版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第01講4.1數(shù)列的概念課程標(biāo)準(zhǔn)學(xué)習(xí)目標(biāo)①了解數(shù)列的有關(guān)概念(項(xiàng)、項(xiàng)的表示)。②了解數(shù)列的表示方法(列表、圖象、通項(xiàng)公式)。③了解數(shù)列是特殊的函數(shù)。會(huì)依據(jù)若干項(xiàng)求通項(xiàng)公式或某一項(xiàng),能利用遞推公式求解數(shù)列中的項(xiàng)或通項(xiàng)公式,并能借助數(shù)列的單調(diào)性求數(shù)列的最大項(xiàng)與最小項(xiàng)。知識(shí)點(diǎn)01:數(shù)列的概念1、數(shù)列的概念一般地,我們把按照確定的順序排列的一列數(shù)稱為數(shù)列.數(shù)列中的每一個(gè)數(shù)叫做這個(gè)數(shù)列的項(xiàng).數(shù)列的第一個(gè)位置上的數(shù)叫做這個(gè)數(shù)列的第1項(xiàng),常用符號(hào)SKIPIF1<0表示,第二個(gè)位置上的數(shù)叫做這個(gè)數(shù)列的第2項(xiàng),用SKIPIF1<0表示……第SKIPIF1<0個(gè)位置上的數(shù)叫做這個(gè)數(shù)列的第SKIPIF1<0項(xiàng),用SKIPIF1<0表示.其中第1項(xiàng)也叫做首項(xiàng).數(shù)列的一般形式是SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,…,簡(jiǎn)記為SKIPIF1<0.2、數(shù)列與函數(shù)的關(guān)系由于數(shù)列SKIPIF1<0中的每一項(xiàng)SKIPIF1<0與它的序號(hào)SKIPIF1<0有下面的對(duì)應(yīng)關(guān)系:所以數(shù)列SKIPIF1<0是從正整數(shù)集SKIPIF1<0(或它的有限子集{1,2,…,SKIPIF1<0})到實(shí)數(shù)集SKIPIF1<0的函數(shù),其自變量是序號(hào)SKIPIF1<0,對(duì)應(yīng)的函數(shù)值是數(shù)列的第SKIPIF1<0項(xiàng)SKIPIF1<0,記為SKIPIF1<0.也就是說,當(dāng)自變量從1開始,按照從小到大的順序依次取值時(shí),對(duì)應(yīng)的一列函數(shù)值SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,…就是數(shù)列SKIPIF1<0.另一方面,對(duì)于函數(shù)SKIPIF1<0,如果SKIPIF1<0(SKIPIF1<0)有意義,那么SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,…構(gòu)成了一個(gè)數(shù)列SKIPIF1<0.知識(shí)點(diǎn)02:數(shù)列的分類分類標(biāo)準(zhǔn)類型滿足條件項(xiàng)數(shù)有窮數(shù)列項(xiàng)數(shù)有限無窮數(shù)列項(xiàng)數(shù)無限項(xiàng)與項(xiàng)間的大小關(guān)系遞增數(shù)列SKIPIF1<0其中SKIPIF1<0遞減數(shù)列SKIPIF1<0常數(shù)列SKIPIF1<0【即學(xué)即練1】(2023春·新疆塔城·高二塔城市第三中學(xué)??茧A段練習(xí))下列說法正確的是(
)A.?dāng)?shù)列SKIPIF1<0與數(shù)列SKIPIF1<0是相同的數(shù)列B.?dāng)?shù)列0,2,4,6,8,…,可記為SKIPIF1<0,SKIPIF1<0C.?dāng)?shù)列SKIPIF1<0的第SKIPIF1<0項(xiàng)為SKIPIF1<0D.?dāng)?shù)列SKIPIF1<0既是遞增數(shù)列又是無窮數(shù)列【答案】C【詳解】對(duì)于A:數(shù)列是有順序的一列數(shù),故A錯(cuò)誤;對(duì)于B:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,不符合SKIPIF1<0,故B錯(cuò)誤;對(duì)于C:數(shù)列SKIPIF1<0的第SKIPIF1<0項(xiàng)為SKIPIF1<0,故C正確;對(duì)于D:數(shù)列SKIPIF1<0的最后一項(xiàng)為SKIPIF1<0,是有窮數(shù)列,故D錯(cuò)誤;故選:C.知識(shí)點(diǎn)03:數(shù)列的通項(xiàng)公式如果數(shù)列SKIPIF1<0的第SKIPIF1<0項(xiàng)SKIPIF1<0與它的序號(hào)SKIPIF1<0之間的對(duì)應(yīng)關(guān)系可以用一個(gè)式子來表示,那么這個(gè)式子叫做這個(gè)數(shù)列的通項(xiàng)公式.知識(shí)點(diǎn)04:數(shù)列的遞推公式如果一個(gè)數(shù)列的相鄰兩項(xiàng)或多項(xiàng)之間的關(guān)系可以用一個(gè)式子來表示,那么這個(gè)式子叫做這個(gè)數(shù)列的遞推公式.知識(shí)點(diǎn)05:數(shù)列的性質(zhì)1、數(shù)列的單調(diào)性若數(shù)列SKIPIF1<0滿足對(duì)一切正整數(shù)SKIPIF1<0,都有SKIPIF1<0(或者SKIPIF1<0),則稱數(shù)列SKIPIF1<0為遞增數(shù)列(遞減數(shù)列);①求數(shù)列SKIPIF1<0中最大項(xiàng)方法:當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0是數(shù)列最大項(xiàng);②求數(shù)列SKIPIF1<0中最小項(xiàng)方法:當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0是數(shù)列最小項(xiàng);【即學(xué)即練2】(2023春·湖北·高二校聯(lián)考期中)下列通項(xiàng)公式中,對(duì)應(yīng)數(shù)列是遞增數(shù)列的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】對(duì)于A,B選項(xiàng)對(duì)應(yīng)數(shù)列是遞減數(shù)列.