版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
四川成都實驗高級中學2024屆高考仿真卷數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.存在點在橢圓上,且點M在第一象限,使得過點M且與橢圓在此點的切線垂直的直線經(jīng)過點,則橢圓離心率的取值范圍是()A. B. C. D.2.已知底面是等腰直角三角形的三棱錐P-ABC的三視圖如圖所示,俯視圖中的兩個小三角形全等,則()A.PA,PB,PC兩兩垂直 B.三棱錐P-ABC的體積為C. D.三棱錐P-ABC的側面積為3.某學校為了調查學生在課外讀物方面的支出情況,抽取了一個容量為的樣本,其頻率分布直方圖如圖所示,其中支出在(單位:元)的同學有34人,則的值為()A.100 B.1000 C.90 D.904.曲線上任意一點處的切線斜率的最小值為()A.3 B.2 C. D.15.如圖所示,為了測量、兩座島嶼間的距離,小船從初始位置出發(fā),已知在的北偏西的方向上,在的北偏東的方向上,現(xiàn)在船往東開2百海里到達處,此時測得在的北偏西的方向上,再開回處,由向西開百海里到達處,測得在的北偏東的方向上,則、兩座島嶼間的距離為()A.3 B. C.4 D.6.定義兩種運算“★”與“◆”,對任意,滿足下列運算性質:①★,◆;②()★★,◆◆,則(◆2020)(2020★2018)的值為()A. B. C. D.7.在四邊形中,,,,,,點在線段的延長線上,且,點在邊所在直線上,則的最大值為()A. B. C. D.8.已知復數(shù)滿足:,則的共軛復數(shù)為()A. B. C. D.9.已知集合,,則A. B.C. D.10.若復數(shù)z滿足,則()A. B. C. D.11.設點,P為曲線上動點,若點A,P間距離的最小值為,則實數(shù)t的值為()A. B. C. D.12.tan570°=()A. B.- C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點處的切線方程是__________.14.已知雙曲線的左右焦點分別關于兩漸近線對稱點重合,則雙曲線的離心率為_____15.某公園劃船收費標準如表:某班16名同學一起去該公園劃船,若每人劃船的時間均為1小時,每只租船必須坐滿,租船最低總費用為______元,租船的總費用共有_____種可能.16.某校高二(4)班統(tǒng)計全班同學中午在食堂用餐時間,有7人用時為6分鐘,有14人用時7分鐘,有15人用時為8分鐘,還有4人用時為10分鐘,則高二(4)班全體同學用餐平均用時為____分鐘.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),,使得對任意兩個不等的正實數(shù),都有恒成立.(1)求的解析式;(2)若方程有兩個實根,且,求證:.18.(12分)如圖,在直三棱柱中,分別是中點,且,.求證:平面;求點到平面的距離.19.(12分)已知直線的參數(shù)方程:(為參數(shù))和圓的極坐標方程:(1)將直線的參數(shù)方程化為普通方程,圓的極坐標方程化為直角坐標方程;(2)已知點,直線與圓相交于、兩點,求的值.20.(12分)如圖,四棱錐中,底面ABCD為菱形,平面ABCD,BD交AC于點E,F(xiàn)是線段PC中點,G為線段EC中點.Ⅰ求證:平面PBD;Ⅱ求證:.21.(12分)已知;.(1)若為真命題,求實數(shù)的取值范圍;(2)若為真命題且為假命題,求實數(shù)的取值范圍.22.(10分)改革開放40年,我國經(jīng)濟取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調查.隨機抽取男女駕駛員各50人,進行問卷測評,所得分數(shù)的頻率分布直方圖如圖所示.規(guī)定得分在80分以上為交通安全意識強.安全意識強安全意識不強合計男性女性合計(Ⅰ)求的值,并估計該城市駕駛員交通安全意識強的概率;(Ⅱ)已知交通安全意識強的樣本中男女比例為4:1,完成2×2列聯(lián)表,并判斷有多大把握認為交通安全意識與性別有關;(Ⅲ)在(Ⅱ)的條件下,從交通安全意識強的駕駛員中隨機抽取2人,求抽到的女性人數(shù)的分布列及期望.附:,其中0.0100.0050.0016.6357.87910.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據(jù)題意利用垂直直線斜率間的關系建立不等式再求解即可.【詳解】因為過點M橢圓的切線方程為,所以切線的斜率為,由,解得,即,所以,所以.故選:D【點睛】本題主要考查了建立不等式求解橢圓離心率的問題,屬于基礎題.2、C【解析】
