湖北省武漢市新洲區(qū)2024年中考數(shù)學押題試卷含解析_第1頁
湖北省武漢市新洲區(qū)2024年中考數(shù)學押題試卷含解析_第2頁
湖北省武漢市新洲區(qū)2024年中考數(shù)學押題試卷含解析_第3頁
湖北省武漢市新洲區(qū)2024年中考數(shù)學押題試卷含解析_第4頁
湖北省武漢市新洲區(qū)2024年中考數(shù)學押題試卷含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖北省武漢市新洲區(qū)2024年中考數(shù)學押題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,菱形ABCD的對角線相交于點O,過點D作DE∥AC,且DE=AC,連接CE、OE,連接AE,交OD于點F,若AB=2,∠ABC=60°,則AE的長為()A. B. C. D.2.如圖,已知⊙O的半徑為5,AB是⊙O的弦,AB=8,Q為AB中點,P是圓上的一點(不與A、B重合),連接PQ,則PQ的最小值為()A.1 B.2 C.3 D.83.如圖,將△ABC沿BC邊上的中線AD平移到△A'B'C'的位置,已知△ABC的面積為9,陰影部分三角形的面積為1.若AA'=1,則A'D等于()A.2 B.3 C. D.4.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù))中的x與y的部分對應值如表所示:x-1013y33下列結(jié)論:(1)abc<0(2)當x>1時,y的值隨x值的增大而減?。唬?)16a+4b+c<0(4)x=3是方程ax2+(b-1)x+c=0的一個根;其中正確的個數(shù)為()A.4個 B.3個 C.2個 D.1個5.下列四個幾何體中,主視圖與左視圖相同的幾何體有()A.1個 B.2個 C.3個 D.4個6.矩形ABCD與CEFG,如圖放置,點B,C,E共線,點C,D,G共線,連接AF,取AF的中點H,連接GH.若BC=EF=2,CD=CE=1,則GH=()A.1 B. C. D.7.如圖,在菱形ABCD中,∠A=60°,E是AB邊上一動點(不與A、B重合),且∠EDF=∠A,則下列結(jié)論錯誤的是()A.AE=BF B.∠ADE=∠BEFC.△DEF是等邊三角形 D.△BEF是等腰三角形8.下列四個圖形分別是四屆國際數(shù)學家大會的會標,其中屬于中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個9.某射擊運動員練習射擊,5次成績分別是:8、9、7、8、x(單位:環(huán)).下列說法中正確的是()A.若這5次成績的中位數(shù)為8,則x=8B.若這5次成績的眾數(shù)是8,則x=8C.若這5次成績的方差為8,則x=8D.若這5次成績的平均成績是8,則x=810.如圖,在平行四邊形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④ B.②和③ C.③和④ D.②和④11.下面四個立體圖形,從正面、左面、上面對空都不可能看到長方形的是A. B. C. D.12.關(guān)于x的不等式組無解,那么m的取值范圍為()A.m≤-1 B.m<-1 C.-1<m≤0 D.-1≤m<0二、填空題:(本大題共6個小題,每小題4分,共24分.)13.化簡:=_____.14.如果方程x2-4x+3=0的兩個根分別是Rt△ABC的兩條邊,△ABC最小的角為A,那么tanA的值為_______.15.比較大?。篲____1.16.如圖,在2×4的正方形網(wǎng)格中,每個小正方形的邊長均為1,每個小正方形的頂點叫做格點,△ABC的頂點都在格點上,將△ABC繞著點C按順時針方向旋轉(zhuǎn)一定角度后,得到△A'B'C',點A'、B'在格點上,則點A走過的路徑長為_____(結(jié)果保留π)17.