版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年四川瀘縣中考猜題數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,一次函數(shù)y1=x+b與一次函數(shù)y2=kx+4的圖象交于點P(1,3),則關(guān)于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<12.大箱子裝洗衣粉36千克,把大箱子里的洗衣粉分裝在4個大小相同的小箱子里,裝滿后還剩余2千克洗衣粉,則每個小箱子裝洗衣粉(
)A.6.5千克B.7.5千克C.8.5千克D.9.5千克3.下列各數(shù)中,最小的數(shù)是()A.0 B. C. D.4.下列計算正確的是()A. B.(﹣a2)3=a6 C. D.6a2×2a=12a35.如圖,點O′在第一象限,⊙O′與x軸相切于H點,與y軸相交于A(0,2),B(0,8),則點O′的坐標(biāo)是()A.(6,4) B.(4,6) C.(5,4) D.(4,5)6.在△ABC中,∠C=90°,,那么∠B的度數(shù)為()A.60° B.45° C.30° D.30°或60°7.已知x=2﹣3,則代數(shù)式(7+43)x2+(2+3)x+3的值是()A.0 B.3 C.2+3 D.2﹣38.如圖,在?ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點E.若BF=8,AB=5,則AE的長為()A.5 B.6 C.8 D.129.能說明命題“對于任何實數(shù)a,|a|>﹣a”是假命題的一個反例可以是()A.a(chǎn)=﹣2 B.a(chǎn)= C.a(chǎn)=1 D.a(chǎn)=10.如圖,矩形ABCD的邊長AD=3,AB=2,E為AB的中點,F(xiàn)在邊BC上,且BF=2FC,AF分別與DE、DB相交于點M,N,則MN的長為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.已知實數(shù)m,n滿足,,且,則=.12.為了了解某班數(shù)學(xué)成績情況,抽樣調(diào)查了13份試卷成績,結(jié)果如下:3個140分,4個135分,2個130分,2個120分,1個100分,1個80分.則這組數(shù)據(jù)的中位數(shù)為______分.13.如圖,在邊長為4的菱形ABCD中,∠A=60°,M是AD邊的中點,點N是AB邊上一動點,將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,則線段A′C長度的最小值是______.14.若一條直線經(jīng)過點(1,1),則這條直線的解析式可以是(寫出一個即可)______.15.某市對九年級學(xué)生進(jìn)行“綜合素質(zhì)”評價,評價結(jié)果分為A,B,C,D,E五個等級.現(xiàn)隨機(jī)抽取了500名學(xué)生的評價結(jié)果作為樣本進(jìn)行分析,繪制了如圖所示的統(tǒng)計圖.已知圖中從左到右的五個長方形的高之比為2:3:3:1:1,據(jù)此估算該市80000名九年級學(xué)生中“綜合素質(zhì)”評價結(jié)果為“A”的學(xué)生約為_____人.16.在形狀為等腰三角形、圓、矩形、菱形、直角梯形的5張紙片中隨機(jī)抽取一張,抽到中心對稱圖形的概率是________.三、解答題(共8題,共72分)17.(8分)拋物線:與軸交于,兩點(點在點左側(cè)),拋物線的頂點為.(1)拋物線的對稱軸是直線________;(2)當(dāng)時,求拋物線的函數(shù)表達(dá)式;(3)在(2)的條件下,直線:經(jīng)過拋物線的頂點,直線與拋物線有兩個公共點,它們的橫坐標(biāo)分別記為,,直線與直線的交點的橫坐標(biāo)記為,若當(dāng)時,總有,請結(jié)合函數(shù)的圖象,直接寫出的取值范圍.18.