對(duì)于C選項(xiàng),SKIPIF1<0,故數(shù)列SKIPIF1<0是遞增數(shù)列.對(duì)于D選項(xiàng),由于SKIPIF1<0.所以數(shù)列SKIPIF1<0不是遞增數(shù)列.故選:C.2、數(shù)列的周期性一般地,若數(shù)列SKIPIF1<0滿足存在正整數(shù)SKIPIF1<0使得SKIPIF1<0對(duì)一切正整數(shù)SKIPIF1<0都成立,則稱數(shù)列SKIPIF1<0為周期數(shù)列,SKIPIF1<0叫做數(shù)列SKIPIF1<0的周期.知識(shí)點(diǎn)06:數(shù)列的前SKIPIF1<0項(xiàng)和SKIPIF1<01、數(shù)列前SKIPIF1<0項(xiàng)和的概念我們把數(shù)列SKIPIF1<0從第1項(xiàng)起到第SKIPIF1<0項(xiàng)止的各項(xiàng)之和,稱為數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,記作SKIPIF1<0,即SKIPIF1<02、數(shù)列前SKIPIF1<0項(xiàng)和SKIPIF1<0與通項(xiàng)SKIPIF1<0的關(guān)系當(dāng)SKIPIF1<0時(shí),SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0用SKIPIF1<0化簡(jiǎn)得:SKIPIF1<0所以:SKIPIF1<0【即學(xué)即練3】(2023春·上海浦東新·高一華師大二附中??计谀┮阎獢?shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,則數(shù)列SKIPIF1<0的通項(xiàng)公式SKIPIF1<0.【答案】SKIPIF1<0【詳解】由題知,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,符合上式,所以SKIPIF1<0.故答案為:SKIPIF1<0題型01數(shù)列的概念及分類【典例1】(多選)(2023·全國(guó)·高三專題練習(xí))下列結(jié)論正確的是(
)A.?dāng)?shù)列1,2,3與3,2,1是兩個(gè)不同的數(shù)列.B.任何一個(gè)數(shù)列不是遞增數(shù)列,就是遞減數(shù)列.C.若數(shù)列用圖象表示,則從圖象上看是一群孤立的點(diǎn).D.若數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,則對(duì)任意SKIPIF1<0,都有SKIPIF1<0.【答案】ACD【詳解】由數(shù)列的定義可知選項(xiàng)A正確;一個(gè)數(shù)列可以是常數(shù)列,因此選項(xiàng)B錯(cuò)誤;根據(jù)數(shù)列的圖象特征可知選項(xiàng)C正確;由SKIPIF1<0的意義可知選項(xiàng)D正確,故選:ACD【典例2】(2023秋·江蘇蘇州·高二吳江中學(xué)??茧A段練習(xí))下列說法中正確的是(
)A.如果一個(gè)數(shù)列不是遞增數(shù)列,那么它一定是遞減數(shù)列B.?dāng)?shù)列1,0,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0,SKIPIF1<0,0,1是相同的數(shù)列C.?dāng)?shù)列SKIPIF1<0的第k項(xiàng)為SKIPIF1<0D.?dāng)?shù)列0,2,4,6,SKIPIF1<0可記為SKIPIF1<0【答案】C【詳解】對(duì)A,數(shù)列可為常數(shù)數(shù)列,A錯(cuò)誤;對(duì)B,一個(gè)遞減,一個(gè)遞增,不是相同數(shù)列,B錯(cuò)誤;對(duì)C,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,C正確;對(duì)D,數(shù)列中的第一項(xiàng)不能用SKIPIF1<0表示,D錯(cuò)誤.故選:C【典例3】(2023·全國(guó)·高二專題練習(xí))已知函數(shù)SKIPIF1<0,設(shè)SKIPIF1<0,則下列說法中錯(cuò)誤的是(
)A.SKIPIF1<0是無窮數(shù)列 B.SKIPIF1<0是遞增數(shù)列C.SKIPIF1<0不是常數(shù)列 D.SKIPIF1<0中有最大項(xiàng)【答案】D【詳解】對(duì)于A,SKIPIF1<0顯然是無窮數(shù)列,故A正確;對(duì)于B,因?yàn)镾KIPIF1<0,即SKIPIF1<0,即SKIPIF1<0是遞增數(shù)列,故B正確;對(duì)于C,因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0不是常數(shù)列,故C正確;對(duì)于D,由B知,SKIPIF1<0是遞增數(shù)列,當(dāng)SKIPIF1<0趨近于無窮大時(shí),SKIPIF1<0也趨近于無窮大,所以SKIPIF1<0中無最大項(xiàng),故D錯(cuò)誤.故選:D【變式1】(2023·高二課時(shí)練習(xí))下列數(shù)列中,既是遞增數(shù)列又是無窮數(shù)列的是()A.-1,-2,-3,-4,… B.-1,-SKIPIF1<0,-SKIPIF1<0,-SKIPIF1<0,…C.-1,-2,-4,-8,… D.1,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0【答案】B【詳解】A,B,C中的數(shù)列都是無窮數(shù)列,但是A,C中的數(shù)列是遞減數(shù)列,故選B.【變式2】(2023秋·福建漳州·高二??茧A段練習(xí))已知SKIPIF1<0,則數(shù)列SKIPIF1<0是(
)A.遞增數(shù)列 B.遞減數(shù)列C.常數(shù)列 D.不確定【答案】A【詳解】由題意可知SKIPIF1<0,即從第二項(xiàng)起數(shù)列SKIPIF1<0的每一項(xiàng)比它的前一項(xiàng)大,所以數(shù)列SKIPIF1<0是遞增數(shù)列;故選:A【變式3】(2023春·高二??颊n時(shí)練習(xí))下列敘述不正確的是(
