![人教A版高中數(shù)學(xué)(選擇性必修二)同步講義第10講 5.1導(dǎo)數(shù)的概念及其幾何意義(教師版)_第1頁(yè)](http://file4.renrendoc.com/view2/M03/19/1F/wKhkFmZL9UuAet3gAAGfeoW9F2U322.jpg)
![人教A版高中數(shù)學(xué)(選擇性必修二)同步講義第10講 5.1導(dǎo)數(shù)的概念及其幾何意義(教師版)_第2頁(yè)](http://file4.renrendoc.com/view2/M03/19/1F/wKhkFmZL9UuAet3gAAGfeoW9F2U3222.jpg)
![人教A版高中數(shù)學(xué)(選擇性必修二)同步講義第10講 5.1導(dǎo)數(shù)的概念及其幾何意義(教師版)_第3頁(yè)](http://file4.renrendoc.com/view2/M03/19/1F/wKhkFmZL9UuAet3gAAGfeoW9F2U3223.jpg)
![人教A版高中數(shù)學(xué)(選擇性必修二)同步講義第10講 5.1導(dǎo)數(shù)的概念及其幾何意義(教師版)_第4頁(yè)](http://file4.renrendoc.com/view2/M03/19/1F/wKhkFmZL9UuAet3gAAGfeoW9F2U3224.jpg)
![人教A版高中數(shù)學(xué)(選擇性必修二)同步講義第10講 5.1導(dǎo)數(shù)的概念及其幾何意義(教師版)_第5頁(yè)](http://file4.renrendoc.com/view2/M03/19/1F/wKhkFmZL9UuAet3gAAGfeoW9F2U3225.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第01講5.1導(dǎo)數(shù)的概念及其幾何意義課程標(biāo)準(zhǔn)學(xué)習(xí)目標(biāo)①初步了解導(dǎo)數(shù)概念的背景,掌握平均變化率與瞬時(shí)變化率的概念及幾何意義。②會(huì)求函數(shù)的平均變率與瞬時(shí)變化率。③能結(jié)合實(shí)際問(wèn)題求曲線在某點(diǎn)處與某點(diǎn)附近點(diǎn)的切線與割線的斜率的極限值。通過(guò)本節(jié)課的學(xué)習(xí),要求會(huì)求函數(shù)的平均變化率與瞬時(shí)變化率.知識(shí)點(diǎn)01:函數(shù)的平均變化率1、定義:一般地,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的平均變化率為:SKIPIF1<0,表示為函數(shù)SKIPIF1<0從SKIPIF1<0到SKIPIF1<0的平均變化率,若設(shè)SKIPIF1<0,SKIPIF1<0則平均變化率為SKIPIF1<02、求函數(shù)的平均變化率通常用“兩步”法:①作差:求出SKIPIF1<0和SKIPIF1<0②作商:對(duì)所求得的差作商,即SKIPIF1<0.【即學(xué)即練1】(2023·全國(guó)·高二課堂例題)已知函數(shù)SKIPIF1<0,SKIPIF1<0,分別計(jì)算它們?cè)趨^(qū)間SKIPIF1<0,SKIPIF1<0上的平均變化率.【答案】3;3;-3;6【詳解】函數(shù)SKIPIF1<0在SKIPIF1<0上的平均變化率為SKIPIF1<0.函數(shù)SKIPIF1<0在SKIPIF1<0上的平均變化率為SKIPIF1<0.函數(shù)SKIPIF1<0在SKIPIF1<0上的平均變化率為SKIPIF1<0.函數(shù)SKIPIF1<0在SKIPIF1<0上的平均變化率為SKIPIF1<0.3、平均變化率的幾何意義平均變化率SKIPIF1<0如圖:表示直線SKIPIF1<0的斜率。知識(shí)點(diǎn)02:函數(shù)SKIPIF1<0在SKIPIF1<0處的導(dǎo)數(shù)(瞬時(shí)變化率)1、定義:函數(shù)SKIPIF1<0在SKIPIF1<0處瞬時(shí)變化率是SKIPIF1<0,我們稱它為函數(shù)SKIPIF1<0在SKIPIF1<0處的導(dǎo)數(shù),記作SKIPIF1<0SKIPIF1<0SKIPIF1<0.【即學(xué)即練2】(2023·全國(guó)·高二隨堂練習(xí))已知函數(shù)SKIPIF1<0,求自變量x在以下的變化過(guò)程中,該函數(shù)的平均變化率:(1)自變量x從1變到1.1;(2)自變量x從1變到1.01;(3)自變量x從1變到1.001.估算當(dāng)SKIPIF1<0時(shí),該函數(shù)的瞬時(shí)變化率.