng)點B’’,連接B’B’’,與AD、CD交于EF,△AEF即為所求.【詳解】(1)∵AB=BC,AD=CD=3,∠BAD=∠BCD=90°,∴△ABD≌△CBD(HL)∴∠ADB=∠CDB=∠ADC=30°,∴AB=∴S△ABD==∴四邊形ABCD的面積為2S△ABD=(2)作點B關(guān)于AD的對稱點B’,點B關(guān)于CD的對應(yīng)點B’’,連接B’B’’,與AD、CD交于EF,△BEF的周長為BE+EF+BF=B’E+EF+B’’F=B’B’’為最短.故此時△BEF的周長最小.【點睛】此題主要考查含30°的直角三角形與對稱性的應(yīng)用,解題的關(guān)鍵是根據(jù)題意作出相應(yīng)的圖形進行求解.20、(1)證明見試題解析;(2)90°.【解析】試題分析:(1)由兩邊對應(yīng)成比例且夾角相等的兩個三角形相似,即可證明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根據(jù)相似三角形的對應(yīng)角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.試題解析:(1)∵CD是邊AB上的高,∴∠ADC=∠CDB=90°,∵.∴△ACD∽△CBD;(2)∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.考點:相似三角形的判定與性質(zhì).21、m的值是12.1.【解析】

根據(jù)去年黃桃和蘋果的市場銷售總金額與前年黃桃和蘋果的市場銷售總金額相同,可以列出相應(yīng)的方程,從而可以求得m的值【詳解】由題意可得,1000×6+2000×4=1000×(1﹣m%)×6+2000×(1+2m%)×4(1﹣m%)解得,m1=0(舍去),m2=12.1,即m的值是12.1.【點睛】本題考查一元二次方程的應(yīng)用,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的方程,求出m的值,注意解答中是m%,最終求得的是m的值.22、3+3.5【解析】

延長ED交BC延長線于點F,則∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=2、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=4?tan37°可得答案.【詳解】如圖,延長ED交BC延長線于點F,則∠CFD=90°,∵tan∠DCF=i=,∴∠DCF=30°,∵CD=4,∴D

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論