)A.1,3,5,7與7,5,3,1是相同的數(shù)列 B.1,3,1,3,…是常數(shù)列C.?dāng)?shù)列0,1,2,3,…的通項(xiàng)公式為SKIPIF1<0 D.?dāng)?shù)列SKIPIF1<0是遞增數(shù)列【答案】ABC【詳解】對(duì)于A,數(shù)列1,3,5,7與7,5,3,1不是相同的數(shù)列,故A錯(cuò)誤;對(duì)于B,數(shù)列1,3,1,3,…是擺動(dòng)數(shù)列,故B錯(cuò)誤;對(duì)于C,數(shù)列0,1,2,3,…的通項(xiàng)公式為SKIPIF1<0,故C錯(cuò)誤;對(duì)于D,數(shù)列SKIPIF1<0是遞增數(shù)列,故D正確.故選:ABC.題型02根據(jù)數(shù)列的前幾項(xiàng)求通項(xiàng)公式【典例1】(2023·全國(guó)·高二隨堂練習(xí))根據(jù)下列數(shù)列的前4項(xiàng),寫出它的一個(gè)通項(xiàng)公式:(1)0,1,0,1,…;(2)7,77,777,7777,…;(3)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…;(4)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,….【答案】(1)答案見解析(2)答案見解析(3)答案見解析(4)答案見解析【詳解】(1)根據(jù)所給數(shù)列可得,SKIPIF1<0.(2)根據(jù)所給數(shù)列可得,SKIPIF1<0(3)根據(jù)所給數(shù)列可得,SKIPIF1<0(4)根據(jù)所給數(shù)列可得,SKIPIF1<0【典例2】(2023·全國(guó)·高二課堂例題)觀察下面各數(shù)列,試著找出它的一個(gè)通項(xiàng)公式:(1)2,4,2,4,…;(2)9,99,999,9999,…:(3)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,….【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0【詳解】(1)因?yàn)檫@個(gè)數(shù)列的前4項(xiàng)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由此得到它的一個(gè)通項(xiàng)公式SKIPIF1<0.(2)因?yàn)檫@個(gè)數(shù)列的前4項(xiàng)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由此得到它的一個(gè)通項(xiàng)公式SKIPIF1<0.(3)因?yàn)檫@個(gè)數(shù)列的前4項(xiàng)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由此得到它的一個(gè)通項(xiàng)公式SKIPIF1<0.【變式1】(2023秋·甘肅張掖·高二高臺(tái)縣第一中學(xué)??茧A段練習(xí))數(shù)列{an}:1,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,的一個(gè)通項(xiàng)公式是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】觀察數(shù)列{an}各項(xiàng),可寫成:SKIPIF1<0,選項(xiàng)D滿足,選項(xiàng)A中,SKIPIF1<0,選項(xiàng)B中,SKIPIF1<0,選項(xiàng)C中,SKIPIF1<0,均不符合題意.故選:D【變式2】(2023·全國(guó)·高二隨堂練習(xí))寫出下面各數(shù)列的一個(gè)通項(xiàng)公式:(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,……(2)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,……【答案】(1)SKIPIF1<0(答案不唯一)(2)SKIPIF1<0(答案不唯一)【詳解】(1)數(shù)列的前幾項(xiàng)可改寫為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,……,則SKIPIF1<0(答案不唯一).(2)數(shù)列的前幾項(xiàng)可改寫為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,……,則SKIPIF1<0(答案不唯一).題型03數(shù)列中具體某項(xiàng)的求解與判斷【典例1】(2023秋·高二課時(shí)練習(xí))已知數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,SKIPIF1<0是否是該數(shù)列中的項(xiàng)?若是,是第幾項(xiàng)?【答案】是,15【詳解】解:令SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),所以SKIPIF1<0是該數(shù)列中的項(xiàng),且是第15項(xiàng).【典例2】(2023·全國(guó)·高二隨堂練習(xí))已知無窮數(shù)列SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,….(1)求這個(gè)數(shù)列的第10項(xiàng)和第31項(xiàng).(2)SKIPIF1<0是不是這個(gè)數(shù)列中的項(xiàng)?如果是,是第幾項(xiàng)?(3)證明:SKIPIF1<0不是這個(gè)數(shù)列中的項(xiàng).【答案】(1)SKIPIF1<0,SKIPIF1<0(2)SKIPIF1<0是這個(gè)數(shù)列中的第SKIPIF1<0項(xiàng)(3)證明見解析【詳解】(1)因?yàn)闊o窮數(shù)列SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,…,所以該數(shù)列的通項(xiàng)公式為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.