版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
PythonForDataScienceCheatSheet
PythonBasics
LearnMorePythonforDataScienceInteractivelyat
VariablesandDataTypes
NumpyArrays
AlsoseeLists
SelectingNumpyArrayElements
Indexstartsat0
NumpyArrayOperations
NumpyArrayFunctions
DataCamp
LearnPythonforDataScienceInteractively
my_2darray[rows,columns]
Selectitemsatindex0and1
Selectitematindex1
Subset
>>>my_array[1]
2
Slice
>>>my_array[0:2]
array([1,2])
Subset2DNumpyarrays
>>>my_2darray[:,0]
array([1,4])
>>>my_array>3
array([False,False,False,True],dtype=bool)
>>>my_array*2
array([2,4,6,8])
>>>my_array+np.array([5,6,7,8])
array([6,8,10,12])
>>>my_list=[1,2,3,4]
>>>my_array=np.array(my_list)
>>>my_2darray=np.array([[1,2,3],[4,5,6]])
VariableAssignment
Lists
Selectitematindex1Select3rdlastitem
Selectitemsatindex1and2Selectitemsafterindex0Selectitemsbeforeindex3Copymy_list
my_list[list][itemOfList]
Subset
>>>my_list[1]
>>>my_list[-3]
Slice
>>>my_list[1:3]
>>>my_list[1:]
>>>my_list[:3]
>>>my_list[:]
SubsetListsofLists
>>>my_list2[1][0]
>>>my_list2[1][:2]
>>>a='is'
>>>b='nice'
>>>my_list=['my','list',a,b]
>>>my_list2=[[4,5,6,7],[3,4,5,6]]
SelectingListElements
AlsoseeNumPyArrays
Libraries
Importlibraries
>>>importnumpy
>>>importnumpyasnp
Selectiveimport
>>>frommathimportpi
InstallPython
Dataanalysis
Machinelearning
Scientificcomputing
2Dplotting
Leadingopendatascienceplatform FreeIDEthatisincluded CreateandsharepoweredbyPython withAnaconda documentswithlivecode,
visualizations,text,...
Indexstartsat0
>>>x=5
>>>x5
CalculationsWithVariables
>>>x+2
Sumoftwovariables
7
>>>x-2
Subtractionoftwovariables
3
>>>x*2
Multiplicationoftwovariables
10
>>>x**2
Exponentiationofavariable
25
>>>x%2
Remainderofavariable
1
>>>x/float(2)
Divisionofavariable
2.5
GettheindexofanitemCountanitem
AppendanitematatimeRemoveanitem
RemoveanitemReversethelistAppendanitemRemoveanitemInsertanitemSortthelist
>>>my_list.index(a)
>>>my_list.count(a)
>>>my_list.append('!')
>>>my_list.remove('!')
>>>del(my_list[0:1])
>>>my_list.reverse()
>>>my_list.extend('!')
>>>my_list.pop(-1)
>>>my_list.insert(0,'!')
>>>my_list.sort()
str()
'5','3.45','True'
Variablestostrings
int()
5,3,1
Variablestointegers
float()
5.0,1.0
Variablestofloats
bool()
True,True,True
Variablestobooleans
TypesandTypeConversion
ListOperations
>>>my_list+my_list
['my','list','is','nice','my','list','is','nice']
>>>my_list*2
['my','list','is','nice','my','list','is','nice']
>>>my_list2>4
True
ListMethods
AskingForHelp
>>>help(str)
>>>my_string='thisStringIsAwesome'
>>>my_string
'thisStringIsAwesome'
Strings
>>>my_string*2
'thisStringIsAwesomethisStringIsAwesome'
>>>my_string+'Innit'
'thisStringIsAwesomeInnit'
>>>'m'inmy_string
True
StringOperations
StringOperations
>>>my_string[3]
>>>my_string[4:9]
StringMethods
Indexstartsat0
>>>my_array.shape
>>>np.append(other_array)
GetthedimensionsofthearrayAppenditemstoanarray
>>>np.insert(my_array,1,5)
Insertitemsinanarray
>>>np.delete(my_array,[1])
Deleteitemsinanarray
>>>np.mean(my_array)
Meanofthearray
>>>np.median(my_array)
Medianofthearray
>>>my_array.corrcoef()
Correlationcoefficient
>>>np.std(my_array)
Standarddeviation
StringtouppercaseStringtolowercaseCountStringelementsReplaceStringelementsStripwhitespaces
>>>my_string.upper()
>>>my_string.lower()
>>>my_string.count('w')
>>>my_string.replace('e','i')
>>>my_string.strip()
PythonForDataScienceCheatSheet
JupyterNotebook
LearnMorePythonforDataScienceInteractivelyat
www.DataC
WorkingwithDifferentProgrammingLanguages
Kernelsprovidecomputationandcommunicationwithfront-endinterfaceslikethenotebooks.Therearethreemainkernels:
IRkernel IJulia
InstallingJupyterNotebookwillautomaticallyinstalltheIPythonkernel.