(8分)我市某外資企業(yè)生產(chǎn)的一批產(chǎn)品上市后30天內(nèi)全部售完,該企業(yè)對這批產(chǎn)品上市后每天的銷售情況進(jìn)行了跟蹤調(diào)查.其中,國內(nèi)市場的日銷售量y1(萬件)與時間t(t為整數(shù),單位:天)的部分對應(yīng)值如下表所示.而國外市場的日銷售量y2(萬件)與時間t(t為整數(shù),單位:天)的關(guān)系如圖所示.(1)請你從所學(xué)過的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y1與t的變化規(guī)律,寫出y1與t的函數(shù)關(guān)系式及自變量t的取值范圍;(2)分別探求該產(chǎn)品在國外市場上市20天前(不含第20天)與20天后(含第20天)的日銷售量y2與時間t所符合的函數(shù)關(guān)系式,并寫出相應(yīng)自變量t的取值范圍;(3)設(shè)國內(nèi)、外市場的日銷售總量為y萬件,寫出y與時間t的函數(shù)關(guān)系式,并判斷上市第幾天國內(nèi)、外市場的日銷售總量y最大,并求出此時的最大值.19.(8分)在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A(0,1),點C(1,0),正方形AOCD的兩條對角線的交點為B,延長BD至點G,使DG=BD,延長BC至點E,使CE=BC,以BG,BE為鄰邊作正方形BEFG.(Ⅰ)如圖①,求OD的長及的值;(Ⅱ)如圖②,正方形AOCD固定,將正方形BEFG繞點B逆時針旋轉(zhuǎn),得正方形BE′F′G′,記旋轉(zhuǎn)角為α(0°<α<360°),連接AG′.①在旋轉(zhuǎn)過程中,當(dāng)∠BAG′=90°時,求α的大?。虎谠谛D(zhuǎn)過程中,求AF′的長取最大值時,點F′的坐標(biāo)及此時α的大?。ㄖ苯訉懗鼋Y(jié)果即可).20.(8分)如圖,在平行四邊形ABCD中,AB<BC.利用尺規(guī)作圖,在AD邊上確定點E,使點E到邊AB,BC的距離相等(不寫作法,保留作圖痕跡);若BC=8,CD=5,則CE=.21.(8分)如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,作ED⊥EB交AB于點D,⊙O是△BED的外接圓.求證:AC是⊙O的切線;已知⊙O的半徑為2.5,BE=4,求BC,AD的長.22.(10分)如圖,矩形ABCD中,AB=4,AD=5,E為BC上一點,BE∶CE=3∶2,連接AE,點P從點A出發(fā),沿射線AB的方向以每秒1個單位長度的速度勻速運動,過點P作PF∥BC交直線AE于點F.(1)線段AE=______;(2)設(shè)點P的運動時間為t(s),EF的長度為y,求y關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;(3)當(dāng)t為何值時,以F為圓心的⊙F恰好與直線AB、BC都相切?并求此時⊙F的半徑.23.(12分)列方程或方程組解應(yīng)用題:為響應(yīng)市政府“綠色出行”的號召,小張上班由自駕車改為騎公共自行車.已知小張家距上班地點10千米.他用騎公共自行車的方式平均每小時行駛的路程比他用自駕車的方式平均每小時行駛的路程少45千米,他從家出發(fā)到上班地點,騎公共自行車方式所用的時間是自駕車方式所用的時間的4倍.小張用騎公共自行車方式上班平均每小時行駛多少千米?24.如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=1OD,OE=1OC,然后以O(shè)G、OE為鄰邊作正方形OEFG,連接AG,DE.