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;SKIPIF1<0【詳解】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以自變量x從1變到1.1的平均變化率為SKIPIF1<0;(2)SKIPIF1<0,所以自變量x從1變到1.01的平均變化率為SKIPIF1<0;(3)SKIPIF1<0,所以自變量x從1變到1.001的平均變化率為SKIPIF1<0;所以可估算當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的瞬時(shí)變化率為SKIPIF1<0,證明如下:而SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0處的瞬時(shí)變化率為SKIPIF1<0.2、定義法求導(dǎo)數(shù)步驟:求函數(shù)的增量:SKIPIF1<0;求平均變化率:SKIPIF1<0;求極限,得導(dǎo)數(shù):SKIPIF1<0.知識(shí)點(diǎn)03:導(dǎo)數(shù)的幾何意義如圖,在曲線SKIPIF1<0上任取一點(diǎn)SKIPIF1<0SKIPIF1<0,如果當(dāng)點(diǎn)SKIPIF1<0沿著曲線SKIPIF1<0無(wú)限趨近于點(diǎn)SKIPIF1<0時(shí),割線SKIPIF1<0無(wú)限趨近于一個(gè)確定的位置,這個(gè)確定位置的直線SKIPIF1<0稱為曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線.則割線SKIPIF1<0的斜率SKIPIF1<0【即學(xué)即練3】(2023·高二課時(shí)練習(xí))已知函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.【答案】1【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故答案為:1知識(shí)點(diǎn)04:曲線的切線問(wèn)題1、在型求切線方程已知:函數(shù)SKIPIF1<0的解析式.計(jì)算:函數(shù)SKIPIF1<0在SKIPIF1<0或者SKIPIF1<0處的切線方程.步驟:第一步:計(jì)算切點(diǎn)的縱坐標(biāo)SKIPIF1<0(方法:把SKIPIF1<0代入原函數(shù)SKIPIF1<0中),切點(diǎn)SKIPIF1<0.第二步:計(jì)算切線斜率SKIPIF1<0.第三步:計(jì)算切線方程.切線過(guò)切點(diǎn)SKIPIF1<0,切線斜率SKIPIF1<0。根據(jù)直線的點(diǎn)斜式方程得到切線方程:SKIPIF1<0.【即學(xué)即練4】(2023上·高二課時(shí)練習(xí))已知SKIPIF1<0,求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程.【答案】SKIPIF1<0【詳解】根據(jù)題意,先由導(dǎo)函數(shù)定義求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處切線的斜率SKIPIF1<0:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,從而當(dāng)h趨近于0時(shí),SKIPIF1<0.因此,曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處切線的斜率為0.根據(jù)直線的點(diǎn)斜式方程為SKIPIF1<0,即SKIPIF1<0;于是,所求切線方程為SKIPIF1<0.2、過(guò)型求切線方程已知:函數(shù)SKIPIF1<0的解析式.計(jì)算:過(guò)點(diǎn)SKIPIF1<0(無(wú)論該點(diǎn)是否在SKIPIF1<0上)的切線方程.步驟:第一步:設(shè)切點(diǎn)SKIPIF1<0第二步:計(jì)算切線斜率SKIPIF1<0;計(jì)算切線斜率SKIPIF1<0;第三步:令:SKIPIF1<0,解出SKIPIF1<0,代入SKIPIF1<0求斜率第三步:計(jì)算切線方程.根據(jù)直線的點(diǎn)斜式方程得到切線方程:SKIPIF1<0.【即學(xué)即練5】(2023·高二單元測(cè)試)試求過(guò)點(diǎn)SKIPIF1<0且與曲線SKIPIF1<0相切的直線的斜率.【答案】SKIPIF1<0或6【詳解】設(shè)切點(diǎn)坐標(biāo)為SKIPIF1<0,則有SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0.切線方程為SKIPIF1<0,將點(diǎn)SKIPIF1<0代入,得SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.