如圖,在⊙O中,AB是直徑,點D是⊙O上一點,點C是的中點,CE⊥AB于點E,過點D的切線交EC的延長線于點G,連接AD,分別交CE,CB于點P,Q,連接AC,關(guān)于下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點P是△ACQ的外心,其中結(jié)論正確的是________(只需填寫序號).18.如圖,將矩形ABCD沿GH對折,點C落在Q處,點D落在E處,EQ與BC相交于F.若AD=8cm,AB=6cm,AE=4cm.則△EBF的周長是_____cm.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知:如圖,,,.求證:.20.(6分)如圖,正方形OABC的面積為9,點O為坐標原點,點A在x軸上,點C上y軸上,點B在反比例函數(shù)y=(k>0,x>0)的圖象上,點E從原點O出發(fā),以每秒1個單位長度的速度向x軸正方向運動,過點E作x的垂線,交反比例函數(shù)y=(k>0,x>0)的圖象于點P,過點P作PF⊥y軸于點F;記矩形OEPF和正方形OABC不重合部分的面積為S,點E的運動時間為t秒.(1)求該反比例函數(shù)的解析式.(2)求S與t的函數(shù)關(guān)系式;并求當S=時,對應的t值.(3)在點E的運動過程中,是否存在一個t值,使△FBO為等腰三角形?若有,有幾個,寫出t值.21.(6分)如圖1,在正方形ABCD中,E是邊BC的中點,F(xiàn)是CD上一點,已知∠AEF=90°.(1)求證:;(2)平行四邊形ABCD中,E是邊BC上一點,F(xiàn)是邊CD上一點,∠AFE=∠ADC,∠AEF=90°.①如圖2,若∠AFE=45°,求的值;②如圖3,若AB=BC,EC=3CF,直接寫出cos∠AFE的值.22.(8分)如圖已知△ABC,點D是AB上一點,連接CD,請用尺規(guī)在邊AC上求作點P,使得△PBC的面積與△DBC的面積相等(保留作圖痕跡,不寫做法)23.(8分)如圖,關(guān)于x的二次函數(shù)y=x2+bx+c的圖象與x軸交于點A(1,0)和點B與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.(1)求二次函數(shù)的表達式;(2)在y軸上是否存在一點P,使△PBC為等腰三角形?若存在.請求出點P的坐標;(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.24.(10分)已知關(guān)于x,y的二元一次方程組的解為,求a、b的值.25.(10分)《九章算術(shù)》中有一道闡述“盈不足術(shù)”的問題,原文如下:今有人共買物,人出八,盈三;人出七,不足四.問人數(shù),物價各幾何?譯文為:現(xiàn)有一些人共同買一個物品,每人出8元,還盈余3元;每人出7元,則還差4元,問共有多少人?這個物品的價格是多少?請解答上述問題.26.(12分)如圖所示,在△ABC中,BO、CO是角平分線.∠ABC=50°,∠ACB=60°,求∠BOC的度數(shù),并說明理由.題(1)中,如將“∠ABC=50°,∠ACB=60°”改為“∠A=70°”,求∠BOC的度數(shù).若∠A=n°,求∠BOC的度數(shù).27.(12分)今年5月份,某校九年級學生參加了南寧市中考體育考試,為了了解該校九年級(1)班同學的中考體育情況,對全班學生的中考體育成績進行了統(tǒng)計,并繪制以下不完整的頻數(shù)分布表(圖11-1)和扇形統(tǒng)計圖(圖11-2),根據(jù)圖表中的信息解答下列問題:分組

