版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
OpportunitiesandChallengesfromArtificialIntelligenceandMachineLearningfortheAdvancementofScience,
Technology,andtheOfficeofScienceMissions
AreportfortheAdvancedScientificComputingAdvisoryCommitteefromtheSubcommitteeonArtificialIntelligence,MachineLearning,Data-
intensiveScienceandHigh-PerformanceComputing
Chair:TonyHeySeptember2020
Caption:
ThecoverimageshowsthecrystalstructureofDy2Ti2O7inwhichthemagneticionDy3+oftherareearthelementDysprosium(shownincyan)occupiessitesonageometricallyfrustratedcorner-sharingtetrahedralnetwork.AI/MLmethodswereusedtosolveforthecouplingsinthematerialandtoidentifytheoriginofitsfreezingintoaglassystate.Neuralnetworkswereusedtoextractthephaseandcouplingsinthesystemfromdiffuseneutronscatteringdatabysolvingtheinversescatteringproblem.Thestrongsingle-ionicanisotropyofDy3+ionsdefinedbytheirmolecularenvironmentrestrictstheeffectivemagneticmomenttoaligneitherinwardoroutward.Themagneticmomentsimposeanice-rulewherelow-energyspinstatesarerestrictedtoatwo-inandtwo-outconfigurationforeachtetrahedronandthebreakingofthisice-rulecreatestwofractionalizedmagneticmonopoleswithoppositepolarity.
Acknowledgement:
AnjanaSamarakoonandAlanTennant,OakRidgeNationalLaboratory.
TableofContents
ExecutiveSummary 6
Introduction 6
Context 7
KeyFindings 8
RecommendationsforDOE’sOfficeofScience 12
Report 16
IntroductionandBackground 16
ChargeLettertoASCR 17
SubcommitteeInformationGatheringActivities 17
DOEastheleadagencyforAI/MLappliedtoFacilitiesScience 19
OpportunitiesandchallengesfromArtificialIntelligenceandMachineLearningforthe
advancementofscience,technology,andOfficeofSciencemissions 20
StrategiesfortheDOEOfficeofSciencetoaddressthechallengesanddeliveronthe
opportunities 21
Introduction 21
AIApplications 23
AIAlgorithmsandFoundations 31
AISoftwareInfrastructure 37
NewHardwareTechnologiesforAI 40
InstrumenttoEdgeComputing 41
AI/MLWorkforce:Training,Focusing,andRetention 42
UniversityPartnerships 44
CollaborationwithIndustry 45
Inter-AgencyCollaboration 46
InternationalCollaboration 47
ImportanceofASCR’slong-termAppliedMathematicsandComputerScience
ResearchPrograms 49
SummaryofConclusions 49
Figures 51
Figure1:AI,MachineLearning,DeepLearninginaNutshell 51
Figure2:WhatisaDataScientist? 52
Figure3:StructureofSCAIforScience10-yearInitiative 53
ReferencesandURLs 54
AppendixA:ChargeLetter 56
AppendixB:SubcommitteeMembers 58
AppendixD:ListofAcronyms 64
Acknowledgements 65
“AIwon’treplacethescientist,butscientistswhouseAIwillreplace
thosewhodon’t.”
AdaptedfromaMicrosoftreport,“TheFutureComputed”
ExecutiveSummary
Introduction
InFebruary2019,thePresidentsignedExecutiveOrder13859,MaintainingAmericanLeadershipinArtificialIntelligence[1].ThisorderlaunchedtheAmericanArtificialIntelligenceInitiative,aconcertedefforttopromoteandprotectAItechnologyandinnovationintheUnitedStates.TheInitiativeimplementsagovernment-widestrategyincollaborationandengagementwiththeprivatesector,academia,thepublic,andlike-mindedinternationalpartners.
Amongotheractions,keydirectivesintheInitiativecalledforFederalagenciesto:
PrioritizeAIresearchanddevelopmentinvestments,
Enhanceaccesstohigh-qualitycyberinfrastructureanddata,
EnsurethattheUSmaintainsaninternationalleadershiproleinthedevelopmentoftechnicalstandardsforAI,and
ProvideeducationandtrainingopportunitiestopreparetheAmericanworkforcefortheneweraofAI.