所以所求直線的斜率為SKIPIF1<0或6.題型01求物體運(yùn)動(dòng)的平均速度(含平均變化率)【典例1】(2023下·河南新鄉(xiāng)·高二統(tǒng)考期中)某物體沿直線運(yùn)動(dòng),其位移SKIPIF1<0(單位:SKIPIF1<0)與時(shí)間SKIPIF1<0(單位:SKIPIF1<0)之間的關(guān)系為SKIPIF1<0,則在SKIPIF1<0這段時(shí)間內(nèi),該物體的平均速度為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由位移SKIPIF1<0與時(shí)間SKIPIF1<0之間的關(guān)系為SKIPIF1<0,根據(jù)平均變化率的計(jì)算公式,可得在SKIPIF1<0這段時(shí)間內(nèi),該物體的平均速度為:SKIPIF1<0故選:B.【典例2】(2023下·江西九江·高二校聯(lián)考期中)某汽車在平直的公路上向前行駛,其行駛的路程SKIPIF1<0與時(shí)間SKIPIF1<0的函數(shù)圖象如圖.記該車在時(shí)間段SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0上的平均速度的大小分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則平均速度最小的是(
)
A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由題意知,汽車在時(shí)間SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0上的平均速度的大小分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)路程SKIPIF1<0與時(shí)間SKIPIF1<0的函數(shù)關(guān)系為SKIPIF1<0,則SKIPIF1<0,即為經(jīng)過(guò)點(diǎn)SKIPIF1<0的直線的斜率SKIPIF1<0,同理SKIPIF1<0為經(jīng)過(guò)點(diǎn)SKIPIF1<0的直線的斜率SKIPIF1<0,SKIPIF1<0為經(jīng)過(guò)點(diǎn)SKIPIF1<0的直線的斜率SKIPIF1<0,SKIPIF1<0為經(jīng)過(guò)點(diǎn)SKIPIF1<0的直線的斜率SKIPIF1<0,如圖,由圖可知,SKIPIF1<0最小,即SKIPIF1<0最小.故選:C.【變式1】(2023下·遼寧阜新·高二校聯(lián)考階段練習(xí))函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的平均變化率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】SKIPIF1<0,故選:B.【變式2】(2023·全國(guó)·高二課堂例題)某物體做自由落體運(yùn)動(dòng),其運(yùn)動(dòng)方程為SKIPIF1<0,其中t為下落的時(shí)間(單位:s),g為重力加速度,大小為9.8m/s2.求它在時(shí)間段SKIPIF1<0內(nèi)的平均速度.【答案】19.6m/s【詳解】物體在時(shí)間段SKIPIF1<0內(nèi)的平均速度為:SKIPIF1<0(m/s),即它在時(shí)間段SKIPIF1<0內(nèi)的平均速度19.6m/s.題型02求物體運(yùn)動(dòng)的瞬時(shí)速度(含瞬時(shí)變化率)【典例1】(2023下·寧夏銀川·高二寧夏育才中學(xué)校考階段練習(xí))在高臺(tái)跳水運(yùn)動(dòng)中,SKIPIF1<0時(shí)運(yùn)動(dòng)員相對(duì)于水面的高度SKIPIF1<0單位:SKIPIF1<0)是SKIPIF1<0,則運(yùn)動(dòng)員在SKIPIF1<0時(shí)的瞬時(shí)速度為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】運(yùn)動(dòng)員在SKIPIF1<0時(shí)的瞬時(shí)速度即為SKIPIF1<0,令SKIPIF1<0,根據(jù)導(dǎo)數(shù)的定義,SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,故運(yùn)動(dòng)員在SKIPIF1<0時(shí)的瞬時(shí)速度為SKIPIF1<0.故選:A.【典例2】(2023·河南·高二校聯(lián)考階段練習(xí))函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的平均變化率等于SKIPIF1<0時(shí)的瞬時(shí)變化率,則SKIPIF1<0(