(1)求證:DE⊥AG;(1)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉(zhuǎn)α角(0°<α<360°)得到正方形OE′F′G′,如圖1.①在旋轉(zhuǎn)過程中,當(dāng)∠OAG′是直角時,求α的度數(shù);②若正方形ABCD的邊長為1,在旋轉(zhuǎn)過程中,求AF′長的最大值和此時α的度數(shù),直接寫出結(jié)果不必說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:當(dāng)x>1時,x+b>kx+4,即不等式x+b>kx+4的解集為x>1.故選C.考點:一次函數(shù)與一元一次不等式.2、C【解析】【分析】設(shè)每個小箱子裝洗衣粉x千克,根據(jù)題意列方程即可.【詳解】設(shè)每個小箱子裝洗衣粉x千克,由題意得:4x+2=36,解得:x=8.5,即每個小箱子裝洗衣粉8.5千克,故選C.【點睛】本題考查了列一元一次方程解實際問題,弄清題意,找出等量關(guān)系是解答本題的關(guān)鍵.3、D【解析】
根據(jù)實數(shù)大小比較法則判斷即可.【詳解】<0<1<,故選D.【點睛】本題考查了實數(shù)的大小比較的應(yīng)用,掌握正數(shù)都大于0,負(fù)數(shù)都小于0,兩個負(fù)數(shù)比較大小,其絕對值大的反而小是解題的關(guān)鍵.4、D【解析】
根據(jù)平方根的運算法則和冪的運算法則進(jìn)行計算,選出正確答案.【詳解】,A選項錯誤;(﹣a2)3=-a6,B錯誤;,C錯誤;.6a2×2a=12a3,D正確;故選:D.【點睛】本題考查學(xué)生對平方根及冪運算的能力的考查,熟練掌握平方根運算和冪運算法則是解答本題的關(guān)鍵.5、D【解析】
過O'作O'C⊥AB于點C,過O'作O'D⊥x軸于點D,由切線的性質(zhì)可求得O'D的長,則可得O'B的長,由垂徑定理可求得CB的長,在Rt△O'BC中,由勾股定理可求得O'C的長,從而可求得O'點坐標(biāo).【詳解】如圖,過O′作O′C⊥AB于點C,過O′作O′D⊥x軸于點D,連接O′B,∵O′為圓心,∴AC=BC,∵A(0,2),B(0,8),∴AB=8?2=6,∴AC=BC=3,∴OC=8?3=5,∵⊙O′與x軸相切,∴O′D=O′B=OC=5,在Rt△O′BC中,由勾股定理可得O′C===4,∴P點坐標(biāo)為(4,5),故選:D.【點睛】本題考查了切線的性質(zhì),坐標(biāo)與圖形性質(zhì),解題的關(guān)鍵是掌握切線的性質(zhì)和坐標(biāo)計算.6、C【解析】
根據(jù)特殊角的三角函數(shù)值可知∠A=60°,再根據(jù)直角三角形中兩銳角互余求出∠B的值即可.【詳解】解:∵,∴∠A=60°.∵∠C=90°,∴∠B=90°-60°=30°.點睛:本題考查了特殊角的三角函數(shù)值和直角三角形中兩銳角互余的性質(zhì),熟記特殊角的三角函數(shù)值是解答本題的突破點.7、C【解析】
把x的值代入代數(shù)式,運用完全平方公式和平方差公式計算即可【詳解】解:當(dāng)x=2﹣3時,(7+43)x2+(2+3)x+3=(7+43)(2﹣3)2+(2+3)(2﹣3)+3=(7+43)(7-43)+1+3=49-48+1+3=2+3故選:C.【點睛】此題考查二次根式的化簡求值,關(guān)鍵是代入后利用完全平方公式和平方差公式進(jìn)行計算.8、B【解析】試題分析:由基本作圖得到AB=AF,AG平分∠BAD,故可得出四邊形ABEF是菱形,由菱形的性質(zhì)可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,進(jìn)而得出AE=2AO=1.故選B.考點:1、作圖﹣基本作圖,2、平行四邊形的性質(zhì),3、勾股定理,4、平行線的性質(zhì)9、A【解析】