根據(jù)三視圖,可得三棱錐P-ABC的直觀圖,然后再計算可得.【詳解】解:根據(jù)三視圖,可得三棱錐P-ABC的直觀圖如圖所示,其中D為AB的中點,底面ABC.所以三棱錐P-ABC的體積為,,,,,、不可能垂直,即不可能兩兩垂直,,.三棱錐P-ABC的側面積為.故正確的為C.故選:C.【點睛】本題考查三視圖還原直觀圖,以及三棱錐的表面積、體積的計算問題,屬于中檔題.3、A【解析】
利用頻率分布直方圖得到支出在的同學的頻率,再結合支出在(單位:元)的同學有34人,即得解【詳解】由題意,支出在(單位:元)的同學有34人由頻率分布直方圖可知,支出在的同學的頻率為.故選:A【點睛】本題考查了頻率分布直方圖的應用,考查了學生概念理解,數(shù)據(jù)處理,數(shù)學運算的能力,屬于基礎題.4、A【解析】
根據(jù)題意,求導后結合基本不等式,即可求出切線斜率,即可得出答案.【詳解】解:由于,根據(jù)導數(shù)的幾何意義得:,即切線斜率,當且僅當?shù)忍柍闪ⅲ陨先我庖稽c處的切線斜率的最小值為3.故選:A.【點睛】本題考查導數(shù)的幾何意義的應用以及運用基本不等式求最值,考查計算能力.5、B【解析】
先根據(jù)角度分析出的大小,然后根據(jù)角度關系得到的長度,再根據(jù)正弦定理計算出的長度,最后利用余弦定理求解出的長度即可.【詳解】由題意可知:,所以,,所以,所以,又因為,所以,所以.故選:B.【點睛】本題考查解三角形中的角度問題,難度一般.理解方向角的概念以及活用正、余弦定理是解答問題的關鍵.6、B【解析】
根據(jù)新運算的定義分別得出◆2020和2020★2018的值,可得選項.【詳解】由()★★,得(+2)★★,又★,所以★,★,★,,以此類推,2020★2018★2018,又◆◆,◆,所以◆,◆,◆,,以此類推,◆2020,所以(◆2020)(2020★2018),故選:B.【點睛】本題考查定義新運算,關鍵在于理解,運用新定義進行求值,屬于中檔題.7、A【解析】
依題意,如圖以為坐標原點建立平面直角坐標系,表示出點的坐標,根據(jù)求出的坐標,求出邊所在直線的方程,設,利用坐標表示,根據(jù)二次函數(shù)的性質求出最大值.【詳解】解:依題意,如圖以為坐標原點建立平面直角坐標系,由,,,,,,,因為點在線段的延長線上,設,解得,所在直線的方程為因為點在邊所在直線上,故設當時故選:【點睛】本題考查向量的數(shù)量積,關鍵是建立平面直角坐標系,屬于中檔題.8、B【解析】
轉化,為,利用復數(shù)的除法化簡,即得解【詳解】復數(shù)滿足:所以故選:B【點睛】本題考查了復數(shù)的除法和復數(shù)的基本概念,考查了學生概念理解,數(shù)學運算的能力,屬于基礎題.9、D【解析】
因為,,所以,,故選D.10、D【解析】
先化簡得再求得解.【詳解】所以.故選:D【點睛】本題主要考查復數(shù)的運算和模的計算,意在考查學生對這些知識的理解掌握水平.11、C【解析】
設,求,作為的函數(shù),其最小值是6,利用導數(shù)知識求的最小值.【詳解】設,則,記,,易知是增函數(shù),且的值域是,∴的唯一解,且時,,時,,即,由題意,而,,∴,解得,.∴.故選:C.【點睛】本題考查導數(shù)的應用,考查用導數(shù)求最值.解題時對和的關系的處理是解題關鍵.12、A【解析】
直接利用誘導公式化簡求解即可.【詳解】tan570°=tan(360°+210°)=tan210°=tan(180°+30°)=tan30°=.故選:A.【點睛】本題考查三角函數(shù)的恒等變換及化簡求值,主要考查誘導公式的應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用導數(shù)的幾何意義計算即可.【詳解】由已知,,所以,又,所以切線方程為,即.故答案為:【點睛】本題考查導數(shù)的幾何意義,考查學生的基本計算能力,要注意在某點處的切線與過某點的切線的區(qū)別,是一道容易題.14、【解析】
雙曲線的左右焦點分別關于兩條漸近線的對稱點重合,可得一條漸近線的斜率為1,即,即可求出雙曲線的離心率.【詳解】解:雙曲線的左右焦點分別關于兩條漸近線的對稱點重合,一條漸近線的斜率為1,即,,,故答案為:.【點睛】本題考查雙曲線的離心率,考查學生的計算能力,確定一條漸近線的斜率為1是關鍵,屬于基礎題.15、36010【解析】
列出所有租船的情況,分別計算出租金,由此能求出結果.【詳解】當租兩人船時,租金為:元,當租四人船時,租金為:元,當租1條四人船6條兩人船時,租金為:元,當租2條四人船4條兩人船時,租金為:元,當租3條四人船2條兩人船時,租金為:元,當租1條六人船5條2人船時,租金為:元,當租2條六人船2條2人船時,租金為:元,當租1條六人船1條四人船3條2人船時,租金為:元,當租1條六人船2條四人船1條2人船時,租金為:元,當租2條六人船1條四人船時,租金為:元,綜上,租船最低總費用為360元,租船的總費用共有10種可能.故答案為:360,10.【點睛】本小題主要考查分類討論的數(shù)學思想方法,考查實際應用問題,屬于基礎題.16、7.5【解析】