Widgets
Notebookwidgetsprovidetheabilitytovisualizeandcontrolchangesinyourdata,oftenasacontrollikeaslider,textbox,etc.
YoucanusethemtobuildinteractiveGUIsforyournotebooksortosynchronizestatefulandstatelessinformationbetweenPythonandJavaScript.
Saving/LoadingNotebooks
Createnewnotebook
Makeacopyofthecurrentnotebook
Savecurrentnotebookandrecordcheckpoint
Previewoftheprintednotebook
Closenotebook&stoprunninganyscripts
Openanexistingnotebook
Renamenotebook
Revertnotebooktoapreviouscheckpoint
Downloadnotebookas
IPythonnotebook
Python
HTML
Markdown
reST
Restartkernel
Restartkernel&runallcells
Restartkernel&runallcells
CommandMode:
Interruptkernel
Interruptkernel&clearalloutput
Connectbacktoaremotenotebook
Runotherinstalledkernels
Downloadserializedstateofallwidgetmodelsinuse
Savenotebookwithinteractivewidgets
Embedcurrentwidgets
15
13 14
WritingCodeAndText
LaTeX
1 2 3 4 5 67 8910 11 12
Codeandtextareencapsulatedby3basiccelltypes:markdowncells,codecells,andrawNBConvertcells.
EditCells
EditMode:
Saveandcheckpoint
Insertcellbelow
Interruptkernel
Restartkernel
Cutcurrentlyselectedcellstoclipboard
Pastecellsfromclipboardabovecurrentcell
Pastecellsfrom
Copycellsfromclipboardtocurrentcursorposition
Pastecellsfromclipboardbelowcurrentcell
ExecutingCells
Runselectedcell(s) Runcurrentcellsdownandcreateanewone
below
Cutcell
Copycell(s)
Pastecell(s)below
Movecellup
Movecelldown
Runcurrentcell
AskingForHelp
Displaycharacteristics
Opencommandpalette
Currentkernel
Kernelstatus
Logoutfromnotebookserver
clipboardontopofcurrentcel
Revert“DeleteCells”
invocation
Mergecurrentcellwiththeoneabove
Movecurrentcellup
Adjustmetadataunderlyingthecurrentnotebook
Removecellattachments
Pasteattachmentsofcurrentcell
InsertCells
Addnewcellabovethecurrentone
Deletecurrentcells
Splitupacellfromcurrentcursorposition
Mergecurrentcellwiththeonebelow
Movecurrentcelldown
Findandreplaceinselectedcells
Copyattachmentsofcurrentcell
Insertimageinselectedcells
Addnewcellbelowthecurrentone
Runcurrentcellsdownandcreateanewoneabove
Runallcellsabovethecurrentcell
Changethecelltypeofcurrentcell
toggle,togglescrollingandclearalloutput
ViewCells
ToggledisplayofJupyterlogoandfilename
Togglelinenumbersincells
Runallcells
Runallcellsbelowthecurrentcell
toggle,togglescrollingandclearcurrentoutputs
Toggledisplayoftoolbar
Toggledisplayofcellactionicons:
None
Editmetadata
Rawcellformat
Slideshow
Attachments
Tags
WalkthroughaUItour
Editthebuilt-inkeyboardshortcuts
Descriptionofmarkdownavailableinnotebook
PythonhelptopicsNumPyhelptopicsMatplotlibhelptopics
Pandashelptopics
DataCamp
Listofbuilt-inkeyboardshortcuts
Notebookhelptopics
InformationonunofficialJupyterNotebookextensions
IPythonhelptopicsSciPyhelptopicsSymPyhelptopics
AboutJupyterNotebook
LearnPythonforDataScienceInteractively
NumPy
TheNumPylibraryisthecorelibraryforscientificcomputinginPython.Itprovidesahigh-performancemultidimensionalarrayobject,andtoolsforworkingwiththesearrays.