(2)因?yàn)镾KIPIF1<0,將SKIPIF1<0代入,得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),所以SKIPIF1<0是這個(gè)數(shù)列中的第SKIPIF1<0項(xiàng).(3)因?yàn)镾KIPIF1<0,將SKIPIF1<0代入,得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0(負(fù)值舍去),又SKIPIF1<0,故SKIPIF1<0也不滿足題意,所以SKIPIF1<0不是這個(gè)數(shù)列中的項(xiàng).【變式1】(2023·全國(guó)·高二隨堂練習(xí))在數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,通項(xiàng)公式SKIPIF1<0,其中p,q為常數(shù),SKIPIF1<0.(1)求SKIPIF1<0的通項(xiàng)公式;(2)88是否是數(shù)列SKIPIF1<0中的項(xiàng)?【答案】(1)SKIPIF1<0(2)88不是數(shù)列SKIPIF1<0中的項(xiàng)【詳解】(1)解:因?yàn)镾KIPIF1<0,SKIPIF1<0,通項(xiàng)公式SKIPIF1<0,所以SKIPIF1<0,解得,SKIPIF1<0,所以SKIPIF1<0;(2)令SKIPIF1<0,解得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以88不是數(shù)列SKIPIF1<0中的項(xiàng).題型04利用遞推關(guān)系求數(shù)列的項(xiàng)或通項(xiàng)【典例1】(2023春·四川遂寧·高二射洪中學(xué)??茧A段練習(xí))下面圖形由小正方形組成,請(qǐng)觀察圖①至圖④的規(guī)律,并依此規(guī)律,寫出第n個(gè)圖形中小正方形的個(gè)數(shù)是(
)
A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,等式兩邊同時(shí)累加得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0也符合該式,所以第SKIPIF1<0個(gè)圖形中小正方形的個(gè)數(shù)是SKIPIF1<0.故選:C【典例2】(2023秋·福建廈門·高三廈門一中校考階段練習(xí))如圖所示,九連環(huán)是中國(guó)傳統(tǒng)民間智力玩具,以金屬絲制成9個(gè)圓環(huán),解開九連環(huán)共需要256步,解下或套上一個(gè)環(huán)算一步,且九連環(huán)的解下和套上是一對(duì)逆過程.九連環(huán)把玩時(shí)按照一定得程序反復(fù)操作,可以將九個(gè)環(huán)全部從框架上解下或者全部套上.將第SKIPIF1<0個(gè)圓環(huán)解下最少需要移動(dòng)的次數(shù)記為SKIPIF1<0,已知SKIPIF1<0,按規(guī)則有SKIPIF1<0,則解下第5個(gè)圓環(huán)最少需要移動(dòng)的次數(shù)為(
)
A.4 B.7 C.16 D.31【答案】C【詳解】由題意得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以解下第5個(gè)圓環(huán)最少需要移動(dòng)的次數(shù)為16次.故選:C.【典例3】(2023·高二課時(shí)練習(xí))如圖,將正三角形的每一條邊三等分,并以每一條邊上居中的一條線段為邊向外作正三角形,便得到第1條“雪花曲線”(如圖(乙)的實(shí)線部分),對(duì)第1條“雪花曲線”的邊重復(fù)上述作法,便得到第2條“雪花曲線”(如圖(丙)),這樣一直繼續(xù)下去,得到一系列的“雪花曲線”.設(shè)第n條“雪花曲線”有SKIPIF1<0條邊.(1)寫出SKIPIF1<0的值.(2)求出數(shù)列SKIPIF1<0的遞推公式.【答案】(1)SKIPIF1<0.(2)SKIPIF1<0【詳解】解:(1)SKIPIF1<0.(2)由“雪花曲線”的作法可知,第n條“雪花曲線”的每條邊都可得到第SKIPIF1<0條“雪花曲線”的四條邊.∴SKIPIF1<0.∴數(shù)列SKIPIF1<0的遞推公式為SKIPIF1<0.【變式1】(2023春·貴州·高二校聯(lián)考階段練習(xí))“斐波那契數(shù)列”由十三世紀(jì)意大利數(shù)學(xué)家列昂納多-斐波那契發(fā)現(xiàn),因?yàn)殪巢瞧跻酝米臃敝碁槔佣?,故又稱該數(shù)列為“兔子數(shù)列”.已知數(shù)列SKIPIF1<0為“斐波那契數(shù)列”且滿足:SKIPIF1<0,則SKIPIF1<0(
)A.12 B.16 C.24 D.39【答案】C【詳解】由斐波那契數(shù)列為1,1,2,3,5,8,13,21,34,55,89,…,知SKIPIF1<0.故選:C【變式2】(2023春·湖北·高二黃石二中校聯(lián)考階段練習(xí))數(shù)列SKIPIF1<0滿足SKIPIF1<0,且對(duì)SKIPIF1<0,恒有SKIPIF1<0,則SKIPIF1<0(
)A.2021 B.2023 C.2035 D.2037【答案】D【詳解】由已知可得,SKIPIF1<0,SKIPIF1<0.故選:D.【變式3】(2023春·四川眉山·高三校考開學(xué)考試)圖一是美麗的“勾股樹”,它是一個(gè)直角三角形分別以它的每一邊向外作正方形而得到.圖二是第1代“勾股樹”,重復(fù)圖二的作法,得到圖三為第2代“勾股樹”,以此類推,已知最大的正方形面積為1,則第n代“勾股樹”所有正方形的個(gè)數(shù)與面積的和分別為(
)
A.SKIPIF1<0;n B.SKIPIF1<0;SKIPIF1<0C.SKIPIF1<0;n D.SKIPIF1<0;SKIPIF1<0【答案】D【詳解】解:第一代“勾股數(shù)”中正方形的個(gè)數(shù)為SKIPIF1<0,面積和為2,第二代“勾股數(shù)”中正方形的個(gè)數(shù)為SKIPIF1<0,面積和為3,第三代“勾股數(shù)”中正方形的個(gè)數(shù)為SKIPIF1<0,面積和為4,…第n代“勾股數(shù)”中正方形的個(gè)數(shù)為SKIPIF1<0,面積和為SKIPIF1<0,故選:D題型05數(shù)列的單調(diào)性的判斷及其應(yīng)用【典例1】(2023秋·浙江·高三校聯(lián)考階段練習(xí))已知SKIPIF1<0,則“SKIPIF1<0”是“數(shù)列SKIPIF1<0是遞增數(shù)列”的(