分別求出所有人用時總和再除以總人數(shù)即可得到平均數(shù).【詳解】故答案為:7.5【點睛】此題考查求平均數(shù),關鍵在于準確計算出所有數(shù)據(jù)之和,易錯點在于概念辨析不清導致計算出錯.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析.【解析】
(1)根據(jù)題意,在上單調遞減,求導得,分類討論的單調性,結合題意,得出的解析式;(2)由為方程的兩個實根,得出,,兩式相減,分別算出和,利用換元法令和構造函數(shù),根據(jù)導數(shù)研究單調性,求出,即可證出結論.【詳解】(1)根據(jù)題意,對任意兩個不等的正實數(shù),都有恒成立.則在上單調遞減,因為,當時,在內(nèi)單調遞減.,當時,由,有,此時,當時,單調遞減,當時,單調遞增,綜上,,所以.(2)由為方程的兩個實根,得,兩式相減,可得,因此,令,由,得,則,構造函數(shù).則,所以函數(shù)在上單調遞增,故,即,可知,故,命題得證.【點睛】本題考查利用導數(shù)研究函數(shù)的單調性求函數(shù)的解析式、以及利用構造函數(shù)法證明不等式,考查轉化思想、解題分析能力和計算能力.18、(1)詳見解析;(2).【解析】
(1)利用線面垂直的判定定理和性質定理即可證明;(2)取中點為,則,證得平面,利用等體積法求解即可.【詳解】(1)因為,,,是的中點,,為直三棱柱,所以平面,因為為中點,所以平面,,又,平面(2),又分別是中點,.由(1)知,,又平面,取中點為,連接如圖,則,平面,設點到平面的距離為,由,得,即,解得,點到平面的距離為.【點睛】本題考查線面垂直的判定定理和性質定理、等體積法求點到面的距離;考查邏輯推理能力和運算求解能力;熟練掌握線面垂直的判定定理和性質定理是求解本題的關鍵;屬于中檔題.19、(1):,:;(2)【解析】
(1)消去參數(shù)求得直線的普通方程,將兩邊同乘以,化簡求得圓的直角坐標方程.(2)求得直線的標準參數(shù)方程,代入圓的直角坐標方程,化簡后寫出韋達定理,根據(jù)直線參數(shù)的幾何意義,求得的值.【詳解】(1)消去參數(shù),得直線的普通方程為,將兩邊同乘以得,,∴圓的直角坐標方程為;(2)經(jīng)檢驗點在直線上,可轉化為①,將①式代入圓的直角坐標方程為得,化簡得,設是方程的兩根,則,,∵,∴與同號,由的幾何意義得.【點睛】本小題主要考查參數(shù)方程化為普通方程、極坐標方程化為直角坐標方程,考查利用直線參數(shù)的幾何意義求解距離問題,屬于中檔題.20、(1)見解析;(2)見解析.【解析】分析:(1)先證明,再證明FG//平面PBD.(2)先證明平面,再證明BD⊥FG.詳解:證明:(1)連結PE,因為G.、F為EC和PC的中點,,又平面,平面,所以平面(II)因為菱形ABCD,所以,又PA⊥面ABCD,平面,所以,因為平面,平面,且,平面,平面,∴BD⊥FG.點睛:(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 耐熱不銹鋼項目立項申請報告
- 煙度計生產(chǎn)加工項目可行性研究報告
- 心電圖 課程設計
- 2024年鄉(xiāng)村振興戰(zhàn)略下土地經(jīng)營權轉讓合同范本3篇
- 2024-2030年智能手環(huán)公司技術改造及擴產(chǎn)項目可行性研究報告
- 2024-2030年新版中國液化氣取暖器項目可行性研究報告
- 2024-2030年撰寫:中國心益膠囊項目風險評估報告
- 2024-2030年撰寫:中國復合水泥袋制袋機行業(yè)發(fā)展趨勢及競爭調研分析報告
- 2024-2030年抗腫瘤植物成分伊立替康搬遷改造項目可行性研究報告
- 2024-2030年廣播電視設備公司技術改造及擴產(chǎn)項目可行性研究報告
- 4 古代詩歌四首《 觀滄?!方虒W設計
- 2024農(nóng)村機井轉讓合同范本
- 2024公路工程危險性較大工程安全專項施工方案編制導則
- 2024-2030年中國巨菌草市場需求規(guī)模及未來發(fā)展戰(zhàn)略研究報告
- 人教版高一上學期化學(必修一)《第四章物質結構元素周期律》單元測試卷-帶答案
- 四年級上冊道德與法治全冊教案
- 2024至2030年中國文具市場發(fā)展預測及投資策略分析報告
- 《供應鏈管理》期末考試復習題庫(含答案)
- 中建一局勞務分包合同范本
- 天津市河北區(qū)2023-2024學年高一上學期1月期末化學試題(解析版)
- 中考模擬作文“獨享、分享、共享”寫作指導及范文賞析
評論
0/150
提交評論