Usethefollowingimportconvention:
>>>importnumpyasnp
NumPyArrays
2
1Darray
2Darray
axis1
axis0
3Darray
axis2
axis1
axis0
CreatingArrays
InitialPlaceholders
I/O
Saving&LoadingOnDisk
Saving&LoadingTextFiles
DataTypes
CreateanarrayofzerosCreateanarrayofonesCreateanarrayofevenlyspacedvalues(stepvalue)
Createanarrayofevenly
spacedvalues(numberofsamples)
CreateaconstantarrayCreatea2X2identitymatrix
CreateanarraywithrandomvaluesCreateanemptyarray
>>>np.zeros((3,4))
>>>np.ones((2,3,4),dtype=16)
>>>d=np.arange(10,25,5)
>>>np.linspace(0,2,9)
>>>e=np.full((2,2),7)
>>>f=np.eye(2)
>>>np.random.random((2,2))
>>>np.empty((3,2))
>>>np.loadtxt("myfile.txt")
>>>np.genfromtxt("my_file.csv",delimiter=',')
>>>np.savetxt("myarray.txt",a,delimiter="")
>>>np.save('my_array',a)
>>>np.savez('array.npz',a,b)
>>>np.load('my_array.npy')
>>>a=np.array([1,2,3])
>>>b=np.array([(1.5,2,3),(4,5,6)],dtype=float)
>>>c=np.array([[(1.5,2,3),(4,5,6)],[(3,2,1),(4,5,6)]],
dtype=float)
1 2
3
Subsetting,Slicing,Indexing
AlsoseeLists
Subsetting
>>>a[2]
3
>>>b[1,2]
6.0
Slicing
>>>a[0:2]
array([1,2])
>>>b[0:2,1]
array([2.,5.])
>>>b[:1]
array([[1.5,2.,3.]])
>>>c[1,...]
array([[[3.,2.,1.],
[4.,5.,6.]]])
>>>a[::-1]
array([3,2,1])
BooleanIndexing
>>>a[a<2]
array([1])
12
3
1.52
4
5
3
6
Selecttheelementatthe2ndindex
Selecttheelementatrow0column2(equivalenttob[1][2])
123 Selectitemsatindex0and1
Selectitemsatrows0and1incolumn1
Selectallitemsatrow0(equivalenttob[0:1,:])
Sameas[1,:,:]
Reversedarraya
123 Selectelementsfromalessthan2
FancyIndexing
>>>b[[1,0,1,0],[0,1,2,0]] Selectelements(1,0),(0,1),(1,2)and(0,0)
array([4.,2.,6.,1.5])
>>>b[[1,0,1,0]][:,[0,1,2,0]] Selectasubsetofthematrix’srows
array([[4.,5.,6.,4.], andcolumns
[1.5,2.,3.,1.5],
[4.,5.,6.,4.],
[1.5,2.,3.,1.5]])
ArrayManipulation
CopyingArrays
SortingArrays
Sortanarray
Sorttheelementsofanarray'saxis
>>>a.sort()
>>>c.sort(axis=0)
InspectingYourArray
>>>a.shape
Arraydimensions
>>>len(a)
Lengthofarray
>>>b.ndim
Numberofarraydimensions
>>>e.size
Numberofarrayelements
>>>b.dtype
Datatypeofarrayelements
>>>
Nameofdatatype
>>>b.astype(int)
Convertanarraytoadifferenttype
>>>a.sum()
Array-wisesum
>>>a.min()
Array-wiseminimumvalue
>>>b.max(axis=0)
Maximumvalueofanarrayrow
>>>b.cumsum(axis=1)
Cumulativesumoftheelements
>>>a.mean()
Mean
>>>b.median()
Median
>>>a.corrcoef()
Correlationcoefficient
>>>np.std(b)
Standarddeviation
TransposingArray
>>>i=np.transpose(b)
>>>i.T
PermutearraydimensionsPermutearraydimensions
ChangingArrayShape
>>>b.ravel()
>>>g.reshape(3,-2)
Flattenthearray
Reshape,butdon’tchangedata
Adding/RemovingElements
>>>h.resize((2,6))
Returnanewarraywithshape(2,6)
>>>np.append(h,g)
Appenditemstoanarray
>>>np.insert(a,1,5)
Insertitemsinanarray
>>>np.delete(a,[1])
Deleteitemsfromanarray
CombiningArrays
>>>np.concatenate((a,d),axis=0)
Concatenatearrays
array([1,2,3,10,15,20])
>>>np.vstack((a,b))
Stackarraysvertically(row-wise)
array([[1.,2.,3.],
[1.5,2.,3.],
[4.,5.,6.]])
