河南省鄭州一中市級名校2023-2024學(xué)年中考數(shù)學(xué)模擬預(yù)測題含解析_第1頁
河南省鄭州一中市級名校2023-2024學(xué)年中考數(shù)學(xué)模擬預(yù)測題含解析_第2頁
河南省鄭州一中市級名校2023-2024學(xué)年中考數(shù)學(xué)模擬預(yù)測題含解析_第3頁
河南省鄭州一中市級名校2023-2024學(xué)年中考數(shù)學(xué)模擬預(yù)測題含解析_第4頁
河南省鄭州一中市級名校2023-2024學(xué)年中考數(shù)學(xué)模擬預(yù)測題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

河南省鄭州一中市級名校2023-2024學(xué)年中考數(shù)學(xué)模擬預(yù)測題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.在聯(lián)歡會上,甲、乙、丙3人分別站在不在同一直線上的三點(diǎn)A、B、C上,他們在玩搶凳子的游戲,要在他們中間放一個木凳,誰先搶到凳子誰獲勝,為使游戲公平,凳子應(yīng)放的最恰當(dāng)?shù)奈恢檬恰鰽BC的()A.三條高的交點(diǎn) B.重心 C.內(nèi)心 D.外心2.關(guān)于x的方程3x+2a=x﹣5的解是負(fù)數(shù),則a的取值范圍是()A.a(chǎn)< B.a(chǎn)> C.a(chǎn)<﹣ D.a(chǎn)>﹣3.如圖由四個相同的小立方體組成的立體圖像,它的主視圖是().A. B. C. D.4.將一把直尺與一塊三角板如圖所示放置,若則∠2的度數(shù)為()A.50° B.110° C.130° D.150°5.下列圖形中一定是相似形的是()A.兩個菱形 B.兩個等邊三角形 C.兩個矩形 D.兩個直角三角形6.魏晉時期的數(shù)學(xué)家劉徽首創(chuàng)割圓術(shù).為計(jì)算圓周率建立了嚴(yán)密的理論和完善的算法.作圓內(nèi)接正多邊形,當(dāng)正多邊形的邊數(shù)不斷增加時,其周長就無限接近圓的周長,進(jìn)而可用來求得較為精確的圓周率.祖沖之在劉徽的基礎(chǔ)上繼續(xù)努力,當(dāng)正多邊形的邊數(shù)增加24576時,得到了精確到小數(shù)點(diǎn)后七位的圓周率,這一成就在當(dāng)時是領(lǐng)先其他國家一千多年,如圖,依據(jù)“割圓術(shù)”,由圓內(nèi)接正六邊形算得的圓周率的近似值是()A.0.5 B.1 C.3 D.π7.已知圓心在原點(diǎn)O,半徑為5的⊙O,則點(diǎn)P(-3,4)與⊙O的位置關(guān)系是()A.在⊙O內(nèi)B.在⊙O上C.在⊙O外D.不能確定8.衡陽市某生態(tài)示范園計(jì)劃種植一批梨樹,原計(jì)劃總產(chǎn)值30萬千克,為了滿足市場需求,現(xiàn)決定改良梨樹品種,改良后平均每畝產(chǎn)量是原來的1.5倍,總產(chǎn)量比原計(jì)劃增加了6萬千克,種植畝數(shù)減少了10畝,則原來平均每畝產(chǎn)量是多少萬千克?設(shè)原來平均每畝產(chǎn)量為萬千克,根據(jù)題意,列方程為A. B.C. D.9.下列各組單項(xiàng)式中,不是同類項(xiàng)的一組是()A.和 B.和 C.和 D.和310.如圖是由三個相同小正方體組成的幾何體的主視圖,那么這個幾何體可以是()A.B.C.D.二、填空題(本大題共6個小題,每小題3分,共18分)11.2的平方根是_________.12.已知二次函數(shù)y=ax2+bx+c中,函數(shù)y與自變量x的部分對應(yīng)值如表所示:x…﹣5﹣4﹣3﹣2﹣1…y…﹣8﹣3010…當(dāng)y<﹣3時,x的取值范圍是_____.13.