)A.SKIPIF1<0 B.1 C.2 D.SKIPIF1<0【答案】B【詳解】函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的平均變化率等于SKIPIF1<0,SKIPIF1<0在SKIPIF1<0時(shí)的瞬時(shí)變化率為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故選:B【變式1】(2023下·浙江嘉興·高二校聯(lián)考期中)函數(shù)SKIPIF1<0在SKIPIF1<0處的瞬時(shí)變化率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】因?yàn)镾KIPIF1<0,所以,函數(shù)SKIPIF1<0在SKIPIF1<0處的瞬時(shí)變化率為SKIPIF1<0SKIPIF1<0.故選:C.【變式2】(2023·高二課時(shí)練習(xí))已知一物體的運(yùn)動(dòng)方程是s=24t-3t2(s的單位為m,t的單位為s),則物體在t=s時(shí)的瞬時(shí)速度為12m/s.【答案】2【詳解】在t到t+Δt這段時(shí)間內(nèi),物體的平均速度為=SKIPIF1<0=SKIPIF1<0=24-6t-3Δt.當(dāng)Δt無(wú)限趨近于0時(shí),SKIPIF1<0無(wú)限趨近于24-6t,由題意得24-6t=12,解得t=2s.故答案為:2.題型03曲線在某點(diǎn)處的切線斜率或傾斜角【典例1】(2023·高二課時(shí)練習(xí))已知函數(shù)SKIPIF1<0,則該函數(shù)在SKIPIF1<0處的切線斜率為(
)A.0 B.1 C.2 D.3【答案】C【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以斜率SKIPIF1<0,SKIPIF1<0.故選:C【典例2】(2023下·湖北·高二校聯(lián)考期中)點(diǎn)SKIPIF1<0在曲線SKIPIF1<0上移動(dòng),設(shè)點(diǎn)SKIPIF1<0處切線的傾斜角為SKIPIF1<0,則角SKIPIF1<0的范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】解:由SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以角SKIPIF1<0的范圍是SKIPIF1<0.故選:B.【變式1】(2022下·安徽黃山·高二屯溪一中校考期中)設(shè)SKIPIF1<0為可導(dǎo)函數(shù),且滿足SKIPIF1<0,則曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線的斜率是()A..2 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】分析:化簡(jiǎn)SKIPIF1<0得到SKIPIF1<0,即得切線的斜率.詳解:∵SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線的斜率是-2,故選B.【變式2】(2022·河北邯鄲·統(tǒng)考一模)已知函數(shù)SKIPIF1<0滿足SKIPIF1<0,則曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線斜率為.【答案】3【詳解】由SKIPIF1<0,可得SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.故答案為:3.題型04導(dǎo)數(shù)定義的理解與應(yīng)用【典例1】(2023·上海浦東新·高三華師大二附中校考期中)若SKIPIF1<0為可導(dǎo)函數(shù),且SKIPIF1<0,則過(guò)曲線SKIPIF1<0上點(diǎn)SKIPIF1<0處的切線斜率為.【答案】2【詳解】SKIPIF1<0,故SKIPIF1<0.故答案為:2【典例2】(2023下·河南·高二校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0是可導(dǎo)函數(shù),且SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0/SKIPIF1<0【詳解】因?yàn)楹瘮?shù)SKIPIF1<0是可導(dǎo)函數(shù),且SKIPIF1<0,根據(jù)導(dǎo)數(shù)的定義,有SKIPIF1<0.故答案為:SKIPIF1<0.【變式1】(2023下·北京豐臺(tái)·高二統(tǒng)考期中)如圖,直線SKIPIF1<0是曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線,則SKIPIF1<0.
