林芝市重點中學(xué)2024年高考沖刺模擬數(shù)學(xué)試題含解析_第1頁
林芝市重點中學(xué)2024年高考沖刺模擬數(shù)學(xué)試題含解析_第2頁
林芝市重點中學(xué)2024年高考沖刺模擬數(shù)學(xué)試題含解析_第3頁
林芝市重點中學(xué)2024年高考沖刺模擬數(shù)學(xué)試題含解析_第4頁
林芝市重點中學(xué)2024年高考沖刺模擬數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

林芝市重點中學(xué)2024年高考沖刺模擬數(shù)學(xué)試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了“勾股圓方圖”,亦稱“趙爽弦圖”(以弦為邊長得到的正方形是由4個全等的直角三角形再加上中間的一個小正方形組成的).類比“趙爽弦圖”.可類似地構(gòu)造如下圖所示的圖形,它是由3個全等的三角形與中間的一個小等邊三角形拼成一個大等邊三角形.設(shè),若在大等邊三角形中隨機取一點,則此點取自小等邊三角形(陰影部分)的概率是()A. B. C. D.2.已知復(fù)數(shù)滿足(是虛數(shù)單位),則=()A. B. C. D.3.已知分別為圓與的直徑,則的取值范圍為()A. B. C. D.4.下列函數(shù)中,在區(qū)間上為減函數(shù)的是()A. B. C. D.5.若等差數(shù)列的前項和為,且,,則的值為().A.21 B.63 C.13 D.846.在聲學(xué)中,聲強級(單位:)由公式給出,其中為聲強(單位:).,,那么()A. B. C. D.7.已知復(fù)數(shù)是純虛數(shù),其中是實數(shù),則等于()A. B. C. D.8.已知,是橢圓的左、右焦點,過的直線交橢圓于兩點.若依次構(gòu)成等差數(shù)列,且,則橢圓的離心率為A. B. C. D.9.某地區(qū)教育主管部門為了對該地區(qū)模擬考試成進行分析,隨機抽取了200分到450分之間的2000名學(xué)生的成績,并根據(jù)這2000名學(xué)生的成績畫出樣本的頻率分布直方圖,如圖所示,則成績在,內(nèi)的學(xué)生人數(shù)為()A.800 B.1000 C.1200 D.160010.已知函數(shù)若關(guān)于的方程有六個不相等的實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.11.窗花是貼在窗紙或窗戶玻璃上的剪紙,是中國古老的傳統(tǒng)民間藝術(shù)之一,它歷史悠久,風(fēng)格獨特,神獸人們喜愛.下圖即是一副窗花,是把一個邊長為12的大正方形在四個角處都剪去邊長為1的小正方形后剩余的部分,然后在剩余部分中的四個角處再剪出邊長全為1的一些小正方形.若在這個窗花內(nèi)部隨機取一個點,則該點不落在任何一個小正方形內(nèi)的概率是()A. B. C. D.12.阿基米德(公元前287年—公元前212年)是古希臘偉大的哲學(xué)家、數(shù)學(xué)家和物理學(xué)家,他和高斯、牛頓并列被稱為世界三大數(shù)學(xué)家.據(jù)說,他自己覺得最為滿意的一個數(shù)學(xué)發(fā)現(xiàn)就是“圓柱內(nèi)切球體的體積是圓柱體積的三分之二,并且球的表面積也是圓柱表面積的三分之二”.他特別喜歡這個結(jié)論,要求后人在他的墓碑上刻著一個圓柱容器里放了一個球,如圖,該球頂天立地,四周碰邊,表面積為的圓柱的底面直徑與高都等于球的直徑,則該球的體積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系中,若函數(shù)在處的切線與圓存在公共點,則實數(shù)的取值范圍為_____.14.已知,若,則________.15.若函數(shù)在和上均單調(diào)遞增,則實數(shù)的取值范圍為________.16.如圖,在等腰三角形中,已知,,分別是邊上的點,且,其中且,若線段的中點分別為,則的最小值是_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在銳角中,,,分別是角,,所對的邊,的面積,且滿足,則的取值范圍是()A. B. C. D.18.(12分)已知橢圓的離心率為,且過點.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)是橢圓上且不在軸上的一個動點,為坐標(biāo)原點,過右焦點作的平行線交橢圓于、兩個不同的點,求的值.19.(12分)某工廠為提高生產(chǎn)效率,需引進一條新的生產(chǎn)線投入生產(chǎn),現(xiàn)有兩條生產(chǎn)線可供選擇,生產(chǎn)線①:有A,B兩道獨立運行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.02,0.03.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本為15萬元;若A工序出現(xiàn)故障,則生產(chǎn)成本增加2萬元;若B工序出現(xiàn)故障,則生產(chǎn)成本增加3萬元;若A,B兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加5萬元.生產(chǎn)線②:有a,b兩道獨立運行的生產(chǎn)工序,且兩道工序出現(xiàn)故障的概率依次是0.04,0.01.若兩道工序都沒有出現(xiàn)故障,則生產(chǎn)成本為14萬元;若a工序出現(xiàn)故障,則生產(chǎn)成本增加8萬元;若b工序出現(xiàn)故障,則生產(chǎn)成本增加5萬元;若a,b兩道工序都出現(xiàn)故障,則生產(chǎn)成本增加13萬元.(1)若選擇生產(chǎn)線①,求生產(chǎn)成本恰好為18萬元的概率;(2)為最大限度節(jié)約生產(chǎn)成本,你會給工廠建議選擇哪條生產(chǎn)線?請說明理由.20.(12分)在平面直角坐標(biāo)系中,曲線(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的普通方程;(2)若P,Q分別為曲線,上的動點,求的最大值.21.(12分)已知數(shù)列為公差為d的等差數(shù)列,,,且,,依次成等比數(shù)列,.(1)求數(shù)列的前n項和;(2)若,求數(shù)列的前n項和為.22.(10分)已知數(shù)列的前項和為,且滿足().(1)求數(shù)列的通項公式;(2)設(shè)(),數(shù)列的前項和.若對恒成立,求實數(shù),的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據(jù)幾何概率計算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可.【詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.【點睛】本題考查了幾何概型的概率計算問題,是基礎(chǔ)題.2、A【解析】