將各選項中所給a的值代入命題“對于任意實數(shù)a,”中驗證即可作出判斷.【詳解】(1)當(dāng)時,,此時,∴當(dāng)時,能說明命題“對于任意實數(shù)a,”是假命題,故可以選A;(2)當(dāng)時,,此時,∴當(dāng)時,不能說明命題“對于任意實數(shù)a,”是假命題,故不能B;(3)當(dāng)時,,此時,∴當(dāng)時,不能說明命題“對于任意實數(shù)a,”是假命題,故不能C;(4)當(dāng)時,,此時,∴當(dāng)時,不能說明命題“對于任意實數(shù)a,”是假命題,故不能D;故選A.【點睛】熟知“通過舉反例說明一個命題是假命題的方法和求一個數(shù)的絕對值及相反數(shù)的方法”是解答本題的關(guān)鍵.10、B【解析】
過F作FH⊥AD于H,交ED于O,于是得到FH=AB=1,根據(jù)勾股定理得到AF===,根據(jù)平行線分線段成比例定理得到,OH=AE=,由相似三角形的性質(zhì)得到=,求得AM=AF=,根據(jù)相似三角形的性質(zhì)得到=,求得AN=AF=,即可得到結(jié)論.【詳解】過F作FH⊥AD于H,交ED于O,則FH=AB=1.∵BF=1FC,BC=AD=3,∴BF=AH=1,F(xiàn)C=HD=1,∴AF===,∵OH∥AE,∴=,∴OH=AE=,∴OF=FH﹣OH=1﹣=,∵AE∥FO,∴△AME∽△FMO,∴=,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴=,∴AN=AF=,∴MN=AN﹣AM=﹣=,故選B.【點睛】構(gòu)造相似三角形是本題的關(guān)鍵,且求長度問題一般需用到勾股定理來解決,常作垂線二、填空題(本大題共6個小題,每小題3分,共18分)11、.【解析】試題分析:由時,得到m,n是方程的兩個不等的根,根據(jù)根與系數(shù)的關(guān)系進(jìn)行求解.試題解析:∵時,則m,n是方程3x2﹣6x﹣5=0的兩個不相等的根,∴,.∴原式===,故答案為.考點:根與系數(shù)的關(guān)系.12、1【解析】
∵13份試卷成績,結(jié)果如下:3個140分,4個1分,2個130分,2個120分,1個100分,1個80分,∴第7個數(shù)是1分,∴中位數(shù)為1分,故答案為1.13、【解析】
解:如圖所示:∵M(jìn)A′是定值,A′C長度取最小值時,即A′在MC上時,過點M作MF⊥DC于點F,∵在邊長為2的菱形ABCD中,∠A=60°,M為AD中點,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=1,∴FM=DM×cos30°=,∴,∴A′C=MC﹣MA′=.故答案為.【點評】此題主要考查了菱形的性質(zhì)以及銳角三角函數(shù)關(guān)系等知識,得出A′點位置是解題關(guān)鍵.14、y=x.(答案不唯一)【解析】
首先設(shè)一次函數(shù)解析式為:y=kx+b(k≠0),b取任意值后,把(1,1)代入所設(shè)的解析式里,即可得到k的值,進(jìn)而得到答案.【詳解】解:設(shè)直線的解析式y(tǒng)=kx+b,令b=0,將(1,1)代入,得k=1,此時解析式為:y=x.由于b可為任意值,故答案不唯一.故答案為:y=x.(答案不唯一)【點睛】本題考查了待定系數(shù)法求一次函數(shù)解析式.15、16000【解析】