)A.充分不必要條件 B.必要不充分條C.充要條件件 D.既不充分又不必要條件【答案】A【詳解】充分性:SKIPIF1<0,因?yàn)镾KIPIF1<0的對(duì)稱軸為SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0的最小值為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即數(shù)列SKIPIF1<0是遞增數(shù)列.“SKIPIF1<0”是“數(shù)列SKIPIF1<0是遞增數(shù)列”的充分條件.必要性:顯然,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0為遞增數(shù)列.“SKIPIF1<0”是“數(shù)列SKIPIF1<0是遞增數(shù)列”的不必要條件.綜上,“SKIPIF1<0”是“數(shù)列SKIPIF1<0是遞增數(shù)列”的充分不必要條件.故選:A【典例2】(2023·全國(guó)·高二隨堂練習(xí))已知下列數(shù)列SKIPIF1<0的通項(xiàng)SKIPIF1<0,畫出數(shù)列的圖象,并判斷數(shù)列的增減性.(1)SKIPIF1<0;(2)SKIPIF1<0.【答案】(1)數(shù)列SKIPIF1<0為遞減數(shù)列,圖見解析(2)數(shù)列SKIPIF1<0為遞增數(shù)列,圖見解析【詳解】(1)SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0數(shù)列SKIPIF1<0為遞減數(shù)列,如圖:
(2)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0數(shù)列SKIPIF1<0為遞增數(shù)列,如圖:
【典例3】(2023·全國(guó)·高二隨堂練習(xí))判斷下列數(shù)列SKIPIF1<0的單調(diào)性:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0.【答案】(1)單調(diào)遞減(2)單調(diào)遞增(3)單調(diào)遞增(4)單調(diào)遞減【詳解】(1)根據(jù)函數(shù)SKIPIF1<0單調(diào)遞減知,SKIPIF1<0單調(diào)遞減,所以數(shù)列SKIPIF1<0是單調(diào)遞減數(shù)列.(2)由SKIPIF1<0為增函數(shù)知,SKIPIF1<0單調(diào)遞增,所以數(shù)列SKIPIF1<0是單調(diào)遞增數(shù)列.(3)由SKIPIF1<0在SKIPIF1<0上單調(diào)遞增知,SKIPIF1<0單調(diào)遞增,所以數(shù)列SKIPIF1<0是單調(diào)遞增數(shù)列.(4)因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0是單調(diào)遞減數(shù)列.【變式1】(2023秋·福建寧德·高二福建省寧德第一中學(xué)??茧A段練習(xí))數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,那么“SKIPIF1<0”是“SKIPIF1<0為遞增數(shù)列”的(
)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】A【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0數(shù)列SKIPIF1<0為遞增數(shù)列,充分性成立;當(dāng)數(shù)列SKIPIF1<0為遞增數(shù)列時(shí),SKIPIF1<0,SKIPIF1<0恒成立,又SKIPIF1<0,SKIPIF1<0,必要性不成立;SKIPIF1<0“SKIPIF1<0”是“SKIPIF1<0為遞增數(shù)列”的充分不必要條件.故選:A.【變式2】(多選)(2023秋·高二課時(shí)練習(xí))下列數(shù)列SKIPIF1<0是單調(diào)遞增數(shù)列的有(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BD【詳解】因?yàn)镾KIPIF1<0選項(xiàng)A:SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0不是單調(diào)遞增數(shù)列;選項(xiàng)B:SKIPIF1<0,所以SKIPIF1<0是單調(diào)遞增數(shù)列;選項(xiàng)C:SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0不是單調(diào)遞增數(shù)列;選項(xiàng)D:SKIPIF1<0,所以SKIPIF1<0是單調(diào)遞增數(shù)列;故選:BD【變式3】(2023·全國(guó)·高二課堂例題)已知函數(shù)SKIPIF1<0,設(shè)數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,其中SKIPIF1<0;(1)求證:SKIPIF1<0;(2)判斷SKIPIF1<0是遞增數(shù)列還是遞減數(shù)列,并說明理由.【答案】(1)證明見解析(2)遞增,理由見解析【詳解】(1)由題意可知SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因此SKIPIF1<0,即SKIPIF1<0.(2)因?yàn)镾KIPIF1<0,又因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,從而SKIPIF1<0,即SKIPIF1<0,因此SKIPIF1<0是遞增數(shù)列.題型06求數(shù)列中的最大(小)項(xiàng)【典例1】(2023·全國(guó)·高三專題練習(xí))已知數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,其最大項(xiàng)和最小項(xiàng)的值分別為()A.1,SKIPIF1<0 B.0,SKIPIF1<0 C.SKIPIF1<0,SKIPIF1<0 D.1,SKIPIF1<0【答案】A【詳解】因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,且單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,且單調(diào)遞減,且SKIPIF1<0,所以最小項(xiàng)為SKIPIF1<0,最大項(xiàng)為SKIPIF1<0.故選:A.【典例2】(2023·全國(guó)·高三專題練習(xí))已知數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,則當(dāng)SKIPIF1<0最小時(shí),SKIPIF1<0(