把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】解:由,得,.故選.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.3、A【解析】

由題先畫出基本圖形,結(jié)合向量加法和點乘運算化簡可得,結(jié)合的范圍即可求解【詳解】如圖,其中,所以.故選:A【點睛】本題考查向量的線性運算在幾何中的應(yīng)用,數(shù)形結(jié)合思想,屬于中檔題4、C【解析】

利用基本初等函數(shù)的單調(diào)性判斷各選項中函數(shù)在區(qū)間上的單調(diào)性,進而可得出結(jié)果.【詳解】對于A選項,函數(shù)在區(qū)間上為增函數(shù);對于B選項,函數(shù)在區(qū)間上為增函數(shù);對于C選項,函數(shù)在區(qū)間上為減函數(shù);對于D選項,函數(shù)在區(qū)間上為增函數(shù).故選:C.【點睛】本題考查函數(shù)在區(qū)間上單調(diào)性的判斷,熟悉一些常見的基本初等函數(shù)的單調(diào)性是判斷的關(guān)鍵,屬于基礎(chǔ)題.5、B【解析】

由已知結(jié)合等差數(shù)列的通項公式及求和公式可求,,然后結(jié)合等差數(shù)列的求和公式即可求解.【詳解】解:因為,,所以,解可得,,,則.故選:B.【點睛】本題主要考查等差數(shù)列的通項公式及求和公式的簡單應(yīng)用,屬于基礎(chǔ)題.6、D【解析】

由得,分別算出和的值,從而得到的值.【詳解】∵,∴,∴,當(dāng)時,,∴,當(dāng)時,,∴,∴,故選:D.【點睛】本小題主要考查對數(shù)運算,屬于基礎(chǔ)題.7、A【解析】