>>>np.r_[e,f]
Stackarraysvertically(row-wise)
>>>np.hstack((e,f))
array([[7.,7.,1.,0.],
Stackarrayshorizontally(column-wise)
[7.,7.,0.,1.]])
>>>np.column_stack((a,d))
Createstackedcolumn-wisearrays
array([[1,10],
[2,15],
[3,20]])
>>>np.c_[a,d]
Createstackedcolumn-wisearrays
SplittingArrays
>>>np.hsplit(a,3)
[array([1]),array([2]),array([3])]
>>>np.vsplit(c,2)
[array([[[1.5,2.,1.],
[4.,5.,6.]]]),
array([[[3.,2.,3.],
[4.,5.,6.]]])]
Splitthearrayhorizontallyatthe3rdindex
Splitthearrayverticallyatthe2ndindex
DataCamp
LearnPythonforDataScienceInteractively
>>>h=a.view()
>>>np.copy(a)
>>>h=a.copy()
CreateaviewofthearraywiththesamedataCreateacopyofthearray
Createadeepcopyofthearray
>>>64
Signed64-bitintegertypes
>>>np.float32
Standarddouble-precisionfloatingpoint
>>>plex
Complexnumbersrepresentedby128floats
>>>np.bool
BooleantypestoringTRUEandFALSEvalues
>>>np.object
Pythonobjecttype
>>>np.string_
Fixed-lengthstringtype
>>>np.unicode_
Fixed-lengthunicodetype
PythonForDataScienceCheatSheet
NumPyBasics
ArrayMathematics
ArithmeticOperations
Comparison
AggregateFunctions
Element-wisecomparison
Element-wisecomparisonArray-wisecomparison
>>>a==b
array([[False,True,True],
[False,False,False]],dtype=bool)
>>>a<2
array([True,False,False],dtype=bool)
>>>np.array_equal(a,b)
Subtraction
SubtractionAddition
AdditionDivision
DivisionMultiplication
MultiplicationExponentiationSquareroot
PrintsinesofanarrayElement-wisecosine
Element-wisenaturallogarithmDotproduct
>>>np.divide(a,b)
>>>a*b
array([[1.5, 4., 9.],
[4.,10.,18.]])
>>>np.multiply(a,b)
>>>np.exp(b)
>>>np.sqrt(b)
>>>np.sin(a)
>>>np.cos(b)
>>>np.log(a)
>>>e.dot(f)
array([[7.,7.],
[7.,7.]])
],
]])
>>>g=a-b
array([[-0.5,0.,0.],
[-3.,-3.,-3.]])
>>>np.subtract(a,b)
>>>b+a
array([[2.5,4.,6.],
[5.,7.,9.]])
>>>np.add(b,a)
>>>a/b
array([[0.66666667,1. ,1.
[0.25 ,0.4 ,0.5
LearnPythonforDataScienceInteractivelyat
www.DataC
AskingForHelp
>>>(np.ndarray.dtype)
1.5
4
2
3
5
6
1.523
4
5
6
1.5
2
3
4
5
6
PythonForDataScienceCheatSheet
SciPy-LinearAlgebra
LearnMorePythonforDataScienceInteractivelyat
LinearAlgebra
You’llusethelinalgandsparsemodules.Notethatscipy.linalgcontainsandexpandsonnumpy.linalg.
>>>fromscipyimportlinalg,sparse
MatrixFunctions
SciPy
TheSciPylibraryisoneofthecorepackagesforscientificcomputingthatprovidesmathematicalalgorithmsandconveniencefunctionsbuiltontheNumPyextensionofPython.