用畢業(yè)生總?cè)藬?shù)乘以“綜合素質(zhì)”等級為A的學(xué)生所占的比即可求得結(jié)果.【詳解】∵A,B,C,D,E五個等級在統(tǒng)計圖中的高之比為2:3:3:1:1,∴該市80000名九年級學(xué)生中“綜合素質(zhì)”評價結(jié)果為“A”的學(xué)生約為80000×=16000,故答案為16000.【點睛】本題考查了條形統(tǒng)計圖的應(yīng)用,讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).16、【解析】
在形狀為等腰三角形、圓、矩形、菱形、直角梯形的5張紙片中,中心對稱圖案的卡片是圓、矩形、菱形,直接利用概率公式求解即可求得答案.【詳解】∵在:等腰三角形、圓、矩形、菱形和直角梯形中屬于中心對稱圖形的有:圓、矩形和菱形3種,∴從這5張紙片中隨機(jī)抽取一張,抽到中心對稱圖形的概率為:.故答案為.三、解答題(共8題,共72分)17、(1);(2);(3)【解析】
(1)根據(jù)拋物線的函數(shù)表達(dá)式,利用二次函數(shù)的性質(zhì)即可找出拋物線的對稱軸;(2)根據(jù)拋物線的對稱軸及即可得出點、的坐標(biāo),根據(jù)點的坐標(biāo),利用待定系數(shù)法即可求出拋物線的函數(shù)表達(dá)式;(3)利用配方法求出拋物線頂點的坐標(biāo),依照題意畫出圖形,觀察圖形可得出,再利用一次函數(shù)圖象上點的坐標(biāo)特征可得出,結(jié)合的取值范圍即可得出的取值范圍.【詳解】(1)∵拋物線的表達(dá)式為,∴拋物線的對稱軸為直線.故答案為:.(2)∵拋物線的對稱軸為直線,,∴點的坐標(biāo)為,點的坐標(biāo)為.將代入,得:,解得:,∴拋物線的函數(shù)表達(dá)式為.(3)∵,∴點的坐標(biāo)為.∵直線y=n與直線的交點的橫坐標(biāo)記為,且當(dāng)時,總有,∴x2<x3<x1,∵x3>0,∴直線與軸的交點在下方,∴.∵直線:經(jīng)過拋物線的頂點,∴,∴.【點睛】本題考查了二次函數(shù)的性質(zhì)、待定系數(shù)法求二次函數(shù)解析式以及一次函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是:(1)利用二次函數(shù)的性質(zhì)找出拋物線的對稱軸;(2)根據(jù)點的坐標(biāo),利用待定系數(shù)法求出二次函數(shù)表達(dá)式;(3)依照題意畫出圖形,利用數(shù)形結(jié)合找出.18、(1)y1=﹣t(t﹣30)(0≤t≤30);(2)∴y2=;(3)上市第20天,國內(nèi)、外市場的日銷售總量y最大,最大值為80萬件.【解析】
(1)根據(jù)題意得出y1與t之間是二次函數(shù)關(guān)系,然后利用待定系數(shù)法求出函數(shù)解析式;(2)利用待定系數(shù)法分別求出兩個函數(shù)解析式,從而得出答案;(3)分0≤t<20、t=20和20≤t≤30三種情況根據(jù)y=y1+y2求出函數(shù)解析式,然后根據(jù)二次函數(shù)的性質(zhì)得出最值,從而得出整體的最值.【詳解】解:(1)由圖表數(shù)據(jù)觀察可知y1與t之間是二次函數(shù)關(guān)系,設(shè)y1=a(t﹣0)(t﹣30)再代入t=5,y1=25可得a=﹣∴y1=﹣t(t﹣30)(0≤t≤30)(2)由函數(shù)圖象可知y2與t之間是分段的一次函數(shù)由圖象可知:0≤t<20時,y2=2t,當(dāng)20≤t≤30時,y2=﹣4t+120,∴y2=,(3)當(dāng)0≤t<20時,y=y1+y2=﹣t(t﹣30)+2t=80﹣(t﹣20)2,可知拋物線開口向下,t的取值范圍在對稱軸左側(cè),y隨t的增大而增大,所以最大值小于當(dāng)t=20時的值80,當(dāng)20≤t≤30時,y=y1+y2=﹣t(t﹣30)﹣4t+120=125﹣(t﹣5)2,可知拋物線開口向下,t的取值范圍在對稱軸右側(cè),y隨t的增大而減小,所以最大值為當(dāng)t=20時的值80,故上市第20天,國內(nèi)、外市場的日銷售總量y最大,最大值為80萬件.19、(Ⅰ)(Ⅱ)①α=30°或150°時,∠BAG′=90°②當(dāng)α=315°時,A、B、F′在一條直線上時,AF′的長最大,最大值為+2,此時α=315°,F(xiàn)′(+,﹣)【解析】