如果一個正多邊形的中心角等于,那么這個正多邊形的邊數(shù)是__________.14.已知⊙O1、⊙O2的半徑分別為2和5,圓心距為d,若⊙O1與⊙O2相交,那么d的取值范圍是_________.15.關(guān)于x的一元二次方程x2-2x+m-1=0有兩個相等的實(shí)數(shù)根,則m的值為_________16.若A(﹣3,y1),B(﹣2,y2),C(1,y3)三點(diǎn)都在y=的圖象上,則yl,y2,y3的大小關(guān)系是_____.(用“<”號填空)三、解答題(共8題,共72分)17.(8分)化簡:.18.(8分)如圖,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(3,0),點(diǎn)B(0,3),點(diǎn)O為原點(diǎn).動點(diǎn)C、D分別在直線AB、OB上,將△BCD沿著CD折疊,得△B'CD.(Ⅰ)如圖1,若CD⊥AB,點(diǎn)B'恰好落在點(diǎn)A處,求此時點(diǎn)D的坐標(biāo);(Ⅱ)如圖2,若BD=AC,點(diǎn)B'恰好落在y軸上,求此時點(diǎn)C的坐標(biāo);(Ⅲ)若點(diǎn)C的橫坐標(biāo)為2,點(diǎn)B'落在x軸上,求點(diǎn)B'的坐標(biāo)(直接寫出結(jié)果即可).19.(8分)如圖,△ABC三個頂點(diǎn)的坐標(biāo)分別為A(1,1)、B(4,2)、C(3,4).(1)畫出△ABC關(guān)于y軸的對稱圖形△A1B1C1,并寫出B1點(diǎn)的坐標(biāo);(2)畫出△ABC繞原點(diǎn)O旋轉(zhuǎn)180°后得到的圖形△A2B2C2,并寫出B2點(diǎn)的坐標(biāo);(3)在x軸上求作一點(diǎn)P,使△PAB的周長最小,并直接寫出點(diǎn)P的坐標(biāo).20.(8分)(1)計(jì)算:﹣22+|﹣4|+()-1+2tan60°(2)求不等式組的解集.21.(8分)拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸正半軸交于點(diǎn)C.(1)如圖1,若A(-1,0),B(3,0),①求拋物線的解析式;②P為拋物線上一點(diǎn),連接AC,PC,若∠PCO=3∠ACO,求點(diǎn)P的橫坐標(biāo);(2)如圖2,D為x軸下方拋物線上一點(diǎn),連DA,DB,若∠BDA+2∠BAD=90°,求點(diǎn)D的縱坐標(biāo).22.(10分)全面兩孩政策實(shí)施后,甲,乙兩個家庭有了各自的規(guī)劃.假定生男生女的概率相同,回答下列問題:甲家庭已有一個男孩,準(zhǔn)備再生一個孩子,則第二個孩子是女孩的概率是;乙家庭沒有孩子,準(zhǔn)備生兩個孩子,求至少有一個孩子是女孩的概率.23.(12分)如圖,拋物線與x軸交于A,B,與y軸交于點(diǎn)C(0,2),直線經(jīng)過點(diǎn)A,C.(1)求拋物線的解析式;(2)點(diǎn)P為直線AC上方拋物線上一動點(diǎn);①連接PO,交AC于點(diǎn)E,求的最大值;②過點(diǎn)P作PF⊥AC,垂足為點(diǎn)F,連接PC,是否存在點(diǎn)P,使△PFC中的一個角等于∠CAB的2倍?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.24.如圖,在△ABC中,已知AB=AC,AB的垂直平分線交AB于點(diǎn)N,交AC于點(diǎn)M,連接MB.若∠ABC=70°,則∠NMA的度數(shù)是度.若AB=8cm,△MBC的周長是14cm.①求BC的長度;②若點(diǎn)P為直線MN上一點(diǎn),請你直接寫出△PBC周長的最小值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