ThemissionoftheDepartmentofEnergy(DOE)istoensureAmerica’ssecurityandprosperitybyaddressingitsenergy,environmental,andnuclearchallengesthroughtransformativescienceandtechnologysolutions.IntermsofScienceandInnovation,theDOE’smissionistomaintainavibrantUSeffortinscienceandengineeringasacornerstoneofoureconomicprosperitywithclearleadershipinstrategicareas.
FromJulytoOctoberin2019,theArgonne,OakRidge,andBerkeleyNationalLaboratorieshostedaseriesoffourAIforScienceTownHallmeetingsinChicago,OakRidge,Berkeley,andWashingtonDC.Thefourmeetingswereattendedbyover1300scientistsfromthe17DOELabs,39companies,andover90universities.ThegoaloftheTownHallserieswas‘toexaminescientificopportunitiesintheareasofartificialintelligence,BigData,andhigh-performancecomputing(HPC)inthenextdecade,andtocapturethebigideas,grandchallenges,andnextstepstorealizingthese.’ThediscussionsatthemeetingswerecapturedinthefinalreportoftheAIforScienceTownHallmeetings[2].
InresponsetoachargeletterfromtheDOE’sOfficeofScience(SC),theAdvancedScientificComputingResearch(ASCR)programaskeditsAdvisoryCommittee(ASCAC)toestablishasubcommitteetoexplorethescientificopportunitiesandchallengesarisingfromtheintersectionofArtificialIntelligence(AI)andMachineLearning(ML)withdata-intensivescienceandhighperformancecomputing.Specifically,thisAIforSciencesubcommitteewasaskedto:
AssesstheopportunitiesandchallengesfromArtificialIntelligenceandMachineLearningfortheadvancementofscience,technology,andtheOfficeofSciencemissions.
IdentifystrategiesthatASCRcanuse,incoordinationwiththeotherSCprograms,toaddressthechallengesanddeliverontheopportunities.
ThisreportistheresultoftheSubcommittee’sinvestigationofthesechargequestions.TosetthecontextasummaryofAI,MLandDeepLearningisincludedherealongwithacharacterizationofdifferentrolesfordatascientists.Thisexecutivesummaryreportsthesubcommittee’skeyfindingsandrecommendations.
Context
ThetermArtificialIntelligencewascoinedbyJohnMcCarthyforaworkshopatDartmouthCollegeinNewHampshirein1956.Attheworkshop,McCarthyintroducedthephrase‘ArtificialIntelligence’whichhelaterdefinedas[3]:
‘Thescienceandengineeringofmakingintelligentmachines,especiallyintelligentcomputerprograms.’
Bycontrast,thefieldofMachineLearningislessambitiousandcanberegardedasasub-domainofartificialintelligence[4]:
‘Machinelearningaddressesthequestionofhowtobuildcomputersthatimproveautomaticallythroughexperience.Itisoneoftoday'smostrapidlygrowingtechnicalfields,lyingattheintersectionofcomputerscienceandstatistics,andatthecoreofartificialintelligenceanddatascience.Recentprogressinmachinelearninghasbeendrivenbothbythedevelopmentofnewlearningalgorithmsandtheoryandbytheongoingexplosionintheavailabilityofonlinedataandlow-costcomputation.’
Finally,DeepLearningneuralnetworksareasubsetof
MachineLearning
methodsthatarebasedon
artificialneuralnetworks
(ANNs)[5]:
‘AnANNisbasedonacollectionofconnectedunitsornodescalled
artificial
neurons
,whichlooselymodelthe
neurons
inabiologicalbrain.Eachconnection,likethe
synapses
inabiologicalbrain,cantransmitasignaltootherneurons.Anartificialneuronthatreceivesasignalthenprocessesitandcansignalneuronsconnectedtoit.The"signal"ataconnectionisa
realnumber
,andtheoutputofeachneuroniscomputedbysomenon-linearfunctionofthesumofitsinputs.Theconnectionsarecallededges.Neuronsandedgestypicallyhavea
weight
thatadjustsaslearningproceeds.’