(1)根據(jù)正方形的性質(zhì)以及勾股定理即可解決問題,(2)①因為∠BAG′=90°,BG′=2AB,可知sin∠AG′B=,推出∠AG′B=30°,推出旋轉(zhuǎn)角α=30°,據(jù)對稱性可知,當(dāng)∠ABG″=60°時,∠BAG″=90°,也滿足條件,此時旋轉(zhuǎn)角α=150°,②當(dāng)α=315°時,A、B、F′在一條直線上時,AF′的長最大.【詳解】(Ⅰ)如圖1中,∵A(0,1),∴OA=1,∵四邊形OADC是正方形,∴∠OAD=90°,AD=OA=1,∴OD=AC==,∴AB=BC=BD=BO=,∵BD=DG,∴BG=,∴==.(Ⅱ)①如圖2中,∵∠BAG′=90°,BG′=2AB,∴sin∠AG′B==,∴∠AG′B=30°,∴∠ABG′=60°,∴∠DBG′=30°,∴旋轉(zhuǎn)角α=30°,根據(jù)對稱性可知,當(dāng)∠ABG″=60°時,∠BAG″=90°,也滿足條件,此時旋轉(zhuǎn)角α=150°,綜上所述,旋轉(zhuǎn)角α=30°或150°時,∠BAG′=90°.②如圖3中,連接OF,∵四邊形BE′F′G′是正方形的邊長為∴BF′=2,∴當(dāng)α=315°時,A、B、F′在一條直線上時,AF′的長最大,最大值為+2,此時α=315°,F(xiàn)′(+,﹣)【點睛】本題考查的是正方形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)以及銳角三角函數(shù)的定義,解決本題的關(guān)鍵是要熟練掌握正方形的四條邊相等、四個角相等,旋轉(zhuǎn)變換的性質(zhì)以及特殊角的三角函數(shù)值的應(yīng)用.20、(1)見解析;(2)1.【解析】試題分析:根據(jù)角平分線上的點到角的兩邊距離相等知作出∠A的平分線即可;根據(jù)平行四邊形的性質(zhì)可知AB=CD=5,AD∥BC,再根據(jù)角平分線的性質(zhì)和平行線的性質(zhì)得到∠BAE=∠BEA,再根據(jù)等腰三角形的性質(zhì)和線段的和差關(guān)系即可求解.試題解析:(1)如圖所示:E點即為所求.(2)∵四邊形ABCD是平行四邊形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分線,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=1.考點:作圖—復(fù)雜作圖;平行四邊形的性質(zhì)21、(1)證明見解析;(2)BC=,AD=.【解析】分析:(1)連接OE,由OB=OE知∠OBE=∠OEB、由BE平分∠ABC知∠OBE=∠CBE,據(jù)此得∠OEB=∠CBE,從而得出OE∥BC,進(jìn)一步即可得證;(2)證△BDE∽△BEC得,據(jù)此可求得BC的長度,再證△AOE∽△ABC得,據(jù)此可得AD的長.詳解:(1)如圖,連接OE,∵OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠OBE=∠CBE,∴∠OEB=∠CBE,∴OE∥BC,又∵∠C=90°,∴∠AEO=90°,即OE⊥AC,∴AC為⊙O的切線;(2)∵ED⊥BE,∴∠BED=∠C=90°,又∵∠DBE=∠EBC,∴△BDE∽△BEC,∴,即,∴BC=;∵∠AEO=∠C=90°,∠A=∠A,∴△AOE∽△ABC,∴,即,解得:AD=.點睛:本題主要考查切線的判定與性質(zhì),解題的關(guān)鍵是掌握切線的判定與性質(zhì)及相似三角形的判定與性質(zhì).22、(1)5;(2);(3)時,半徑PF=;t=16,半徑PF=12.【解析】