為使游戲公平,要使凳子到三個人的距離相等,于是利用線段垂直平分線上的點(diǎn)到線段兩端的距離相等可知,要放在三邊中垂線的交點(diǎn)上.【詳解】∵三角形的三條垂直平分線的交點(diǎn)到中間的凳子的距離相等,∴凳子應(yīng)放在△ABC的三條垂直平分線的交點(diǎn)最適當(dāng).故選D.【點(diǎn)睛】本題主要考查了線段垂直平分線的性質(zhì)的應(yīng)用;利用所學(xué)的數(shù)學(xué)知識解決實(shí)際問題是一種能力,要注意培養(yǎng).想到要使凳子到三個人的距離相等是正確解答本題的關(guān)鍵.2、D【解析】

先解方程求出x,再根據(jù)解是負(fù)數(shù)得到關(guān)于a的不等式,解不等式即可得.【詳解】解方程3x+2a=x﹣5得x=,因?yàn)榉匠痰慕鉃樨?fù)數(shù),所以<0,解得:a>﹣.【點(diǎn)睛】本題考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式時,要注意的是:若在不等式左右兩邊同時乘以或除以同一個負(fù)數(shù)時,不等號方向要改變.3、D【解析】從正面看,共2列,左邊是1個正方形,右邊是2個正方形,且下齊.故選D.4、C【解析】

如圖,根據(jù)長方形的性質(zhì)得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【詳解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故選C.【點(diǎn)睛】本題考查了平行線的性質(zhì),三角形外角的性質(zhì)等,準(zhǔn)確識圖是解題的關(guān)鍵.5、B【解析】

如果兩個多邊形的對應(yīng)角相等,對應(yīng)邊的比相等,則這兩個多邊形是相似多邊形.【詳解】解:∵等邊三角形的對應(yīng)角相等,對應(yīng)邊的比相等,∴兩個等邊三角形一定是相似形,又∵直角三角形,菱形的對應(yīng)角不一定相等,矩形的邊不一定對應(yīng)成比例,∴兩個直角三角形、兩個菱形、兩個矩形都不一定是相似形,故選:B.【點(diǎn)睛】本題考查了相似多邊形的識別.判定兩個圖形相似的依據(jù)是:對應(yīng)邊成比例,對應(yīng)角相等,兩個條件必須同時具備.6、C【解析】

連接OC、OD,根據(jù)正六邊形的性質(zhì)得到∠COD=60°,得到△COD是等邊三角形,得到OC=CD,根據(jù)題意計(jì)算即可.【詳解】連接OC、OD,∵六邊形ABCDEF是正六邊形,∴∠COD=60°,又OC=OD,∴△COD是等邊三角形,∴OC=CD,正六邊形的周長:圓的直徑=6CD:2CD=3,故選:C.【點(diǎn)睛】本題考查的是正多邊形和圓,掌握正多邊形的中心角的計(jì)算公式是解題的關(guān)鍵.7、B.【解析】試題解析:∵OP=5,∴根據(jù)點(diǎn)到圓心的距離等于半徑,則知點(diǎn)在圓上.故選B.考點(diǎn):1.點(diǎn)與圓的位置關(guān)系;2.坐標(biāo)與圖形性質(zhì).8、A【解析】

根據(jù)題意可得等量關(guān)系:原計(jì)劃種植的畝數(shù)改良后種植的畝數(shù)畝,根據(jù)等量關(guān)系列出方程即可.【詳解】設(shè)原計(jì)劃每畝平均產(chǎn)量萬千克,則改良后平均每畝產(chǎn)量為萬千克,根據(jù)題意列方程為:.故選:.【點(diǎn)睛】本題考查了由實(shí)際問題抽象出分式方程,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系.9、A【解析】

如果兩個單項(xiàng)式,它們所含的字母相同,并且相同字母的指數(shù)也分別相同,那么就稱這兩個單項(xiàng)式為同類項(xiàng).【詳解】根據(jù)題意可知:x2y和2xy2不是同類項(xiàng).故答案選:A.【點(diǎn)睛】本題考查了單項(xiàng)式與多項(xiàng)式,解題的關(guān)鍵是熟練的掌握單項(xiàng)式與多項(xiàng)式的相關(guān)知識點(diǎn).10、A【解析】試題分析:主視圖是從正面看到的圖形,只有選項(xiàng)A符合要求,故選A.考點(diǎn):簡單幾何體的三視圖.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