Addition
>>>np.add(A,D)
Subtraction
>>>np.subtract(A,D)
Division
>>>np.divide(A,D)
Multiplication
>>>np.multiply(D,A)
>>>np.dot(A,D)
>>>np.vdot(A,D)
>>>np.inner(A,D)
>>>np.outer(A,D)
>>>np.tensordot(A,D)
>>>np.kron(A,D)
ExponentialFunctions
>>>linalg.expm(A)
>>>linalg.expm2(A)
>>>linalg.expm3(D)
AdditionSubtractionDivision
MultiplicationDotproduct
Vectordotproduct
InnerproductOuterproductTensordotproductKroneckerproduct
Matrixexponential
Matrixexponential(TaylorSeries)
Matrixexponential(eigenvalue
decomposition)
LogarithmFunction
>>>linalg.logm(A)
TrigonometricTunctions
>>>linalg.sinm(D)
>>>linalg.cosm(D)
>>>linalg.tanm(A)
HyperbolicTrigonometricFunctions
>>>linalg.sinhm(D)
>>>linalg.coshm(D)
>>>linalg.tanhm(A)
MatrixSignFunction
>>>np.sigm(A)
MatrixSquareRoot
>>>linalg.sqrtm(A)
ArbitraryFunctions
>>>linalg.funm(A,lambdax:x*x)
Matrixlogarithm
MatrixsineMatrixcosineMatrixtangent
HypberbolicmatrixsineHyperbolicmatrixcosineHyperbolicmatrixtangent
MatrixsignfunctionMatrixsquarerootEvaluatematrixfunction
CreatingMatrices
AlsoseeNumPy
>>>A=np.matrix(np.random.random((2,2)))
>>>B=np.asmatrix(b)
>>>C=np.mat(np.random.random((10,5)))
>>>D=np.mat([[3,4],[5,6]])
InverseInverse
Tranposematrix
ConjugatetranspositionTrace
Frobeniusnorm
L1norm(maxcolumnsum)Linfnorm(maxrowsum)
MatrixrankDeterminant
SolverfordensematricesSolverfordensematrices
Least-squaressolutiontolinearmatrixequation
Computethepseudo-inverseofamatrix(least-squaressolver)
Computethepseudo-inverseofamatrix(SVD)
Inverse
>>>A.I
>>>linalg.inv(A)
>>>A.T
>>>A.H
>>>np.trace(A)
Norm
>>>linalg.norm(A)
>>>linalg.norm(A,1)
>>>linalg.norm(A,np.inf)
Rank
>>>np.linalg.matrix_rank(C)
Determinant
>>>linalg.det(A)
Solvinglinearproblems
>>>linalg.solve(A,b)
>>>E=np.mat(a).T
>>>linalg.lstsq(D,E)
Generalizedinverse
>>>linalg.pinv(C)
>>>linalg.pinv2(C)
>>>np.mgrid[0:5,0:5]
Createadensemeshgrid
>>>np.ogrid[0:2,0:2]
Createanopenmeshgrid
>>>np.r_[[3,[0]*5,-1:1:10j]
Stackarraysvertically(row-wise)
>>>np.c_[b,c]
Createstackedcolumn-wisearrays
BasicMatrixRoutines
InteractingWithNumPy
AlsoseeNumPy
IndexTricks
ShapeManipulation
Polynomials
VectorizingFunctions
TypeHandling
OtherUsefulFunctions
ReturntheangleofthecomplexargumentCreateanarrayofevenlyspacedvalues
(numberofsamples)
Unwrap
Createanarrayofevenlyspacedvalues(logscale)Returnvaluesfromalistofarraysdependingonconditions
Factorial
CombineNthingstakenatktimeWeightsforNp-pointcentralderivative
Findthen-thderivativeofafunctionatapoint
>>>np.angle(b,deg=True)
>>>g=np.linspace(0,np.pi,num=5)
>>>g[3:]+=np.pi
>>>np.unwrap(g)
>>>np.logspace(0,10,3)
>>>np.select([c<4],[c*2])
>>>misc.factorial(a)
>>>b(10,3,exact=True)
>>>misc.central_diff_weights(3)
>>>misc.derivative(myfunc,1.0)
ReturntherealpartofthearrayelementsReturntheimaginarypartofthearrayelementsReturnarealarrayifcomplexpartscloseto0Castobjecttoadatatype
>>>np.real(c)
>>>np.imag(c)
>>>np.real_if_close(c,tol=1000)
>>>np.cast['f'](np.pi)
Vectorizefunctions
>>>defmyfunc(a):
ifa<0:returna*2
else:
returna/2
>>>np.vectorize(myfunc)
Createapolynomialobject
>>>fromnumpyimportpoly1d
>>>p=poly1d([3,4,5])
>>>importnumpyasnp
>>>a=np.array([1,2,3])
>>>b=np.array([(1+5j,2j,3j),(4j,5j,6j)])