【答案】1【詳解】根據(jù)函數(shù)切線過(guò)SKIPIF1<0,則曲線SKIPIF1<0在SKIPIF1<0處的切線斜率為SKIPIF1<0,根據(jù)導(dǎo)數(shù)的定義,可得SKIPIF1<0.故答案為:1.【變式2】(2023下·上海嘉定·高二上海市育才中學(xué)??计谥校┮阎瘮?shù)SKIPIF1<0在SKIPIF1<0處的切線斜率為SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0【答案】SKIPIF1<0【詳解】SKIPIF1<0SKIPIF1<0而SKIPIF1<0,則SKIPIF1<0.故答案為:SKIPIF1<0題型05求切線方程【典例1】(2023下·湖南長(zhǎng)沙·高二長(zhǎng)沙市長(zhǎng)郡梅溪湖中學(xué)??计谥校┰O(shè)SKIPIF1<0為R上的可導(dǎo)函數(shù),且SKIPIF1<0,則曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線斜率為.【答案】SKIPIF1<0/SKIPIF1<0【詳解】由已知可得SKIPIF1<0.根據(jù)導(dǎo)數(shù)的幾何意義可知,曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線斜率為SKIPIF1<0.故答案為:SKIPIF1<0.【典例2】(2023下·四川綿陽(yáng)·高二四川省綿陽(yáng)南山中學(xué)校考階段練習(xí))已知函數(shù)SKIPIF1<0.(1)利用導(dǎo)數(shù)的定義求導(dǎo)函數(shù)SKIPIF1<0;(2)求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線的方程.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)解:因?yàn)镾KIPIF1<0SKIPIF1<0,所以,SKIPIF1<0.(2)解:因?yàn)镾KIPIF1<0,故點(diǎn)SKIPIF1<0在曲線SKIPIF1<0上,又因?yàn)镾KIPIF1<0,所以,曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線的方程為SKIPIF1<0,即SKIPIF1<0.【典例3】(2023·全國(guó)·高二專題練習(xí))求函數(shù)SKIPIF1<0的圖象上過(guò)原點(diǎn)的切線方程.【答案】SKIPIF1<0或SKIPIF1<0【詳解】設(shè)切點(diǎn)坐標(biāo)為SKIPIF1<0,則SKIPIF1<0,∵SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0所以切線方程為SKIPIF1<0.因?yàn)榍芯€過(guò)原點(diǎn),所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以切線方程為SKIPIF1<0或SKIPIF1<0.【變式1】(2023·高二課時(shí)練習(xí))已知曲線SKIPIF1<0上的兩點(diǎn)SKIPIF1<0和SKIPIF1<0,求:(1)割線AB的斜率SKIPIF1<0;(2)過(guò)點(diǎn)A的切線的斜率SKIPIF1<0;(3)點(diǎn)A處的切線的方程.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0.【詳解】(1)由已知可得,SKIPIF1<0.(2)令SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,根據(jù)導(dǎo)數(shù)的定義可得,SKIPIF1<0.①當(dāng)切點(diǎn)為SKIPIF1<0點(diǎn)時(shí),根據(jù)導(dǎo)數(shù)的幾何意義知SKIPIF1<0;②當(dāng)切點(diǎn)不是SKIPIF1<0點(diǎn)時(shí).設(shè)切點(diǎn)坐標(biāo)為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,所以有SKIPIF1<0,解得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以此時(shí)無(wú)解.綜上所述,過(guò)點(diǎn)A的切線的斜率SKIPIF1<0.(3)由(2)知,曲線在點(diǎn)A處的切線的斜率SKIPIF1<0,代入點(diǎn)斜式方程有,SKIPIF1<0,整理可得切線的方程為SKIPIF1<0.【變式2】(2022·高二課時(shí)練習(xí))試求過(guò)點(diǎn)P(3,5)且與曲線y=x2相切的直線方程.【答案】2x-y-1=0和10x-y-25=0【詳解】設(shè)所求切線的切點(diǎn)坐標(biāo)為SKIPIF1<0,則SKIPIF1<0=SKIPIF1<0=2x0+Δx.當(dāng)Δx無(wú)限趨近于0時(shí),SKIPIF1<0無(wú)限趨近于2x0,所以曲線在切點(diǎn)處的切線的斜率為2x0,則所求切線方程為y-x=2x0(x-x0).