直接根據(jù)平方根的定義求解即可(需注意一個正數(shù)有兩個平方根).【詳解】解:2的平方根是故答案為.【點(diǎn)睛】本題考查了平方根的定義.注意一個正數(shù)有兩個平方根,它們互為相反數(shù);0的平方根是0;負(fù)數(shù)沒有平方根.12、x<﹣4或x>1【解析】

觀察表格求出拋物線的對稱軸,確定開口方向,利用二次函數(shù)的對稱性判斷出x=1時,y=-3,然后寫出y<-3時,x的取值范圍即可.【詳解】由表可知,二次函數(shù)的對稱軸為直線x=-2,拋物線的開口向下,且x=1時,y=-3,所以,y<-3時,x的取值范圍為x<-4或x>1.故答案為x<-4或x>1.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,觀察圖表得到y(tǒng)=-3時的另一個x的值是解題的關(guān)鍵.13、12.【解析】

根據(jù)正n邊形的中心角的度數(shù)為進(jìn)行計(jì)算即可得到答案.【詳解】解:根據(jù)正n邊形的中心角的度數(shù)為,則n=360÷30=12,故這個正多邊形的邊數(shù)為12,故答案為:12.【點(diǎn)睛】本題考查的是正多邊形內(nèi)角和中心角的知識,掌握中心角的計(jì)算公式是解題的關(guān)鍵.14、3<d<7【解析】

若兩圓的半徑分別為R和r,且R≥r,圓心距為d:相交,則R-r<d<R+r,從而得到圓心距O1O2的取值范圍.【詳解】∵⊙O1和⊙O2的半徑分別為2和5,且兩圓的位置關(guān)系為相交,∴圓心距O1O2的取值范圍為5-2<d<2+5,即3<d<7.故答案為:3<d<7.【點(diǎn)睛】本題考查的知識點(diǎn)是圓與圓的位置關(guān)系,解題的關(guān)鍵是熟練的掌握圓與圓的位置關(guān)系.15、2.【解析】試題分析:已知方程x2-2x=0有兩個相等的實(shí)數(shù)根,可得:△=4-4(m-1)=-4m+8=0,所以,m=2.考點(diǎn):一元二次方程根的判別式.16、y3<y1<y1【解析】

根據(jù)反比例函數(shù)的性質(zhì)k<0時,在每個象限,y隨x的增大而增大,進(jìn)行比較即可.【詳解】解:k=-1<0,∴在每個象限,y隨x的增大而增大,∵-3<-1<0,∴0<y1<y1.又∵1>0∴y3<0∴y3<y1<y1故答案為:y3<y1<y1【點(diǎn)睛】本題考查的是反比例函數(shù)的性質(zhì),理解性質(zhì):當(dāng)k>0時,在每個象限,y隨x的增大而減小,k<0時,在每個象限,y隨x的增大而增大是解題的關(guān)鍵.三、解答題(共8題,共72分)17、【解析】

原式第一項(xiàng)利用完全平方公式化簡,第二項(xiàng)利用單項(xiàng)式乘多項(xiàng)式法則計(jì)算,去括號合并即可得到結(jié)果.【詳解】解:原式.18、(1)D(0,);(1)C(11﹣6,11﹣18);(3)B'(1+,0),(1﹣,0).【解析】