分數(shù)段(分)

頻數(shù)

A36≤x<4122B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110(1)求全班學生人數(shù)和m的值;(2)直接學出該班學生的中考體育成績的中位數(shù)落在哪個分數(shù)段;(3)該班中考體育成績滿分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機選取2人到八年級進行經(jīng)驗交流,請用“列表法”或“畫樹狀圖法”求出恰好選到一男一女的概率.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】在菱形ABCD中,OC=AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四邊形OCED是平行四邊形,∵AC⊥BD,∴平行四邊形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC為等邊三角形,∴AD=AB=AC=2,OA=AC=1,在矩形OCED中,由勾股定理得:CE=OD=,在Rt△ACE中,由勾股定理得:AE=;故選C.點睛:本題考查了菱形的性質(zhì),先求出四邊形OCED是平行四邊形,再根據(jù)菱形的對角線互相垂直求出∠COD=90°,證明四邊形OCED是矩形,再根據(jù)菱形的性質(zhì)得出AC=AB,再根據(jù)勾股定理得出AE的長度即可.2、B【解析】

連接OP、OA,根據(jù)垂徑定理求出AQ,根據(jù)勾股定理求出OQ,計算即可.【詳解】解:由題意得,當點P為劣弧AB的中點時,PQ最小,

連接OP、OA,由垂徑定理得,點Q在OP上,AQ=AB=4,在Rt△AOB中,OQ==3,∴PQ=OP-OQ=2,故選:B.【點睛】本題考查的是垂徑定理、勾股定理,掌握垂徑定理的推論是解題的關(guān)鍵.3、A【解析】分析:由S△ABC=9、S△A′EF=1且AD為BC邊的中線知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根據(jù)△DA′E∽△DAB知,據(jù)此求解可得.詳解:如圖,∵S△ABC=9、S△A′EF=1,且AD為BC邊的中線,∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,∵將△ABC沿BC邊上的中線AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,則,即,解得A′D=2或A′D=-(舍),故選A.點睛:本題主要平移的性質(zhì),解題的關(guān)鍵是熟練掌握平移變換的性質(zhì)與三角形中線的性質(zhì)、相似三角形的判定與性質(zhì)等知識點.4、B【解析】

(1)利用待定系數(shù)法求出二次函數(shù)解析式為y=-x2+x+3,即可判定正確;(2)求得對稱軸,即可判定此結(jié)論錯誤;(3)由當x=4和x=-1時對應的函數(shù)值相同,即可判定結(jié)論正確;(4)當x=3時,二次函數(shù)y=ax2+bx+c=3,即可判定正確.【詳解】(1)∵x=-1時y=-,x=0時,y=3,x=1時,y=,∴,解得∴abc<0,故正確;(2)∵y=-x2+x+3,∴對稱軸為直線x=-=,所以,當x>時,y的值隨x值的增大而減小,故錯誤;(3)∵對稱軸為直線x=,∴當x=4和x=-1時對應的函數(shù)值相同,∴16a+4b+c<0,故正確;(4)當x=3時,二次函數(shù)y=ax2+bx+c=3,∴x=3是方程ax2+(b-1)x+c=0的一個根,故正確;綜上所述,結(jié)論正確的是(1)(3)(4).故選:B.【點睛】本題考查了二次函數(shù)的性質(zhì),主要利用了待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的增減性,二次函數(shù)與不等式,根據(jù)表中數(shù)據(jù)求出二次函數(shù)解析式是解題的關(guān)鍵.5、D【解析】解:①正方體的主視圖與左視圖都是正方形;②球的主視圖與左視圖都是圓;③圓錐主視圖與左視圖都是三角形;④圓柱的主視圖和左視圖都是長方形;故選D.6、C【解析】分析:延長GH交AD于點P,先證△APH≌△FGH得AP=GF=1,GH=PH=PG,再利用勾股定理求得PG=,從而得出答案.詳解:如圖,延長GH交AD于點P,∵四邊形ABCD和四邊形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中點,∴AH=FH,在△APH和△FGH中,∵,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,則GH=PG=×=,故選:C.點睛:本題主要考查矩形的性質(zhì),解題的關(guān)鍵是掌握全等三角形的判定與性質(zhì)、矩形的性質(zhì)、勾股定理等知識點.7、D【解析】

連接BD,可得△ADE≌△BDF,然后可證得DE=DF,AE=BF,即可得△DEF是等邊三角形,然后可證得∠ADE=∠BEF.【詳解】連接BD,∵四邊形ABCD是菱形,

∴AD=AB,∠ADB=∠ADC,AB∥CD,

∵∠A=60°,

∴∠ADC=120°,∠ADB=60°,

同理:∠DBF=60°,

即∠A=∠DBF,

∴△ABD是等邊三角形,

∴AD=BD,

∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,

∴∠ADE=∠BDF,

∵在△ADE和△BDF中,,

∴△ADE≌△BDF(ASA),

∴DE=DF,AE=BF,故A正確;

∵∠EDF=60°,

∴△EDF是等邊三角形,

∴C正確;

∴∠DEF=60°,

∴∠AED+∠BEF=120°,

∵∠AED+∠ADE=180°-∠A=120°,

∴∠ADE=∠BEF;

故B正確.