(1)由矩形性質(zhì)知BC=AD=5,根據(jù)BE:CE=3:2知BE=3,利用勾股定理可得AE=5;(2)由PF∥BE知,據(jù)此求得AF=t,再分0≤t≤4和t>4兩種情況分別求出EF即可得;(3)由以點F為圓心的⊙F恰好與直線AB、BC相切時PF=PG,再分t=0或t=4、0<t<4、t>4這三種情況分別求解可得【詳解】(1)∵四邊形ABCD為矩形,∴BC=AD=5,∵BE∶CE=3∶2,則BE=3,CE=2,∴AE===5.(2)如圖1,當(dāng)點P在線段AB上運動時,即0≤t≤4,∵PF∥BE,∴=,即=,∴AF=t,則EF=AE-AF=5-t,即y=5-t(0≤t≤4);如圖2,當(dāng)點P在射線AB上運動時,即t>4,此時,EF=AF-AE=t-5,即y=t-5(t>4);綜上,;(3)以點F為圓心的⊙F恰好與直線AB、BC相切時,PF=FG,分以下三種情況:①當(dāng)t=0或t=4時,顯然符合條件的⊙F不存在;②當(dāng)0<t<4時,如解圖1,作FG⊥BC于點G,則FG=BP=4-t,∵PF∥BC,∴△APF∽△ABE,∴=,即=,∴PF=t,由4-t=t可得t=,則此時⊙F的半徑PF=;③當(dāng)t>4時,如解圖2,同理可得FG=t-4,PF=t,由t-4=t可得t=16,則此時⊙F的半徑PF=12.【點睛】本題主要考查了矩形的性質(zhì),勾股定理,動點的函數(shù)為題,切線的性質(zhì),相似三角形的判定與性質(zhì)及分類討論的數(shù)學(xué)思想.解題的關(guān)鍵是熟練掌握切線的性質(zhì)、矩形的性質(zhì)及相似三角形的判定與性質(zhì).23、15千米.【解析】
首先設(shè)小張用騎公共
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 招商加盟課程設(shè)計怎么做
- 搖桿課程設(shè)計解析
- 山東交通學(xué)院《創(chuàng)意圖形設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 循環(huán)燈控制器課程設(shè)計
- 山東海事職業(yè)學(xué)院《跨境電商實務(wù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 山東工業(yè)職業(yè)學(xué)院《廣播電視經(jīng)營與管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 幼兒園小班光影課程設(shè)計
- 支架的機(jī)械制造課程設(shè)計
- 幼兒園勞動創(chuàng)意課程設(shè)計
- 折紙游戲課程設(shè)計
- 2024-2025學(xué)年人教版數(shù)學(xué)五年級上冊期末檢測試卷(含答案)
- 【MOOC】犯罪心理學(xué)-中南財經(jīng)政法大學(xué) 中國大學(xué)慕課MOOC答案
- 2024年山西建設(shè)投資集團(tuán)有限公司校園招聘考試筆試試題及答案解析
- 【MOOC】跨文化交際入門-華中師范大學(xué) 中國大學(xué)慕課MOOC答案
- 護(hù)理脊柱外科出科
- 2024年陜西省初中學(xué)業(yè)水平考試·數(shù)學(xué)
- 中職語文基礎(chǔ)上冊《寫作:記敘文-人物描寫(篇章)》課件
- 劇院安全隱患排查治理工作方案
- 快遞員合同協(xié)議書格式
- 企業(yè)三年規(guī)劃方案
- 2024屆高考英語詞匯3500左右
評論
0/150
提交評論