)A.9 B.10 C.11 D.12【答案】C【詳解】數(shù)列SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,于是當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,因此當(dāng)SKIPIF1<0時(shí),數(shù)列SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),數(shù)列SKIPIF1<0單調(diào)遞增,所以當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0最小.故選:C【典例3】(2023秋·高二課時(shí)練習(xí))已知數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,試判斷數(shù)列SKIPIF1<0的單調(diào)性,并判斷該數(shù)列是否有最大項(xiàng)與最小項(xiàng).【答案】詳見解析【詳解】解:SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0時(shí)單調(diào)遞增,在SKIPIF1<0時(shí)單調(diào)遞減;所以數(shù)列SKIPIF1<0的最大項(xiàng)為SKIPIF1<0,又SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,所以數(shù)列SKIPIF1<0的最小項(xiàng)為SKIPIF1<0.【變式1】(2023·全國(guó)·高二隨堂練習(xí))已知SKIPIF1<0,求該數(shù)列前30項(xiàng)中的最大項(xiàng)和最小項(xiàng).【答案】最大項(xiàng)為SKIPIF1<0,最小項(xiàng)為SKIPIF1<0【詳解】SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,若要SKIPIF1<0最大,則需要SKIPIF1<0取最小正數(shù),則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0最大,若要SKIPIF1<0最小,則需要SKIPIF1<0取最大負(fù)數(shù),則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0最?。栽摂?shù)列前30項(xiàng)中的最大項(xiàng)為SKIPIF1<0,最小項(xiàng)為SKIPIF1<0.【變式2】(2023·全國(guó)·高二隨堂練習(xí))已知數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,畫出該數(shù)列的圖象,并判斷該數(shù)列是否有最大項(xiàng),若有,指出第幾項(xiàng)最大;若沒有,試說明理由.【答案】作圖見解析,第4項(xiàng)最大【詳解】SKIPIF1<0,SKIPIF1<0,該數(shù)列的圖象如下圖所示:
SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,對(duì)稱軸為SKIPIF1<0,且開口向下,又因?yàn)镾KIPIF1<0,再結(jié)合圖象可知該數(shù)列有最大項(xiàng),為第四項(xiàng).【變式3】(2023秋·高二課時(shí)練習(xí))已知數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.(1)寫出這個(gè)數(shù)列的前5項(xiàng).(2)這個(gè)數(shù)列有沒有最小的項(xiàng)?如果有,是第幾項(xiàng)?【答案】(1)答案見解析;(2)有最小項(xiàng),為第四項(xiàng).【詳解】(1)由題設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(2)由SKIPIF1<0,對(duì)應(yīng)二次函數(shù)開口向上且對(duì)稱軸為SKIPIF1<0,所以有最小項(xiàng),為第四項(xiàng).題型07與周期有關(guān)的數(shù)列問題【典例1】(2023秋·云南曲靖·高三??茧A段練習(xí))數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則數(shù)列SKIPIF1<0的前2024項(xiàng)的和SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】因?yàn)镾KIPIF1<0,且SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0;令SKIPIF1<0,可得SKIPIF1<0;令SKIPIF1<0,可得SKIPIF1<0;令SKIPIF1<0,可得SKIPIF1<0;可知數(shù)列SKIPIF1<0是以4為周期的周期數(shù)列,則SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0.故選:C.【典例2】(2023秋·江西宜春·高三江西省宜豐中學(xué)校考階段練習(xí))數(shù)列SKIPIF1<0滿足SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0等于(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0所以數(shù)列具有周期性,周期為4,所以SKIPIF1<0.故選:C.【典例3】(2023秋·江蘇淮安·高三江蘇省清浦中學(xué)校聯(lián)考階段練習(xí))數(shù)列SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0/SKIPIF1<0【詳解】由題設(shè)SKIPIF1<0,所以SKIPIF1<0是周期為3的數(shù)列,則SKIPIF1<0.