∵△ADE≌△BDF,

∴AE=BF,

同理:BE=CF,

但BE不一定等于BF.

故D錯誤.

故選D.【點睛】本題考查了菱形的性質(zhì)、等邊三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是正確尋找全等三角形解決問題.8、B【解析】

解:根據(jù)中心對稱的概念可得第一個圖形是中心對稱圖形,第二個圖形不是中心對稱圖形,第三個圖形是中心對稱圖形,第四個圖形不是中心對稱圖形,所以,中心對稱圖有2個.故選B.【點睛】本題考查中心對稱圖形的識別,掌握中心對稱圖形的概念是本題的解題關(guān)鍵.9、D【解析】

根據(jù)中位數(shù)的定義判斷A;根據(jù)眾數(shù)的定義判斷B;根據(jù)方差的定義判斷C;根據(jù)平均數(shù)的定義判斷D.【詳解】A、若這5次成績的中位數(shù)為8,則x為任意實數(shù),故本選項錯誤;B、若這5次成績的眾數(shù)是8,則x為不是7與9的任意實數(shù),故本選項錯誤;C、如果x=8,則平均數(shù)為(8+9+7+8+8)=8,方差為[3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本選項錯誤;D、若這5次成績的平均成績是8,則(8+9+7+8+x)=8,解得x=8,故本選項正確;

故選D.【點睛】本題考查中位數(shù)、眾數(shù)、平均數(shù)和方差:一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差,它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.10、D【解析】∵四邊形ABCD是平行四邊形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②與④不一定成立,∵當四邊形是菱形時,②和④成立.故選D.11、B【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形依此找到從正面、左面、上面觀察都不可能看到長方形的圖形.【詳解】解:A、主視圖為三角形,左視圖為三角形,俯視圖為有對角線的矩形,故本選項錯誤;B、主視圖為等腰三角形,左視圖為等腰三角形,俯視圖為圓,從正面、左面、上面觀察都不可能看到長方形,故本選項正確;C、主視圖為長方形,左視圖為長方形,俯視圖為圓,故本選項錯誤;D、主視圖為長方形,左視圖為長方形,俯視圖為長方形,故本選項錯誤.故選:B.【點睛】本題重點考查三視圖的定義以及考查學生的空間想象能力.12、A【解析】【分析】先求出每一個不等式的解集,然后再根據(jù)不等式組無解得到有關(guān)m的不等式,就可以求出m的取值范圍了.【詳解】,解不等式①得:x<m,解不等式②得:x>-1,由于原不等式組無解,所以m≤-1,故選A.【點睛】本題考查了一元一次不等式組無解問題,熟知一元一次不等式組解集的確定方法“大大取大,小小取小,大小小大中間找,大大小小無處找”是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

先算除法,再算減法,注意把分式的分子分母分解因式【詳解】原式===【點睛】此題考查分式的混合運算,掌握運算法則是解題關(guān)鍵14、或【解析】解方程x2-4x+3=0得,x1=1,x2=3,①當3是直角邊時,∵△ABC最小的角為A,∴tanA=;②當3是斜邊時,根據(jù)勾股定理,∠A的鄰邊=,∴tanA=;所以tanA的值為或.15、【解析】