(1)設(shè)OD為x,則BD=AD=3,在RT△ODA中應(yīng)用勾股定理即可求解;(1)由題意易證△BDC∽△BOA,再利用A、B坐標(biāo)及BD=AC可求解出BD長度,再由特殊角的三角函數(shù)即可求解;(3)過點(diǎn)C作CE⊥AO于E,由A、B坐標(biāo)及C的橫坐標(biāo)為1,利用相似可求解出BC、CE、OC等長度;分點(diǎn)B’在A點(diǎn)右邊和左邊兩種情況進(jìn)行討論,由翻折的對稱性可知BC=B’C,再利用特殊角的三角函數(shù)可逐一求解.【詳解】(Ⅰ)設(shè)OD為x,∵點(diǎn)A(3,0),點(diǎn)B(0,),∴AO=3,BO=∴AB=6∵折疊∴BD=DA在Rt△ADO中,OA1+OD1=DA1.∴9+OD1=(﹣OD)1.∴OD=∴D(0,)(Ⅱ)∵折疊∴∠BDC=∠CDO=90°∴CD∥OA∴且BD=AC,∴∴BD=﹣18∴OD=﹣(﹣18)=18﹣∵tan∠ABO=,∴∠ABC=30°,即∠BAO=60°∵tan∠ABO=,∴CD=11﹣6∴D(11﹣6,11﹣18)(Ⅲ)如圖:過點(diǎn)C作CE⊥AO于E∵CE⊥AO∴OE=1,且AO=3∴AE=1,∵CE⊥AO,∠CAE=60°∴∠ACE=30°且CE⊥AO∴AC=1,CE=∵BC=AB﹣AC∴BC=6﹣1=4若點(diǎn)B'落在A點(diǎn)右邊,∵折疊∴BC=B'C=4,CE=,CE⊥OA∴B'E=∴OB'=1+∴B'(1+,0)若點(diǎn)B'落在A點(diǎn)左邊,∵折疊∴BC=B'C=4,CE=,CE⊥OA∴B'E=∴OB'=﹣1∴B'(1﹣,0)綜上所述:B'(1+,0),(1﹣,0)【點(diǎn)睛】本題結(jié)合翻折綜合考查了三角形相似和特殊角的三角函數(shù),第3問中理解B’點(diǎn)的兩種情況是解題關(guān)鍵.19、(1)畫圖見解析;(2)畫圖見解析;(3)畫圖見解析.【解析】

試題分析:(1)、根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C平移后的對應(yīng)點(diǎn)A1、B1、C1的位置,然后順次連接即可;(2)、根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C關(guān)于原點(diǎn)的對稱點(diǎn)A2、B2、C2的位置,然后順次連接即可;(3)、找出點(diǎn)A關(guān)于x軸的對稱點(diǎn)A′,連接A′B與x軸相交于一點(diǎn),根據(jù)軸對稱確定最短路線問題,交點(diǎn)即為所求的點(diǎn)P的位置,然后連接AP、BP并根據(jù)圖象寫出點(diǎn)P的坐標(biāo)即可.試題解析:(1)、△A1B1C1如圖所示;B1點(diǎn)的坐標(biāo)(-4,2)(2)、△A2B2C2如圖所示;B2點(diǎn)的坐標(biāo):(-4,-2)(3)、△PAB如圖所示,P(2,0).考點(diǎn):(1)、作圖-旋轉(zhuǎn)變換;(2)、軸對稱-最短路線問題;(3)、作圖-平移變換.20、(1)1;(2)-1≤x<1.【解析】試題分析:(1)、首先根據(jù)絕對值、冪、三角函數(shù)的計(jì)算法則得出各式的值,然后進(jìn)行求和得出答案;(2)、分半求出每個不等式的解,然后得出不等式組的解.試題解析:解:(1)、(2)、由得:x<1,由得:x≥-1,∴不等式的解集:-1≤x<1.21、(1)①y=-x2+2x+3②(2)-1【解析】分析:(1)①把A、B的坐標(biāo)代入解析式,解方程組即可得到結(jié)論;②延長CP交x軸于點(diǎn)E,在x軸上取點(diǎn)D使CD=CA,作EN⊥CD交CD的延長線于N.由CD=CA,OC⊥AD,得到∠DCO=∠ACO.由∠PCO=3∠ACO,得到∠ACD=∠ECD,從而有tan∠ACD=tan∠ECD,,即可得出AI、CI的長,進(jìn)而得到.設(shè)EN=3x,則CN=4x,由tan∠CDO=tan∠EDN,得到,故設(shè)DN=x,則CD=CN-DN=3x=,解方程即可得出E的坐標(biāo),進(jìn)而求出CE的直線解析式,聯(lián)立解方程組即可得到結(jié)論;(2)作DI⊥x軸,垂足為I.可以證明△EBD∽△DBC,由相似三角形對應(yīng)邊成比例得到,即,整理得.令y=0,得:.故,從而得到.由,得到,解方程即可得到結(jié)論.詳解:(1)①把A(-1,0),B(3,0)代入得:,解得:,∴②延長CP交x軸于點(diǎn)E,在x軸上取點(diǎn)D使CD=CA,作EN⊥CD交CD的延長線于N.∵CD=CA,OC⊥AD,∴∠DCO=∠ACO.∵∠PCO=3∠ACO,∴∠ACD=∠ECD,∴tan∠ACD=tan∠ECD,∴,AI=,∴CI=,∴.設(shè)EN=3x,則CN=4x.∵tan∠CDO=tan∠EDN,∴,∴DN=x,∴CD=CN-DN=3x=,∴,∴DE=,E(,0).CE的直線解析式為:,,解得:.點(diǎn)P的橫坐標(biāo).(2)作DI⊥x軸,垂足為I.∵∠BDA+2∠BAD=90°,∴∠DBI+∠BAD=90°.∵∠BDI+∠DBI=90°,∴∠BAD=∠BDI.∵∠BID=∠DIA,∴△EBD∽△DBC,∴,∴,∴.令y=0,得:.∴,∴.∵,∴,解得:yD=0或-1.∵D為x軸下方一點(diǎn),∴,∴D的縱坐標(biāo)-1.點(diǎn)睛:本題是二次函數(shù)的綜合題.考查了二次函數(shù)解析式、性質(zhì),相似三角形的判定與性質(zhì),根與系數(shù)的關(guān)系.綜合性比較強(qiáng),難度較大.22、(1);(2)【解析】