>>>c=np.array([[(1.5,2,3),(4,5,6)],[(3,2,1),(4,5,6)]])
Createa2X2identitymatrixCreatea2x2identitymatrix
CompressedSparseRowmatrixCompressedSparseColumnmatrixDictionaryOfKeysmatrix
Sparsematrixtofullmatrix
Identifysparsematrix
>>>F=np.eye(3,k=1)
>>>G=np.mat(np.identity(2))
>>>C[C>0.5]=0
>>>H=sparse.csr_matrix(C)
>>>I=sparse.csc_matrix(D)
>>>J=sparse.dok_matrix(A)
>>>E.todense()
>>>sparse.isspmatrix_csc(A)
>>>np.transpose(b)
Permutearraydimensions
>>>b.flatten()
Flattenthearray
>>>np.hstack((b,c))
Stackarrayshorizontally(column-wise)
>>>np.vstack((a,b))
Stackarraysvertically(row-wise)
>>>np.hsplit(c,2)
Splitthearrayhorizontallyatthe2ndindex
>>>np.vpslit(d,2)
Splitthearrayverticallyatthe2ndindex
CreatingSparseMatrices
Decompositions
InverseNorm
Solverforsparsematrices
Inverse
>>>sparse.linalg.inv(I)
Norm
>>>sparse.linalg.norm(I)
Solvinglinearproblems
>>>sparse.linalg.spsolve(H,I)
SolveordinaryorgeneralizedeigenvalueproblemforsquarematrixUnpackeigenvalues
FirsteigenvectorSecondeigenvectorUnpackeigenvalues
SingularValueDecomposition(SVD)ConstructsigmamatrixinSVD
LUDecomposition
EigenvaluesandEigenvectors
>>>la,v=linalg.eig(A)
>>>l1,l2=la
>>>v[:,0]
>>>v[:,1]
>>>linalg.eigvals(A)
SingularValueDecomposition
>>>U,s,Vh=linalg.svd(B)
>>>M,N=B.shape
>>>Sig=linalg.diagsvd(s,M,N)
LUDecomposition
>>>P,L,U=linalg.lu(C)
SparseMatrixRoutines
SparseMatrixFunctions
SparseMatrixDecompositions
Sparsematrixexponential
>>>sparse.linalg.expm(I)
DataCamp
LearnPythonforDataScienceInteractively
EigenvaluesandeigenvectorsSVD
>>>la,v=sparse.linalg.eigs(F,1)
>>>sparse.linalg.svds(H,2)
AskingForHelp
>>>help(scipy.linalg.diagsvd)
>>>(np.matrix)
PythonForDataScienceCheatSheet
PandasBasics
LearnPythonforDataScienceInteractivelyat
www.DataC
Pandas
ThePandaslibraryisbuiltonNumPyandprovideseasy-to-usedatastructuresanddataanalysistoolsforthePythonprogramminglanguage.
Usethefollowingimportconvention:
>>>importpandasaspd
PandasDataStructures
Series
a
3
b
-5
c
7
d
4
Aone-dimensionallabeledarraycapableofholdinganydatatype
AskingForHelp
>>>help(pd.Series.loc)
Selection
>>>s['b']
-5
>>>df[1:]
Country
India
Brazil
CapitalNewDelhiBrasília
Population1303171035
207847528
Getoneelement
GetsubsetofaDataFrame
Getting
ByPosition
>>>df.iloc([0],[0])
'Belgium'
>>>df.iat([0],[0])
'Belgium'
ByLabel
>>>df.loc([0],['Country'])
'Belgium'
>>>df.at([0],['Country'])
'Belgium'
ByLabel/Position
>>>df.ix[2]
Country Brazil
Capital BrasíliaPopulation207847528
>>>df.ix[:,'Capital']
Brussels
NewDelhi
Brasília
>>>df.ix[1,'Capital']
'NewDelhi'
BooleanIndexing
>>>s[~(s>1)]
>>>s[(s<-1)|(s>2)]
>>>df[df['Population']>1200000000]
Setting
>>>s['a']=6
Selecting,BooleanIndexing&Setting
AlsoseeNumPyArrays
Selectsinglevaluebyrow&column
Dropping
Dropvaluesfromrows(axis=0)Dropvaluesfromcolumns(axis=1)
>>>s.drop(['a','c'])
>>>df.drop('Country',axis=1)
Sort&Rank
SortbylabelsalonganaxisSortbythevaluesalonganaxisAssignrankstoentries
>>>df.sort_index()
>>>df.sort_values(by='Country')
>>>df.rank()
RetrievingSeries/DataFrameInformation
BasicInformation
>>>df.shape
(rows,columns)
>>>df.index
Describeindex
>>>df.columns
DescribeDataFramecolumns
>>>()
InfoonDataFrame
>>>df.count()
