高等巖石力學(xué)課程報(bào)告英文讀書報(bào)告_第1頁(yè)
高等巖石力學(xué)課程報(bào)告英文讀書報(bào)告_第2頁(yè)
高等巖石力學(xué)課程報(bào)告英文讀書報(bào)告_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高等巖石力學(xué)英文讀書報(bào)告1530767葉宇航ReadingreportPapertitle:AnewhardrockTBMperformancepredictionmodelforprojectplanningMajor:隧道與地下工程N(yùn)ame:葉宇航Number:1530767SeveralmodelshavebeenintroducedovertheyearsforpredictionofhardrockTBMperformance.TheTBMperformancepredictionmodelsaremostlybasedonanempiricalorasemi-theoreticalapproach.Althoughtheyhaveadvantagesandareaofapplications,theyalsohavedisadvantages,suchasCSMmodeldon’tconsiderthemaininfluencingparameter,NTNUmodelrequirespecialexperimentsoriginatedfromthedrilling,QTBMaretoocomplicated.Theauthorshopetobetterunderstandmachine-rockinteractionandtodevelopamoreaccuratemodelforperformanceestimateofhardrockTBMs.Inordertoachieveit,theauthorsinvestigatethefielddataofthreemaintunnelingprojectsinIranandManapouritunnelprojectinNewZealand.Thedataobtainedfromtheprojectsasbeforementionincludinggeologicalandperformanceparameters,havewiderangesofvariations.ButthesewiderangesofgeologicalandperformanceparametershelpedindevelopingamorecomprehensiveTBMperformancepredictionmodelwhichhascovereddifferentgeologicalconditions.Ingeneral,tojustifytheuseofTBMinanyprojectandforplanningpurposes,areasonablyaccurateestimationofrateofpenetration(ROP),dailyrateofadvance(AR),andcuttercost/lifeestimateisnecessary.ButtheauthorschosenFieldPenetrationIndex(FPI)whichisacompositeparameterasthemachineparameter.Inthetext,bothsingleandmulti-variableregressionanalyzeswereusedtoinvestigaterelationshipbetweenengineeringrockpropertiesandTBMperformanceparametersandfinallytodevelopempiricalequation.TheanalysisofthedataobtainedfromtheprojectsprovedthatFPIisasuitablemachineperformanceparameterfordevelopingempiricalrelationshipswithgeologicalparameters.Andmulti-variableregressionanalysisshowgoodcorrelationbetweenln(FPI)asresponseparameterandUCSandRQDaspredictors.InconclusionFPIisagoodparameterfortheevaluationofhardrockTBMperformance.Therefore,theauthorsdevelopedachartofFPIprediction.ThischartcanbeusedforquickestimationofrangeofvaluesforFPIingroundswithdifferentrockstrengthandrockquality.ExceptstheFPI,theauthorsalsoconcernedtheboreability.Boreabilityisthetermcommonlyusedtoexpresstheeaseordifficultyofrockmassexcavationbyatunnelboringmachine.Rockmassboreabilitydependsonanumberofinfluencingparametersincludingintactrock/rockmassproperties,machinespecificationsandoperationalparameters.Intunnelingprojects,groundcharacteristicsorboreabilityoftherockmassisanimportantparameterforselectingmachinetypeandspecifications.Itisclearthatproperevaluationofrockmassboreabilitycanalsoplayamajorroleinmachineoperationtoachievethebestperformance.FPIcanbeselectedasanindexforcategorizingrockmassboreability.Basedontheanalysisofgiveprojects,theauthorsdefinedsixrockmassboreabilityclasses,frommostdifficultforboringorB-0class(Tough)toeasiestforboringorB-Vclass(Excellent).ConsideredtherelationshipbetweenFPIandboreability,theauthorsgiveatableofTBMperformanceestimationinrockmasseswithdifferentboreabilityclasses.Allinall,thepaperproposedasimplemodeltoevaluaterockmassboreabilityandTBMperformancerange.Thismodeldemonstratesthatmachineperformancehasbeenrelatedtotwomainrockproperties(UCSandRQD)andtwooperationalparameters(averagecutterheadthrustandRPM).TheseInputparametersofthemodelareavailableinthepreliminarystagesofthetunneldesignandplanning.Fromthispaper,IhaveamuchbetterunderstandingoftheestimationofTBMperformanceandtheimpactfactorsofFPIandboreability.AndIthinkthemodelproposedinthispapercanbeappliedasausefultoolforquickestimationofTBMperformanceinprojectswithdifferentgeologicalconditionsandmachinediameters.Andthismodelisworthusingwidely.ThenewboreabilityclassificationwhichbasedonrockmassescharacteristicstoallowforpredictionofFPIvaluesalsoworthlearning.Theauthorsadoptbothsingleandmulti-variableregressiontoanalyzetherelationshipbetweenengineeringrockpropertiesandTBMperformanceparameters.Asaresult,itobtainsagoodresult.So,Ithinkwhenweinvestigateaproblemwhichinfluencedbyvariousparameters,wecanconsidernotjustsingleparameterbutmulti-variableregression.Intheprocessofdevelopedmodel,varietiesofchartswhichdemonstratetherelationshipbetweendifferentparameterplayanimportantrole.Thus,chartisan

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論