Theartificialneuronsinthesenetworksarearrangedinlayersgoingfromaninputlayertoanoutputlayerwithconnectionsbetweentheneuronsinthedifferentlayers.DeeplearningneuralnetworksaremerelyasubsetofsuchANNswithverylargenumbersofhiddenlayers.OntheImageNetImageRecognitionChallenge,the2015competitionwaswonbyateamfromMicrosoftResearchusingaverydeepneuralnetworkofover100layersandachievedanerrorrateforobjectrecognitioncomparabletohumanerrorrates[6].Figure1triestocapturetheessenceofthisAI,MachineLearning,andDeepLearninghierarchy[7]
Figure2attemptstodefinethreedifferentrolesforadatascientist[8].Thefirstroleisthatofadataengineerwhoisexpertatoperatingclosetothecomputers,instruments,andsensorsthatgeneratethedata.ThesecondroleisthatofadataanalystwhousesadvancedstatisticsandAI/MLmethodstoexploretheexperimentaldatasetsandassisttheresearchertoextractnewscience.Finally,inthisclassification,thereisathirdroleofdatacuratorwhoisexpertinmanaginglargedatasets,curatingthedatawithsuitablemetadataforre-use,andlaterarchiving.AllthreeoftheseaspectsofdatasciencearerelevantfortheproposedAIforScienceinitiative.
KeyFindings
FindingA
ThegrowingconvergenceofAI,Data,andHPCprovidesaonceinagenerationopportunitytoprofoundlyacceleratescientificdiscovery,createsynergiesacrossscientificareas,andimproveinternationalcompetitiveness.
Scienceandcomputingarenowinaneraofpost-Moore’sLawsilicontechnologiesandthereisanurgentneedforasea-changeintheprogrammabilityandproductiveuseofincreasinglycomplex/heterogeneoussystemsandtheseamlessintegrationofdata,algorithms,andcomputingresources.DoingsowillhelpmanagethechallengesofBigData,carryingoutscienceatscaleusingDOE’smostadvancedfacilities,leveragetheworkforceattheLabs,andsetthestagefortheemergenceanddevelopmentofrobustandreliableAIsystemswiththeabilitytolearnforthemselvesindomain-sciencespecificareas.
FindingB
SciencecangreatlybenefitfromAImethodsandtools.However,commercialsolutionsandexistingalgorithmsarenotsufficienttoaddresstheneedsofscienceautomationandscienceknowledgeextractionfromcurrentandfutureDOEfacilitiesanddata.
CurrentAIsolutionscanbesuccessfullyappliedtoconductavarietyofdataanalyses.However,newalgorithms,foundations,andtoolsareessentialtoaddressinguniquescienceconcernsinabroadspectrumofscienceapplications.AIalgorithmsneedtobeabletodealwithsparse,heterogeneous,andun-labeleddatasetsthatareoftenexpensivetocollectandarchiveandbeabletogeneratemodelsthatincorporatedomainknowledgeandphysicalconstraints.AI-enabledexperimentaldesignandcontrolarenecessaryforoptimaluseofDOEfacilities.Inthesciencecontext,AImethodsneedtohaveprovablecorrectnessandperformance,beabletoexposebiases,andtoquantifyuncertainties,errors,andprecision.
FindingC
AdoptingAIforSciencetechnologiesthroughouttheOfficeofSciencewillenableUSscientiststotakeadvantageofthetremendousnewadvancesintheDOE’sscientificuserfacilities.
TheDOE’sOfficeofScienceprovidesUSresearcherswithaccesstothelargestandmostdiversesuiteofscientificexperimentalfacilitiesintheworld–fromX-raysynchrotronsandneutronsourcestointegrativegenomicsandatmosphericradiationfacilities–aswellastotheworld’smostcapablehighperformancecomputingfacilities.UpgradestotheseuserfacilitiesandnewnuclearphysicsfacilitiescomingonlinenowandoverthenextdecadewilldramaticallyincreasetheamountofnewdataproducedacrossallofthescientificdomainssupportedbytheOfficeofScience,posingnewchallengesandnewopportunities.Science-awareAItechnologieswillallowustoextractinformationandscientificunderstandingfromthesetremendousnewdatasources.