Numberofnon-NAvalues
>>>df.sum()
Sumofvalues
>>>df.cumsum()
Cummulativesumofvalues
>>>df.min()/df.max()
Minimum/maximumvalues
>>>df.idxmin()/df.idxmax()
Minimum/Maximumindexvalue
>>>df.describe()
Summarystatistics
>>>df.mean()
Meanofvalues
>>>df.median()
Medianofvalues
Summary
Selectsinglevaluebyrow&columnlabels
Index
>>>s=pd.Series([3,-5,7,4],index=['a','b','c','d'])
DataFrame
Country
Capital
Population
0
Belgium
Brussels
11190846
1
India
NewDelhi
1303171035
2
Brazil
Brasília
207847528
Columns
Applyfunction
Applyfunctionelement-wise
>>>f=lambdax:x*2
>>>df.apply(f)
>>>df.applymap(f)
ApplyingFunctions
Index
Atwo-dimensionallabeleddatastructurewithcolumnsofpotentiallydifferenttypes
Selectsinglerowofsubsetofrows
Selectasinglecolumnofsubsetofcolumns
DataAlignment
InternalDataAlignment
NAvaluesareintroducedintheindicesthatdon’toverlap:
Selectrowsandcolumns
>>>data={'Country':['Belgium','India','Brazil'],
'Capital':['Brussels','NewDelhi','Brasília'],'Population':[11190846,1303171035,207847528]}
>>>df=pd.DataFrame(data,
columns=['Country','Capital','Population'])
I/O
>>>pd.read_csv('file.csv',header=None,nrows=5)
>>>df.to_csv('myDataFrame.csv')
ReadandWritetoCSV
ReadandWritetoExcel
Seriesswherevalueisnot>1
swherevalueis<-1or>2
UsefiltertoadjustDataFrame
SetindexaofSeriessto6
ReadandWritetoSQLQueryorDatabaseTable
>>>fromsqlalchemyimportcreate_engine
>>>engine=create_engine('sqlite:///:memory:')
>>>pd.read_sql("SELECT*FROMmy_table;",engine)
>>>pd.read_sql_table('my_table',engine)
>>>pd.read_sql_query("SELECT*FROMmy_table;",engine)
>>>pd.read_excel('file.xlsx')
>>>pd.to_excel('dir/myDataFrame.xlsx',sheet_name='Sheet1')
Readmultiplesheetsfromthesamefile
>>>xlsx=pd.ExcelFile('file.xls')
>>>df=pd.read_excel(xlsx,'Sheet1')
read_sql()isaconveniencewrapperaroundread_sql_table()and
read_sql_query()
>>>s3=pd.Series([7,-2,3],index=['a','c','d'])
>>>s+s3
a 10.0
b NaN
c 5.0
d 7.0
ArithmeticOperationswithFillMethods
Youcanalsodotheinternaldataalignmentyourselfwiththehelpofthefillmethods:
>>>s.add(s3,fill_value=0)
a
10.0
b
-5.0
c
5.0
d
7.0
>>>s.sub(s3,fill_value=2)
>>>s.div(s3,fill_value=4)
>>>s.mul(s3,fill_value=3)
>>>pd.to_sql('myDf',engine)
DataCamp
LearnPythonforDataScienceInteractively
LoadingTheData
AlsoseeNumPy&Pandas
YourdataneedstobenumericandstoredasNumPyarraysorSciPysparsematrices.Othertypesthatareconvertibletonumericarrays,suchasPandasDataFrame,arealsoacceptable.
>>>importnumpyasnp
>>>X=np.random.random((10,5))
>>>y=np.array(['M','M','F','F','M','F','M','M','F','F','F'])
>>>X[X<0.7]=0
CreateYourModel
SupervisedLearningEstimators
UnsupervisedLearningEstimators
PrincipalComponentAnalysis(PCA)
>>>fromsklearn.decompositionimportPCA
>>>pca=PCA(n_components=0.95)
KMeans
>>>fromsklearn.clusterimportKMeans
>>>k_means=KMeans(n_clusters=3,random_state=0)
LinearRegression
>>>fromsklearn.linear_modelimportLinearRegression
>>>lr=LinearRegression(normalize=True)
SupportVectorMachines(SVM)
>>>fromsklearn.svmimportSVC
>>>svc=SVC(kernel='linear')
NaiveBayes
>>>fromsklearn.naive_bayesimportGaussianNB
>>>gnb=GaussianNB()
KNN
>>>fromsklearnimportneighbors
>>>knn=neighbors.KNeighborsClassifier(n_neighbors=5)
ModelFitting