對復(fù)數(shù)進行化簡,由于為純虛數(shù),則化簡后的復(fù)數(shù)形式中,實部為0,得到的值,從而得到復(fù)數(shù).【詳解】因為為純虛數(shù),所以,得所以.故選A項【點睛】本題考查復(fù)數(shù)的四則運算,純虛數(shù)的概念,屬于簡單題.8、D【解析】

如圖所示,設(shè)依次構(gòu)成等差數(shù)列,其公差為.根據(jù)橢圓定義得,又,則,解得,.所以,,,.在和中,由余弦定理得,整理解得.故選D.9、B【解析】

由圖可列方程算得a,然后求出成績在內(nèi)的頻率,最后根據(jù)頻數(shù)=總數(shù)×頻率可以求得成績在內(nèi)的學(xué)生人數(shù).【詳解】由頻率和為1,得,解得,所以成績在內(nèi)的頻率,所以成績在內(nèi)的學(xué)生人數(shù).故選:B【點睛】本題主要考查頻率直方圖的應(yīng)用,屬基礎(chǔ)題.10、B【解析】

令,則,由圖象分析可知在上有兩個不同的根,再利用一元二次方程根的分布即可解決.【詳解】令,則,如圖與頂多只有3個不同交點,要使關(guān)于的方程有六個不相等的實數(shù)根,則有兩個不同的根,設(shè)由根的分布可知,,解得.故選:B.【點睛】本題考查復(fù)合方程根的個數(shù)問題,涉及到一元二次方程根的分布,考查學(xué)生轉(zhuǎn)化與化歸和數(shù)形結(jié)合的思想,是一道中檔題.11、D【解析】

由幾何概型可知,概率應(yīng)為非小正方形面積與窗花面積的比,即可求解.【詳解】由題,窗花的面積為,其中小正方形的面積為,所以所求概率,故選:D【點睛】本題考查幾何概型的面積公式的應(yīng)用,屬于基礎(chǔ)題.12、C【解析】

設(shè)球的半徑為R,根據(jù)組合體的關(guān)系,圓柱的表面積為,解得球的半徑,再代入球的體積公式求解.【詳解】設(shè)球的半徑為R,根據(jù)題意圓柱的表面積為,解得,所以該球的體積為.故選:C【點睛】本題主要考查組合體的表面積和體積,還考查了對數(shù)學(xué)史了解,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用導(dǎo)數(shù)的幾何意義可求得函數(shù)在處的切線,再根據(jù)切線與圓存在公共點,利用圓心到直線的距離滿足的條件列式求解即可.【詳解】解:由條件得到又所以函數(shù)在處的切線為,即圓方程整理可得:即有圓心且所以圓心到直線的距離,即.解得或,故答案為:.【點睛】本題主要考查了導(dǎo)數(shù)的幾何意義求解切線方程的問題,同時也考查了根據(jù)直線與圓的位置關(guān)系求解參數(shù)范圍的問題,屬于基礎(chǔ)題.14、1【解析】

由題意先求得的值,可得,再令,可得結(jié)論.【詳解】已知,,,,令,可得,故答案為:1.【點睛】本題主要考查二項式定理的應(yīng)用,注意根據(jù)題意,分析所給代數(shù)式的特點,通過給二項式的賦值,求展開式的系數(shù)和,可以簡便的求出答案,屬于基礎(chǔ)題.15、【解析】

化簡函數(shù),求出在上的單調(diào)遞增區(qū)間,然后根據(jù)在和上均單調(diào)遞增,列出不等式求解即可.【詳解】由知,當(dāng)時,在和上單調(diào)遞增,在和上均單調(diào)遞增,,

,

的取值范圍為:.