FindingD
RealizingthepotentialforagenerationalshiftinscientificexperimentationattheDOELaboratoriesduetoscience-drivenAI/MLtechnologiesrequiresfarmorethansimplycomputepowerandencompassesthefullspectrumofcomputinginfrastructures,rangingfromubiquitoussensorsandinterconnectivityacrossdevicestoreal-timemonitoringanddataanalytics,andwillrequireaconcertedandcoordinatedR&DeffortonAI/MLalgorithms,tools,andsoftwareinfrastructure.
AcrosstheSCprograms,scientificapplicationsofArtificialIntelligence(AI)andMachineLearning(ML)canbuildonthepowerofsensornetworks,edgecomputing,andhighperformancecomputerstotransformscienceandenergyresearchinthefuture.GiventhehighlyspecializednatureofmanyDOEfacilitiesandscientificresearchdomains,itisnotpossibletorelysolelyonthird-partyAI/MLresearchanddevelopment(R&D)forthistransformation.TheDOEwillneedtobuilditsownR&Dprogramsthatfocusonthemostchallengingscience-drivenapplications.SoftwareinfrastructurewillberequiredthatcombinesleadershipinAI/MLtoolsandalgorithmswiththeDOE’straditionalstrengthsinsimulationandmodelingtechnologiesandthatcanexecuteonnewcomputingplatformscapableofhighperformanceonbothtypesofapplications.TheanticipatedreturnswillhelpensurethattheUScontinuestomaintainandenhanceleadershipinbothdata-intensivescienceandhighperformancecomputing.
FindingE
TheDOELabsareuniquelypositionedtointegrateAI/MLtechnologiesacrossahostofscientificchallengesthankstotheenviablecultureofco-designteamsconsistingofscientificusers,instrumentproviders,theoreticalscientists,mathematiciansandcomputerscientiststhathasprovensosuccessfulintheExascaleComputingProject.
Thesubcommittee,therefore,seesacompellingneedforAI/MLtechnologiestobeincorporatedintoalloftheDOE’sscientificresearchcapabilitiesinordertoeffectivelysupporttheOfficeofScience’smissionsinenergy,nationalsecurity,fundamentalsciences,andtheenvironment.DOE’sNationalLaboratories,togetherwithUSuniversityandindustrypartners,havethenecessaryassetstoinitiatealarge-scaleprogramtoacceleratethedevelopmentofsuchcapabilitiesandthenecessaryworkforcetonotonlymeettheirSCmissionneedsbutalsobenefitallofDOE’sactivities.
FindingF
TheimpactofaDOE-drivenAI/MLstrategyforsciencewillhavenationalimplicationsfarbeyondtheOfficeofScienceandwilldrivenewindustrialinvestments,includingacceleratingengineeringdesigns,synthesizingmaterials,andoptimizingenergydevices,aswellasadvancinghardwareandsoftwarecomputingcapabilities.
Thebenefitstothenationindevelopingpowerfulandbroad-basedAIforSciencecapabilitiesintheDOELaboratorieswillextendwellbeyondtheDOE’sprograms.ThedevelopmentofcomprehensiveAI/MLcapabilitieswillbenefitothergovernmentagenciesandabroadrangeofindustriesinthiscountry,includingenergy,pharmaceutical,aircraft,automobile,entertainment,andothers.MorepowerfulAIcapabilitieswillallowthesediverseindustriestomorequicklyengineernewproductsthatcanimprovethenation’scompetitiveness.Inaddition,therewillbeconsiderableflow-downbenefitsthatresultfrommeetingboththehardwareandsoftwareAIchallenges.InitiatingamajorprogramfocusedonapplyingAI/MLtechnologiestotheDOEscientificchallengeswouldbelikelytoleadtosignificantgainsinUScompetitivenessinseveralcriticalareasandtechnologies.
FindingG
AworkforcetrainedinadvancedAI/MLtechnologieswouldplayapivotalroleinenhancingUScompetitiveness.