因?yàn)榍芯€過(guò)點(diǎn)P(3,5),所以5-x=2x0(3-x0),解得x0=1或5,即所求的切線有兩條,方程分別是y=2x-1和y=10x-25,即2x-y-1=0和10x-y-25=0.A夯實(shí)基礎(chǔ)B能力提升A夯實(shí)基礎(chǔ)一、單選題1.(2023·江蘇連云港·??寄M預(yù)測(cè))曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即切點(diǎn)坐標(biāo)為SKIPIF1<0,由SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0.故選:B2.(2023下·廣西桂林·高二統(tǒng)考期末)設(shè)函數(shù)SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】SKIPIF1<0.故選:C.3.(2023下·西藏林芝·高二??计谀┖瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的平均變化率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.SKIPIF1<0【答案】C【詳解】函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的平均變化率為SKIPIF1<0.故選:C4.(2023下·河南駐馬店·高二統(tǒng)考期末)定義在SKIPIF1<0上的函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)的平均變化率為SKIPIF1<0,其中SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0處的導(dǎo)數(shù)SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由導(dǎo)數(shù)的定義可得SKIPIF1<0,故選:B.5.(2023下·安徽滁州·高二??茧A段練習(xí))函數(shù)SKIPIF1<0的圖象如圖所示,SKIPIF1<0是函數(shù)SKIPIF1<0的導(dǎo)函數(shù),則下列大小關(guān)系正確的是(
)
A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【詳解】由圖象可知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,
故SKIPIF1<0,即SKIPIF1<0.故選:B.6.(2023下·陜西渭南·高二校考期中)若函數(shù)SKIPIF1<0在SKIPIF1<0處的瞬時(shí)變化率為SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(
)A.2 B.4 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】根據(jù)導(dǎo)數(shù)的定義可知,SKIPIF1<0.故選:B7.(2023下·高二課時(shí)練習(xí))已知拋物線SKIPIF1<0在SKIPIF1<0處的增量為SKIPIF1<0,則SKIPIF1<0的值為()A.-0.11 B.-1.1 C.3.89 D.0.29【答案】B【詳解】因?yàn)镾KIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.故選:B.8.(2023下·北京海淀·高二人大附中期末)函數(shù)SKIPIF1<0在SKIPIF1<0附近的平均變化率是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】令SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則在SKIPIF1<0附近的平均變化率是SKIPIF1<0,故選:C.二、多選題9.(2023下·山東日照·高二校考階段練習(xí))設(shè)函數(shù)SKIPIF1<0,當(dāng)自變量SKIPIF1<0由SKIPIF1<0變化到SKIPIF1<0時(shí),下列說(shuō)法正確的是(
)A.SKIPIF1<0可以是正數(shù)也可以是負(fù)數(shù),但不能為0B.函數(shù)值的改變量SKIPIF1<0為SKIPIF1<0C.函數(shù)SKIPIF1<0在SKIPIF1<0上的平均變化率為SKIPIF1<0D.函數(shù)SKIPIF1<0在SKIPIF1<0上的平均變化率SKIPIF1<0【答案】ABD【詳解】由平均變化率的定義可知自變量的改變量不能為零,可以為正數(shù)或負(fù)數(shù),函數(shù)值的改變量SKIPIF1<0為SKIPIF1<0,平均變化率為函數(shù)值的改變量比自變量的改變量,即A、B、D正確;故選:ABD10.(2023下·高二課時(shí)練習(xí))在高臺(tái)跳水運(yùn)動(dòng)中,SKIPIF1<0時(shí)運(yùn)動(dòng)員相對(duì)于水面的高度(單位:SKIPIF1<0是SKIPIF1<0,判斷下列說(shuō)法正確的是(