Fitthemodeltothedata
Fittodata,thentransformit
Fitthemodeltothedata
Supervisedlearning
>>>lr.fit(X,y)
>>>knn.fit(X_train,y_train)
>>>svc.fit(X_train,y_train)
UnsupervisedLearning
>>>k_means.fit(X_train)
>>>pca_model=pca.fit_transform(X_train)
TuneYourModel
Prediction
PredictlabelsPredictlabels
Estimateprobabilityofalabel
Predictlabelsinclusteringalgos
SupervisedEstimators
>>>y_pred=svc.predict(np.random.random((2,5)))
>>>y_pred=lr.predict(X_test)
>>>y_pred=knn.predict_proba(X_test)
UnsupervisedEstimators
>>>y_pred=k_means.predict(X_test)
EvaluateYourModel’sPerformance
ClassificationMetrics
RegressionMetrics
ClusteringMetrics
Cross-Validation
>>>fromsklearn.cross_validationimportcross_val_score
>>>print(cross_val_score(knn,X_train,y_train,cv=4))
>>>print(cross_val_score(lr,X,y,cv=2))
AdjustedRandIndex
>>>fromsklearn.metricsimportadjusted_rand_score
>>>adjusted_rand_score(y_true,y_pred)
Homogeneity
>>>fromsklearn.metricsimporthomogeneity_score
>>>homogeneity_score(y_true,y_pred)
V-measure
>>>fromsklearn.metricsimportv_measure_score
>>>metrics.v_measure_score(y_true,y_pred)
MeanAbsoluteError
>>>fromsklearn.metricsimportmean_absolute_error
>>>y_true=[3,-0.5,2]
>>>mean_absolute_error(y_true,y_pred)
MeanSquaredError
>>>fromsklearn.metricsimportmean_squared_error
>>>mean_squared_error(y_test,y_pred)
R2Score
>>>fromsklearn.metricsimportr2_score
>>>r2_score(y_true,y_pred)
Standardization
EncodingCategoricalFeatures
Normalization
ImputingMissingValues
Binarization
GeneratingPolynomialFeatures
PreprocessingTheData
>>>fromsklearn.preprocessingimportPolynomialFeatures
>>>poly=PolynomialFeatures(5)
>>>poly.fit_transform(X)
>>>fromsklearn.preprocessingimportBinarizer
>>>binarizer=Binarizer(threshold=0.0).fit(X)
>>>binary_X=binarizer.transform(X)
>>>fromsklearn.preprocessingimportImputer
>>>imp=Imputer(missing_values=0,strategy='mean',axis=0)
>>>imp.fit_transform(X_train)
>>>fromsklearn.preprocessingimportNormalizer
>>>scaler=Normalizer().fit(X_train)
>>>normalized_X=scaler.transform(X_train)
>>>normalized_X_test=scaler.transform(X_test)
>>>fromsklearn.preprocessingimportLabelEncoder
>>>enc=LabelEncoder()
>>>y=enc.fit_transform(y)
>>>fromsklearn.preprocessingimportStandardScaler
>>>scaler=StandardScaler().fit(X_train)
>>>standardized_X=scaler.transform(X_train)
>>>standardized_X_test=scaler.transform(X_test)
TrainingAndTestData
>>>fromsklearn.model_selectionimporttrain_test_split
>>>X_train,X_test,y_train,y_test=train_test_split(X,
y,random_state=0)
PythonForDataScienceCheatSheet
AccuracyScore
>>>knn.score(X_test,y_test)
Estimatorscoremethod
>>>fromsklearn.metricsimportaccuracy_score
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣安職業(yè)技術(shù)學(xué)院《短片拍攝與剪輯》2023-2024學(xué)年第一學(xué)期期末試卷
- 三年級科學(xué)下冊第一單元土壤與生命3肥沃的土壤教案蘇教版
- 藥品知識培訓(xùn)課件
- 產(chǎn)品成本控制教學(xué)培訓(xùn)課件
- 《糖尿病足的預(yù)防》課件
- 確保培訓(xùn)課件內(nèi)容
- 《氧化硫滿意》課件
- 《漢字的演變過程》課件
- 培訓(xùn)課件專員
- 學(xué)校保衛(wèi)檢查考核獎懲制度
- 廣東省課程思政示范高職院校申報書
- 旅行社合伙經(jīng)營協(xié)議
- 樁基檢測選樁方案
- 腦梗塞老人的營養(yǎng)護理措施
- 電動汽車膠粘劑市場洞察報告
- 不銹鋼樓梯扶手安裝合同
- 開荒保潔物業(yè)管理開荒保潔服務(wù)實施方案
- GA/T 2015-2023芬太尼類藥物專用智能柜通用技術(shù)規(guī)范
- 新華DCS軟件2.0版使用教程-文檔資料
- 住所的承諾書范文
- 售前解決方案部門管理規(guī)章制度
評論
0/150
提交評論