先將1化為根號的形式,根據(jù)被開方數(shù)越大值越大即可求解.【詳解】解:,,,故答案為>.【點睛】本題考查實數(shù)大小的比較,比較大小時,常用的方法有:作差法,作商法,如果有一個是二次根式,要把另一個也化為二次根式的形式,根據(jù)被開方數(shù)的大小進行比較.16、【解析】分析:連接AA′,根據(jù)勾股定理求出AC=AC′,及AA′的長,然后根據(jù)勾股定理的逆定理得出△ACA′為等腰直角三角形,然后根據(jù)弧長公式求解即可.詳解:連接AA′,如圖所示.∵AC=A′C=,AA′=,∴AC2+A′C2=AA′2,∴△ACA′為等腰直角三角形,∴∠ACA′=90°,∴點A走過的路徑長=×2πAC=π.故答案為:π.點睛:本題主要考查了幾何變換的類型以及勾股定理及逆定理的運用,弧長公式,解題時注意:在旋轉(zhuǎn)變換下,對應線段相等.解決問題的關(guān)鍵是找出變換的規(guī)律,根據(jù)弧長公式求解.17、②③【解析】試題分析:∠BAD與∠ABC不一定相等,選項①錯誤;∵GD為圓O的切線,∴∠GDP=∠ABD,又AB為圓O的直徑,∴∠ADB=90°,∵CF⊥AB,∴∠AEP=90°,∴∠ADB=∠AEP,又∠PAE=∠BAD,∴△APE∽△ABD,∴∠ABD=∠APE,又∠APE=∠GPD,∴∠GDP=∠GPD,∴GP=GD,選項②正確;由AB是直徑,則∠ACQ=90°,如果能說明P是斜邊AQ的中點,那么P也就是這個直角三角形外接圓的圓心了.Rt△BQD中,∠BQD=90°-∠6,Rt△BCE中,∠8=90°-∠5,而∠7=∠BQD,∠6=∠5,所以∠8=∠7,所以CP=QP;由②知:∠3=∠5=∠4,則AP=CP;所以AP=CP=QP,則點P是△ACQ的外心,選項③正確.則正確的選項序號有②③.故答案為②③.考點:1.切線的性質(zhì);2.圓周角定理;3.三角形的外接圓與外心;4.相似三角形的判定與性質(zhì).18、2【解析】試題分析:BE=AB-AE=2.設(shè)AH=x,則DH=AD﹣AH=2﹣x,在Rt△AEH中,∠EAH=90°,AE=4,AH=x,EH=DH=2﹣x,∴EH2=AE2+AH2,即(2﹣x)2=42+x2,解得:x=1.∴AH=1,EH=5.∴C△AEH=12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴.∴C△EBF==C△HAE=2.考點:1折疊問題;2勾股定理;1相似三角形.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、見解析【解析】

先通過∠BAD=∠CAE得出∠BAC=∠DAE,從而證明△ABC≌△ADE,得到BC=DE.【詳解】證明:∵∠BAD=∠CAE,

∴∠BAD+∠DAC=∠CAE+∠DAC.

即∠BAC=∠DAE,

在△ABC和△ADE中,,

∴△ABC≌△ADE(SAS).

∴BC=DE.【點睛】本題考查三角形全等的判定方法和全等三角形的性質(zhì),判定兩個三角形全等的一般方法有:AAS、SSS、SAS、SSA、HL.20、(1)y=(x>0);(2)S與t的函數(shù)關(guān)系式為:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);當S=時,對應的t值為或6;(3)當t=或或3時,使△FBO為等腰三角形.【解析】

(1)由正方形OABC的面積為9,可得點B的坐標為:(3,3),繼而可求得該反比例函數(shù)的解析式.

(2)由題意得P(t,),然后分別從當點P1在點B的左側(cè)時,S=t?(-3)=-3t+9與當點P2在點B的右側(cè)時,則S=(t-3)?=9-去分析求解即可求得答案;

(3)分別從OB=BF,OB=OF,OF=BF去分析求解即可求得答案.【詳解】解:(1)∵正方形OABC的面積為9,∴點B的坐標為:(3,3),∵點B在反比例函數(shù)y=(k>0,x>0)的圖象上,∴3=,即k=9,∴該反比例函數(shù)的解析式為:y=y=(x>0);(2)根據(jù)題意得:P(t,),分兩種情況:①當點P1在點B的左側(cè)時,S=t?(﹣3)=﹣3t+9(0≤t≤3);若S=,則﹣3t+9=,解得:t=;②當點P2在點B的右側(cè)時,則S=(t﹣3)?=9﹣;若S=,則9﹣=,解得:t=6;∴S與t的函數(shù)關(guān)系式為:S=﹣3t+9(0≤t≤3);S=9﹣(t>3);當S=時,對應的t值為或6;(3)存在.若OB=BF=3,此時CF=BC=3,∴OF=6,∴6=,解得:t=;若OB=OF=3,則3=,解得:t=;若BF=OF,此時點F與C重合,t=3;∴當t=或或3時,使△FBO為等腰三角形.【點睛】此題考查反比例函數(shù)的性質(zhì)、待定系數(shù)法求函數(shù)的解析式以及等腰三角形的性質(zhì).此題難度較大,解題關(guān)鍵是注意掌握數(shù)形結(jié)合思想、分類討論思想與方程思想的應用.21、(1)見解析;(2)①;②cos∠AFE=【解析】