故答案為:.【點睛】本題主要考查了三角函數(shù)的圖象與性質(zhì),關(guān)鍵是根據(jù)函數(shù)的單調(diào)性列出關(guān)于m的方程組,屬中檔題.16、【解析】

根據(jù)條件及向量數(shù)量積運算求得,連接,由三角形中線的性質(zhì)表示出.根據(jù)向量的線性運算及數(shù)量積公式表示出,結(jié)合二次函數(shù)性質(zhì)即可求得最小值.【詳解】根據(jù)題意,連接,如下圖所示:在等腰三角形中,已知,則由向量數(shù)量積運算可知線段的中點分別為則由向量減法的線性運算可得所以因為,代入化簡可得因為所以當(dāng)時,取得最小值因而故答案為:【點睛】本題考查了平面向量數(shù)量積的綜合應(yīng)用,向量的線性運算及模的求法,二次函數(shù)最值的應(yīng)用,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、A【解析】

由正弦定理化簡得,解得,進而得到,利用正切的倍角公式求得,根據(jù)三角形的面積公式,求得,進而化簡,即可求解.【詳解】由題意,在銳角中,滿足,由正弦定理可得,即,可得,所以,即,所以,所以,則,所以,可得,又由的面積,所以,則.故選:A.【點睛】本題主要考查了正弦定理、余弦定理的應(yīng)用,以及三角形的面積公式和正切的倍角公式的綜合應(yīng)用,著重考查了推理與運算能力,屬于中檔試題.18、(Ⅰ)(Ⅱ)1【解析】

(Ⅰ)由題,得,,解方程組,即可得到本題答案;(Ⅱ)設(shè)直線,則直線,聯(lián)立,得,聯(lián)立,得,由此即可得到本題答案.【詳解】(Ⅰ)由題可得,即,,將點代入方程得,即,解得,所以橢圓的方程為:;(Ⅱ)由(Ⅰ)知,設(shè)直線,則直線,聯(lián)立,整理得,所以,聯(lián)立,整理得,設(shè),則,所以,所以.【點睛】本題主要考查橢圓標(biāo)準方程的求法以及直線與橢圓的綜合問題,考查學(xué)生的運算求解能力.19、(1)0.0294.(2)應(yīng)選生產(chǎn)線②.見解析【解析】

(1)由題意轉(zhuǎn)化條件得A工序不出現(xiàn)故障B工序出現(xiàn)故障,利用相互獨立事件的概率公式即可得解;(2)分別算出兩個生產(chǎn)線增加的生產(chǎn)成本的期望,進而求出兩個生產(chǎn)線的生產(chǎn)成本期望值,比較期望值即可得解.【詳解】(1)若選擇生產(chǎn)線①,生產(chǎn)成本恰好為18萬元,即A工序不出現(xiàn)故障B工序出現(xiàn)故障,故所求的概率為.(2)若選擇生產(chǎn)線①,設(shè)增加的生產(chǎn)成本為(萬元),則的可能取值為0,2,3,5.,,,,所以萬元;故選生產(chǎn)線①的生產(chǎn)成本期望值為(萬元).若選生產(chǎn)線②,設(shè)增加的生產(chǎn)成本為(萬元),則的可能取值為0,8,5,13.,,,,所以,故選生產(chǎn)線②的生產(chǎn)成本期望值為(萬元),故應(yīng)選生產(chǎn)線②.【點睛】本題考查了相互獨立事件的概率,考查了離散型隨機變量期望的應(yīng)用,屬于中檔題.20、(1),;(2)【解析】試題分析:(1)由消去參數(shù),可得的普通方程,由可得的普通方程;(2)設(shè)為曲線上一點,點到曲線的圓心的距離,結(jié)合可得最值,的最大值為,從而得解.試題解析:(1)的普通方程為.∵曲線的極坐標(biāo)方程為,∴曲線的普通方程為,即.(2)設(shè)為曲線上一點,則點到曲線的圓心的距離.∵,∴當(dāng)時,d有最大值.又∵P,Q分別為曲線,曲線上動點,∴的最大值為.21、(1)(2)【解析】

(1)利用等差數(shù)列的通項公式以及等比中項求出公差,從而求出,再利用等比數(shù)列的前項和公式即可求解.(2)由(1)求出,再利用裂項求和法即可求解.【詳解】(1),且,,依次成等比數(shù)列,,即:,,,,,;(2),.【點睛】本題考查了等差數(shù)列、等比數(shù)列的通項公式、等比數(shù)列

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論