(1)根據(jù)可能性只有男孩或女孩,直接得到其概率;(2)列出所有的可能性,然后確定至少有一個女孩的可能性,然后可求概率.【詳解】解:(1)(1)第二個孩子是女孩的概率=;故答案為;(2)畫樹狀圖為:

共有4種等可能的結(jié)果數(shù),其中至少有一個孩子是女孩的結(jié)果數(shù)為3,

所以至少有一個孩子是女孩的概率=.【點(diǎn)睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計(jì)算事件A或事件B的概率.23、(1);(2)①有最大值1;②(2,3)或(,)【解析】

(1)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得A,C點(diǎn)坐標(biāo),根據(jù)代定系數(shù)法,可得函數(shù)解析式;(2)①根據(jù)相似三角形的判定與性質(zhì),可得,根據(jù)平行于y軸直線上兩點(diǎn)間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案;②根據(jù)勾股定理的逆定理得到△ABC是以∠ACB為直角的直角三角形,取AB的中點(diǎn)D,求得D(,0),得到DA=DC=DB=,過P作x軸的平行線交y軸于R,交AC于G,情況一:如圖,∠PCF=2∠BAC=∠DGC+∠CDG,情況二,∠FPC=2∠BAC,解直角三角形即可得到結(jié)論.【詳解】(1)當(dāng)x=0時,y=2,即C(0,2),當(dāng)y=0時,x=4,即A(4,0),將A,C點(diǎn)坐標(biāo)代入函數(shù)解析式,得,解得,拋物線的解析是為;

(2)過點(diǎn)P向x軸做垂線,交直線AC于點(diǎn)M,交x軸于點(diǎn)N,∵直線PN∥y軸,∴△PEM~△OEC,∴把x=0代入y=-x+2,得y=2,即OC=2,設(shè)點(diǎn)P(x,-x2+x+2),則點(diǎn)M(x,-x+2),∴PM=(-x2+x+2)-(-x+2)=-x2+2x=-(x-2)2+2,∴=,∵0<x<4,∴當(dāng)x=2時,=有最大值1.②∵A(4,0),B(-1,0),C(0,2),∴AC=2,BC=,AB=5,∴AC2+BC2=AB2,∴△ABC是以∠ACB為直角的直角三角形,取AB的中點(diǎn)D,∴D(,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論