Thetraining,focusing,andretentionofacadreofyoungpeople,expertsinbothinventinganddeliveringthetechniquesandtechnologiesofAI/MLforscienceandengineeringapplications,iscriticaltothesuccessoftheAIforScienceagenda.TheOfficeofScienceDOELaboratoriescanplayakeyroleincooperationwiththeNationalScienceFoundation(NSF).Overthepast20years,theInformationTechnology(IT)industryhasexpandeddramatically,drivenbye-commerce,socialmedia,cloudservices,andsmartphones.Inrecentyears,theemergenceoftheInternetofThings(IoT),thewidespreaddeploymentofhealthcaresensors,increasingindustrialautomation,andthedevelopmentofautonomousvehicleshavefurtherexpandedthedomainofAI/MLdataanalyticsandservices.Inresponsetothesegrowingworkforcedemands,moststudentsarenowtrainedinsoftwaretoolsandtechniquesthattargetcommercialopportunities.Atpresent,commercialtoolsarerathergenericandnotwell-targetedtoscientificapplications.AnAIforScienceinitiativewoulddeliverscientificAI/MLtoolsandenvironmentsappropriatefortraininganewgenerationofscientistsandengineers.
FindingH
PartneringwithotherAgenciesandwithinternationaleffortswillbeimportanttodeliverontheambitiousgoalsofanAIforScienceinitiative.
TheNSFandNIH,thetwoothermajorscience-focusedfundingagenciesintheUS,alsohaveorareplanning,majorinvestmentsinAI/MLprogramsfortheirscientificdomains.InseveralareasthereareclearsynergiesofresearchinterestandtheDOEshouldexplorepossiblemechanisms
forcollaborativeprojectswithotheragenciessuchasNISTandDODinanyDOEAIforScience
initiative.
OthercountrieshavealsorecognizedthepotentialbenefitsofapplyingAL/MLtechnologiestoscience.ThesubcommitteebelievesthattherewouldbeabenefitintheDOEcollaboratingwith‘like-mindedinternationalpartners’onaspectsofanAIforScienceresearchagendathatarelikelytobeofmutualbenefit.
RecommendationsforDOE’sOfficeofScience
Creationofa10-yearAIforScienceInitiative
Inordertocreatetheworld-leadingAIsystemsandapplicationsneededtodrivescientificproductivityanddiscoveryinscienceandtechnologydramaticallybeyondthatachievablewithtraditionalscientificsupercomputing,werecommendthattheDOEOfficeofSciencestartaten-yearprogramtodevelopanambitiousAIforScienceinitiative,asrecommendedintherecentPCASTreport[9].Thisprogramshouldencompassfoundationalresearchintonew,science-awareAImethodologies,specificallydesignedforDOEmission-criticalchallenges,andAIsolutionsthatcanbedeployedinoperationalsettingsatleadingDOEresearchfacilities.Theinitiativeshouldprovideaclear,guidedroadmapfromresearchtodeployment.TheDOElaboratoriescanplayakeyrolehere,offeringleading-edgeexascalesupercomputersandlargeexperimentalfacilitiesgeneratingincreasinglylargescientificdatasets,aswellasprovidingcriticalexpertiseinmathematics,computerscience,andexperiencewithDOEmission-specificapplications.Nootheragencyhasthebreadth,criticalmass,orrecentlargeprojectmanagementexperiencetoundertakethiscross-disciplinaryAIforSciencechallenge.However,thereisaclearcaseforthebenefitsofcollaborationwithotheragenciesandothercountries,toleverageexistingexpertisetomaximumadvantage.Partnershipswithotherfundingagenciesandothercountriesarethereforestronglyencouraged.
StructureofanSCAIforScienceInitiative
ItisrecommendedthatthisAIforScienceinitiativebestructuredaroundfourmajorAIR&Dthemes:
AI-enabledapplications
AIalgorithmsandfoundationalresearch
AIsoftwareinfrastructure
NewhardwaretechnologiesforAI
Thesubcommitteebelievesthatthisten-yearAIforScienceinitiativeshouldbefundedatthesamescaleasthesuccessfulExascaleComputingInitiative(ECI)andExascaleComputingProject(ECP).Essentialforthesuccessofsuchaninitiativeisthattheworkofthesefourthemesmustbeclosely-coupledinamannersimilartothatusedintheECP,astheadvancesandimprovementsinoneareacaninformadvancesandimprovementsinotherareas.