故答案為:SKIPIF1<0【變式1】(2023秋·福建廈門·高三廈門大學(xué)附屬科技中學(xué)??茧A段練習(xí))若數(shù)列SKIPIF1<0滿足,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.-2 C.3 D.SKIPIF1<0【答案】A【詳解】SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以數(shù)列SKIPIF1<0是周期數(shù)列,且周期是4,因此SKIPIF1<0,故選:A.【變式2】(2023秋·云南曲靖·高三曲靖一中??茧A段練習(xí))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.1012【答案】C【詳解】易知SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故數(shù)列SKIPIF1<0是以3為最小正周期的周期數(shù)列,所以SKIPIF1<0.故選:C.【變式3】(2023秋·湖南株洲·高二株洲二中??茧A段練習(xí))已知數(shù)列SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,則SKIPIF1<0,兩式相加得SKIPIF1<0,則SKIPIF1<0,所以數(shù)列SKIPIF1<0的周期為6,所以SKIPIF1<0.故答案為:SKIPIF1<0.題型08根據(jù)數(shù)列的前SKIPIF1<0項(xiàng)和SKIPIF1<0求SKIPIF1<0【典例1】(2023秋·上海黃浦·高二格致中學(xué)??茧A段練習(xí))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0(SKIPIF1<0為正整數(shù)),則此數(shù)列的通項(xiàng)公式SKIPIF1<0.【答案】SKIPIF1<0【詳解】因?yàn)閿?shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0(SKIPIF1<0為正整數(shù)),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0不滿足SKIPIF1<0.所以,SKIPIF1<0.故答案為:SKIPIF1<0.【典例2】(2023秋·天津和平·高三天津市第二十一中學(xué)??茧A段練習(xí))已知SKIPIF1<0是數(shù)列SKIPIF1<0的前n項(xiàng)和,且滿足SKIPIF1<0,則數(shù)列SKIPIF1<0的通項(xiàng)公式SKIPIF1<0.【答案】SKIPIF1<0【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,顯然SKIPIF1<0,故SKIPIF1<0.故答案為:SKIPIF1<0【典例3】(2023秋·上海徐匯·高二上海民辦南模中學(xué)??茧A段練習(xí))若數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【詳解】數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,而SKIPIF1<0,不滿足上式,所以SKIPIF1<0.故答案為:SKIPIF1<0【變式1】(2023·全國(guó)·高二專題練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,則數(shù)列SKIPIF1<0的通項(xiàng)公式為.【答案】SKIPIF1<0【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)镾KIPIF1<0,所以兩式相減可得SKIPIF1<0;顯然SKIPIF1<0不滿足上式,綜上可得SKIPIF1<0.故答案為:SKIPIF1<0【變式2】(2023秋·河北邢臺(tái)·高二邢臺(tái)市第二中學(xué)??计谀┮阎獢?shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0,則數(shù)列SKIPIF1<0的通項(xiàng)公式為.【答案】SKIPIF1<0【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,對(duì)于SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,與SKIPIF1<0不符,所以SKIPIF1<0.故答案為:SKIPIF1<0.【變式3】(2023春·新疆喀什·高二??茧A段練習(xí))已知數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0,則數(shù)列SKIPIF1<0的通項(xiàng)公式為.【答案】SKIPIF1<0【詳解】SKIPIF1<0,取SKIPIF1<0得到SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),不滿足SKIPIF1<0所以SKIPIF1<0.故答案為:SKIPIF1<0.A夯實(shí)基礎(chǔ)B能力提升A夯實(shí)基礎(chǔ)一、單選題1.(2023秋·甘肅金昌·高二永昌縣第一高級(jí)中學(xué)??茧A段練習(xí))數(shù)列-4,7,-10,13,…的一個(gè)通項(xiàng)公式為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由符號(hào)來看,奇數(shù)項(xiàng)為負(fù),偶數(shù)項(xiàng)為正,所以通項(xiàng)公式中應(yīng)該是SKIPIF1<0,數(shù)值4,7,10,13,…滿足SKIPIF1<0,所以通項(xiàng)公式可以是SKIPIF1<0.故選:B.2.(2023春·廣東深圳·高二深圳第三高中??计谥校┮阎獢?shù)列SKIPIF1<0滿足SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0;所以SKIPIF1<0的周期為3,所以SKIPIF1<0.故選:A.3.(2023秋·福建寧德·高二福建省寧德第一中學(xué)??茧A段練習(xí))記SKIPIF1<0為數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】因?yàn)镾KIPIF1<0為數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,且SKIPIF1<0,則SKIPIF1<0.故選:A.4.(2023·廣西南寧·南寧二中校聯(lián)考模擬預(yù)測(cè))設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0(