)A.運(yùn)動(dòng)員在SKIPIF1<0時(shí)的瞬時(shí)速度是SKIPIF1<0B.運(yùn)動(dòng)員在SKIPIF1<0時(shí)的瞬時(shí)速度是SKIPIF1<0C.運(yùn)動(dòng)員在SKIPIF1<0附近以SKIPIF1<0的速度上升D.運(yùn)動(dòng)員在SKIPIF1<0附近以SKIPIF1<0的速度下降【答案】BD【詳解】由已知,SKIPIF1<0,SKIPIF1<0的瞬時(shí)速度為SKIPIF1<0,因此該運(yùn)動(dòng)員在SKIPIF1<0附近以SKIPIF1<0的速度下降,故選:BD.三、填空題11.(2023上·上海奉賢·高三上海市奉賢中學(xué)校考階段練習(xí))若SKIPIF1<0為可導(dǎo)函數(shù),且SKIPIF1<0,則過(guò)曲線SKIPIF1<0上點(diǎn)SKIPIF1<0處的切線斜率為.【答案】1【詳解】因?yàn)镾KIPIF1<0,故SKIPIF1<0.故答案為:112.(2023下·四川遂寧·高二四川省蓬溪中學(xué)校??计谥校├窭嗜罩兄刀ɡ碛址Q拉氏定理,是微積分學(xué)中的基本定理之一,它反映了函數(shù)在閉區(qū)間上的整體平均變化率與區(qū)間某點(diǎn)的局部變化率的關(guān)系,其具體內(nèi)容如下:若SKIPIF1<0在SKIPIF1<0上滿足以下條件:①在SKIPIF1<0上圖象連續(xù),②在SKIPIF1<0內(nèi)導(dǎo)數(shù)存在,則在SKIPIF1<0內(nèi)至少存在一點(diǎn)SKIPIF1<0,使得SKIPIF1<0(SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù)).則函數(shù)SKIPIF1<0在SKIPIF1<0上這樣的SKIPIF1<0點(diǎn)的個(gè)數(shù)為【答案】SKIPIF1<0【詳解】由函數(shù)SKIPIF1<0,則SKIPIF1<0,根據(jù)題意知,存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,作出函數(shù)SKIPIF1<0和SKIPIF1<0的圖象,如圖所示,由圖象可知,函數(shù)SKIPIF1<0和SKIPIF1<0的圖象只有一個(gè)交點(diǎn),所以SKIPIF1<0只有一個(gè)解,即函數(shù)SKIPIF1<0在SKIPIF1<0上SKIPIF1<0點(diǎn)的個(gè)數(shù)為SKIPIF1<0個(gè).故答案為:SKIPIF1<0.
四、解答題13.(2023·全國(guó)·高二隨堂練習(xí))某人服藥后,吸收藥物的情況可以用血液中藥物的質(zhì)量濃度c(單位:μg/mL)來(lái)表示,它是時(shí)間t(單位:min)的函數(shù),表示為SKIPIF1<0.下表給出了SKIPIF1<0的一些函數(shù)值:t/min0102030405060708090100SKIPIF1<00.840.890.940.981.001.000.970.900.790.630.41(1)求服藥后30min內(nèi),30min到40min,80min到90min這3段時(shí)間內(nèi),血液中藥物質(zhì)量濃度的平均變化率;(2)討論刻畫(huà)血液中的藥物質(zhì)量濃度變化快慢的方法,并說(shuō)明上述3段時(shí)間中,藥物質(zhì)量濃度變化最快的時(shí)間段.【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.【詳解】(1)解:服藥后30min內(nèi)血液中藥物質(zhì)量濃度的平均變化率為:SK
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 三農(nóng)產(chǎn)品網(wǎng)絡(luò)營(yíng)銷作業(yè)指導(dǎo)書(shū)
- 2025年懷化考從業(yè)資格證貨運(yùn)試題
- 小學(xué)二年級(jí)數(shù)學(xué)上冊(cè)口算題
- 2025年武威貨運(yùn)上崗證模擬考試試題
- 2025年楚雄駕??荚囏涍\(yùn)從業(yè)資格證模擬考試
- 電力調(diào)試合同(2篇)
- 電動(dòng)車補(bǔ)充協(xié)議書(shū)范文(2篇)
- 2024-2025學(xué)年高中語(yǔ)文課時(shí)作業(yè)4毛澤東詞兩首含解析粵教版必修2
- 六年級(jí)班主任第二學(xué)期工作總結(jié)
- 小學(xué)班主任工作計(jì)劃二年級(jí)
- 中興ZCTP 5GC高級(jí)工程師認(rèn)證考試題庫(kù)匯總(含答案)
- 2023年考研考博-考博英語(yǔ)-西安建筑科技大學(xué)考試歷年真題摘選含答案解析
- 反接制動(dòng)控制線路電路圖及工作原理
- MCNP-5A程序使用說(shuō)明書(shū)
- java基礎(chǔ)知識(shí)大全
- SMM英國(guó)建筑工程標(biāo)準(zhǔn)計(jì)量規(guī)則中文 全套
- GB 18030-2022信息技術(shù)中文編碼字符集
- SB/T 10977-2013倉(cāng)儲(chǔ)作業(yè)規(guī)范
- GB/T 854-1988單耳止動(dòng)墊圈
- GB/T 2520-2017冷軋電鍍錫鋼板及鋼帶
- 【QC成果】提高地下室抗浮錨桿一次驗(yàn)收合格率
評(píng)論
0/150
提交評(píng)論