Figure3illustratesanoverviewofapossibleroadmapforsuchanAIforScienceinitiative.AsfortheECIandECP,theroadmapforthisproposedAIforScienceinitiativeenvisagesaninitial‘incubation’researchphaseofcoordinatedprojectswithco-designcentersconnectingthefourmajorthemes.PartnershipsacrossallOfficeofSciencedomains,withparticipationfromuniversitiesandprivateindustry,wouldbeinitiatedearlyintheprogram.ThegoalofthisresearchphaseistospecifytheapplicationgrandchallengesandAI/MLtoolsandservicesrequiredasdeliverablesinthemorefocusedprojectR&DandDeploymentphases,wherebroad
engagementoftheDOEresearchcommunitybecomescritical.SincetheseappliedR&DandDeploymentphaseswillinevitablygeneratenewquestionsandchallenges,havingtheresearchphasecontinuingandoverlappingwiththeR&DandDeploymentphaseswillsignificantlyincreasethechancesofsuccessfortheAIforScienceProject.
AnInstrument-to-EdgeInitiative
ThesubcommitteebelievesthatASCR,inclosecooperationwithBESandwiththeotherscienceprogramsintheOfficeofScience,shouldworkwithscientists,users,andthebroadacademiccommunitytodefinerequirements,conductresearch,competitiveprocurementanddesignahighlyintegratedend-to-endsystemandsoftwarestackthatconnectsinstrumentsattheedgetotheneededAIcomputingresources.Integratingnationalandglobaldatasources(largescaleexperimentalfacilities,observationalnetworksterrestrial&space-based,etc.)posesuniqueopportunitiesandchallengesthatrequireaddressingfoundationalresearchinthecontextofleading-edgescientificexperiments.Integratedsystemsforacquiring,analyzing,transforming,storing,andmaintainingscientificresults,capturingprovenance,andcontributingbroadlyaccessedanalyticalworkflowswithinDOEsupportedcomputationalinfrastructurecouldbetransformative.Thereare,however,severechallengesthatwillneedtobeconfrontedintermsofprivacy,security,commerciallicensingofdata,andintegrateddataservices.
BuildingonASCR’sco-designexperienceinECP,applicationusers,softwareinfrastructuredevelopers,AI/MLresearchers,andLabandindustryhardwarespecialistsshouldbeencouragedtodefine,develop,andcontributetoacommonsoftwarestackforAI/MLEdgecomputingresourcesacrossthedifferentfacilities.ThesoftwareinfrastructureshouldsupportsomegenericservicesatthefacilitiesbutalsoallowtheeasycreationofspecializedAI-basedsoftwarepipelinesspecifictothefacilityandcapableofsupportingcouplingtoparticularinstrumentsinsomecases.
Training,focusing,andretentionofAI/MLworkforce
Industry,nationallaboratories,government,andbroadareasofacademicresearcharemakingmoreusethaneverbeforeofAI,ML,andsimulation-baseddecision-making.Thistrendisapparentacrossmanydomainssuchasenergy,manufacturing,finance,andtransportation.TheseareallareasinwhichAIisplayinganincreasinglysignificantrole,withmanymoreexamplesacrossscience,engineering,business,andgovernment.Researchandinnovation,bothinacademiaandintheprivatesector,areincreasinglydrivenbylarge-scalecomputationalapproachesusingAIandMLtechnologies.WiththissignificantandincreasedusecomesademandforaworkforceversedintechnologiesnecessaryforeffectiveandefficientAI/ML-basedcomputationalmodelingandsimulationandbigdataanalytics,aswellasthefundamentalsofAI/MLalgorithms.Graduateswiththeinterdisciplinaryexpertiseneededtodevelopand/orutilizeAItechniquesandmethodsinordertoadvancetheunderstandingofphysicalphenomenainaparticularscientific,engineering,orbusinessfieldandalsotosupportbetterdecision-makingareinhighdemand.