)A.7 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】令SKIPIF1<0,可得SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,兩式相減可得SKIPIF1<0,所以SKIPIF1<0.故選:C.5.(2023·河南·校聯(lián)考模擬預(yù)測(cè))《幾何原本》是一部不朽的數(shù)學(xué)巨著,在這本書的第10卷中給出了“窮竭法”的基本命題.所謂“窮竭”指的是一個(gè)變量,它可以小于任意給定的量.根據(jù)窮竭法的基本命題,設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,…,若SKIPIF1<0,則m可能取到的最大值為(
).A.5 B.6 C.7 D.8【答案】C【詳解】根據(jù)題意可知SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0可能大于1,所以m可能取到的最大值為7.故選:C6.(2023春·遼寧沈陽·高二校聯(lián)考期中)在數(shù)列SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,…中,SKIPIF1<0是它的(
)A.第8項(xiàng) B.第9項(xiàng) C.第10項(xiàng) D.第11項(xiàng)【答案】B【詳解】由題意可得,數(shù)列的通項(xiàng)公式為SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0.故選:B7.(2023春·福建福州·高二校聯(lián)考期中)如下圖,在平面直角坐標(biāo)系中的一系列格點(diǎn)SKIPIF1<0,其中SKIPIF1<0且SKIPIF1<0.記SKIPIF1<0,如SKIPIF1<0記為SKIPIF1<0,SKIPIF1<0記為SKIPIF1<0,SKIPIF1<0記為SKIPIF1<0,以此類推;設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則SKIPIF1<0(
)
A.1 B.0 C.—1 D.2【答案】B【詳解】由圖可知,第一圈從點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0共8個(gè)點(diǎn),由對(duì)稱性可知SKIPIF1<0第二圈從點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0共16個(gè)點(diǎn),由對(duì)稱性可知SKIPIF1<0,以此類推,可得第SKIPIF1<0圈的SKIPIF1<0個(gè)點(diǎn)對(duì)應(yīng)的這SKIPIF1<0項(xiàng)的和為0.第SKIPIF1<0圈的最后一個(gè)點(diǎn)對(duì)應(yīng)坐標(biāo)為SKIPIF1<0,SKIPIF1<0在第4圈最后一個(gè)點(diǎn)上,則SKIPIF1<0故選:B.8.(2023秋·高二課時(shí)練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,若SKIPIF1<0為遞增數(shù)列,則SKIPIF1<0的取值范圍是(
)A.SKIP
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 3 做個(gè)“開心果”2023-2024學(xué)年二年級(jí)下冊(cè)道德與法治同步說課稿(統(tǒng)編版)
- 2024-2025學(xué)年高中語文 第四單元 鐵肩擔(dān)道義單元高考對(duì)接說課稿 語文版必修4
- 2025年度門面房屋租賃合同(含品牌使用權(quán))
- 二零二五年度綠色建筑項(xiàng)目勞務(wù)派遣合同范本2篇
- 2025至2030年中國(guó)電動(dòng)盤車機(jī)數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2023三年級(jí)英語下冊(cè) Unit 8 The Ruler Is Long第1課時(shí)說課稿 陜旅版(三起)
- 2025年紙制食品包裝項(xiàng)目可行性研究報(bào)告
- 2025年活染伸展帶項(xiàng)目可行性研究報(bào)告
- 2025年旋轉(zhuǎn)式自動(dòng)旋蓋機(jī)項(xiàng)目可行性研究報(bào)告
- 2025年對(duì)氯苯腈項(xiàng)目可行性研究報(bào)告
- 2025年?duì)I口職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測(cè)試近5年??及鎱⒖碱}庫(kù)含答案解析
- 七年級(jí)歷史下冊(cè)第2課唐朝建立與貞觀之治
- 8.3+區(qū)域性國(guó)際組織+課件高中政治統(tǒng)編版選擇性必修一當(dāng)代國(guó)際政治與經(jīng)濟(jì)
- 2025年國(guó)網(wǎng)陜西省電力限公司高校畢業(yè)生招聘1100人(第二批)高頻重點(diǎn)提升(共500題)附帶答案詳解
- 《深度學(xué)習(xí)的7種有力策略》
- 2025年潞安化工集團(tuán)招聘筆試參考題庫(kù)含答案解析
- 李四光《看看我們的地球》原文閱讀
- 幼兒園一日生活安全課件
- 《認(rèn)罪認(rèn)罰案件被追訴人反悔應(yīng)對(duì)機(jī)制研究》
- 多旋翼無人飛行器嵌入式飛控開發(fā)實(shí)戰(zhàn)-基于STM32系列微控制器的代碼實(shí)現(xiàn)
- 國(guó)家開放大學(xué)護(hù)理社會(huì)實(shí)踐報(bào)告
評(píng)論
0/150
提交評(píng)論