(1)用特殊值法,設(shè),則,證,可求出CF,DF的長,即可求出結(jié)論;(2)①如圖2,過F作交AD于點G,證和是等腰直角三角形,證,求出的值,即可寫出的值;②如圖3,作交AD于點T,作于H,證,設(shè)CF=2,則CE=6,可設(shè)AT=x,則TF=3x,,,分別用含x的代數(shù)式表示出∠AFE和∠D的余弦值,列出方程,求出x的值,即可求出結(jié)論.【詳解】(1)設(shè)BE=EC=2,則AB=BC=4,∵,∴,∵,∴∠FEC=∠EAB,又∴,∴,∴,即,∴CF=1,則,∴;(2)①如圖2,過F作交AD于點G,∵,∴和是等腰直角三角形,∴,,∴∠AGF=∠C,又∵,∴∠GAF=∠CFE,∴,∴,又∵GF=DF,∴;②如圖3,作交AD于點T,作于H,則,∴,∴∠ATF=∠C,又∵,且∠D=∠AFE,∴∠TAF=∠CFE,∴,∴,設(shè)CF=2,則CE=6,可設(shè)AT=x,則TF=3x,,∴,且,由,得,解得x=5,∴.【點睛】本題主要考查了三角形相似的判定及性質(zhì)的綜合應用,熟練掌握三角形相似的判定及性質(zhì)是解決本題的關(guān)鍵.22、見解析【解析】

三角形的面積相等即同底等高,所以以BC為兩個三角形的公共底邊,在AC邊上尋找到與D到BC距離相等的點即可.【詳解】作∠CDP=∠BCD,PD與AC的交點即P.【點睛】本題考查了三角形面積的靈活計算,還可以利用三角形的全等來進行解題.23、(1)二次函數(shù)的表達式為:y=x2﹣4x+3;(2)點P的坐標為:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)當點M出發(fā)1秒到達D點時,△MNB面積最大,最大面積是1.此時點N在對稱軸上x軸上方2個單位處或點N在對稱軸上x軸下方2個單位處.【解析】

(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程組,解方程組即可得二次函數(shù)的表達式;(2)先求出點B的坐標,再根據(jù)勾股定理求得BC的長,當△PBC為等腰三角形時分三種情況進行討論:①CP=CB;②BP=BC;③PB=PC;分別根據(jù)這三種情況求出點P的坐標;(3)設(shè)AM=t則DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化為頂點式,根據(jù)二次函數(shù)的性質(zhì)即可得△MNB最大面積;此時點M在D點,點N在對稱軸上x軸上方2個單位處或點N在對稱軸上x軸下方2個單位處.【詳解】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函數(shù)的表達式為:y=x2﹣4x+3;(2)令y=0,則x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,點P在y軸上,當△PBC為等腰三角形時分三種情況進行討論:如圖1,①當CP=CB時,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②當PB=PC時,OP=OB=3,∴P3(0,-3);③當BP=BC時,∵OC=OB=3∴此時P與O重合,∴P4(0,0);綜上所述,點P的坐標為:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);(3)如圖2,設(shè)AM=t,由AB=2,得BM=2﹣t,則DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,當點M出發(fā)1秒到達D點時,△MNB面積最大,最大面積是1.此時點N在對稱軸上x軸上方2個單位處或點N在對稱軸上x軸下方2個單位處.24、或【解析】

把代入二元一次方程組得到關(guān)于a,b的方程組,經(jīng)過整理,得到關(guān)于b的一元二次方程,解之即可得到b的值,把b的值代入一個關(guān)于a,b的二元一次方程,求出a的值,即可得到答案.【詳解】把代入二元一次方程組得:,

由①得:a=1+b,

把a=1+b代入②,整理得:

b2+b

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論