Astrongresearchprogramwillcruciallyrelyonacomplementaryeducationandskillscomponent,whichisasimportantasprovidingadequateinfrastructuresupport.AsemphasizedintheASCRECPTransitionreport[10],thisisalsoatimelyandimportantopportunitytofocusSCeffortstocreateamorediverseandinclusiveworkforce.Acontinuingsupplyofhigh-qualitycomputationalanddatascientistsavailableforworkatDOElaboratoriesisofvitalimportance.Inhighperformancemodelingandsimulation,forexample,theDOEComputationalScienceGraduateFellowship(CSGF)programhassuccessfullyprovidedsupportandguidancetosomeofthenation'sbestscientificgraduatestudents,andmanyofthesestudentsarenowemployedinDOElaboratories,privateindustry,andeducationalinstitutions.Weneedasimilarfellowshipprogramtomeettheincreasingrequirementforcomputationalanddatascientiststrainedtotackleexascaleanddata-intensivecomputingchallenges.Inaddition,theDOESCshouldexplorethepossibilitiesforcollaborationwiththeNSFabouttheprovisionofrelevanttrainingprogramsinAI/MLtechnologiesandtheirapplicationtoscience.
Inter-Agencycollaboration
AlthoughtheNSFhaslongbeenregardedastheleadagencyforfundamentalAIresearch,DOEisclearlytheleadagencyforresearchinvolvingtheintersectionof‘BigScience,BigData,andBigComputing.’DOEhasnotonlyestablishednationalandinternationalleadershipinHPCandsupercomputingbutisalsoaleaderintheapplicationofAI/MLtechnologiestotheverylargescientificdatasetsgeneratedbytheirlarge-scaleexperimentalfacilities.
WiththeNIH,theDOESChasasuccessfulcollaborationwiththeNationalCancerInstitute(NCI)intheCANDLEproject[11].DOEisnowdevelopinganMOUwithboththeNSFandNIHonaprogramofcollaborativeresearchinComputationalNeuroscience.Thesubcommittee,therefore,recommendsthattheSCexplorenewopportunitiestoworkwithbothNSFandNIHinareaswheretherewouldbeaclearbenefitforscientificprogressunderaDOE-ledAIforScienceinitiative.TheremayalsobeopportunitiestoworkwithotherUSfundingagencies,suchasNISTandDOD,inareasofmutualinterest.
Internationalcollaboration
Thereisaneedforbroad-based,coordinatedactionbylike-mindedinternationalpartnerstoharnesstheglobalscientificsoftwarecommunitytoaddressthetremendousopportunitiesindata-intensivesciencestemmingfromthehugeincreaseinscientificdatacollectionrates.ComputationalanddataanalyticalmethodsdrivenbyAI/MLarenowuniversallyacceptedasindispensableforfutureprogressinscienceandengineering.
InternationalleadershipinAIforScienceoverthecomingdecadewillhingeontherealizationofanintegratedsetofprogramsspanningthefourinterdependentareasnotedabove–AI-enabledapplications,AIalgorithmsandfoundationalresearch,AIsoftwareinfrastructure,andnewhardwa
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版房屋買賣及居間合同
- 遺傳學:生物工程的鑰匙-探究基因的奧秘解析生物工程
- 2024年軌道交通設備維護保養(yǎng)專項協(xié)議3篇
- 2024年進出口業(yè)務合同范本
- 勞務派遣的糾紛解決協(xié)議書
- 加拿大移民合同(2篇)
- 辦公樓節(jié)能照明改造合同(2篇)
- 2024版產(chǎn)品獨家代理協(xié)議樣本版B版
- 二零二五年度產(chǎn)業(yè)園區(qū)污水處理及中水回用施工協(xié)議3篇
- 二零二五年度GPS野生動物追蹤保護合同3篇
- 內(nèi)審員考試題庫(共五篇)
- 12S522-混凝土模塊式排水檢查井
- 2024-2025學年小學道德與法治二年級下冊統(tǒng)編版(部編版)(2024)教學設計合集
- 4s店維修原廠協(xié)議書范文
- 高等數(shù)學教材(文科)
- 新高考背景下2025年高考思想政治一輪復習策略講座
- 初中音樂欣賞課型互動教學策略的構(gòu)建及實踐
- 2020-2021學年北京市西城區(qū)七年級(上)期末數(shù)學試卷(附答案詳解)
- DB13-T 5821-2023 預拌流態(tài)固化土回填技術(shù)規(guī)程
- 第四單元“家鄉(xiāng)文化生活”系列教學設計 統(tǒng)編版高中語文必修上冊
- 2024年蘭州大學專業(yè)課《金融學》科目期末試卷B(有答案)
評論
0/150
提交評論