版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
山東省威海市文登區(qū)八校聯(lián)考2024屆中考二模數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.一元二次方程mx2+mx﹣=0有兩個相等實數(shù)根,則m的值為()A.0 B.0或﹣2 C.﹣2 D.22.下列汽車標(biāo)志中,不是軸對稱圖形的是()A. B. C. D.3.已知一組數(shù)據(jù),,,,的平均數(shù)是2,方差是,那么另一組數(shù)據(jù),,,,,的平均數(shù)和方差分別是.A. B. C. D.4.已知拋物線y=ax2+bx+c與反比例函數(shù)y=的圖象在第一象限有一個公共點,其橫坐標(biāo)為1,則一次函數(shù)y=bx+ac的圖象可能是(
)A.
B.
C.
D.5.如圖,已知點E在正方形ABCD內(nèi),滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是()A.48 B.60C.76 D.806.下列圖形是軸對稱圖形的有()A.2個 B.3個 C.4個 D.5個7.如圖所示是由幾個完全相同的小正方體組成的幾何體的三視圖.若小正方體的體積是1,則這個幾何體的體積為()A.2 B.3 C.4 D.58.如圖,AD∥BE∥CF,直線l1,l2與這三條平行線分別交于點A,B,C和點D,E,F(xiàn).已知AB=1,BC=3,DE=2,則EF的長為()A.4 B..5 C.6 D.89.在一個不透明的袋子里裝有兩個黃球和一個白球,它們除顏色外都相同,隨機從中摸出一個球,記下顏色后放回袋子中,充分搖勻后,再隨機摸出一個球.兩次都摸到黃球的概率是()A. B. C. D.10.(2011貴州安順,4,3分)我市某一周的最高氣溫統(tǒng)計如下表:最高氣溫(℃)
25
26
27
28
天數(shù)
1
1
2
3
則這組數(shù)據(jù)的中位數(shù)與眾數(shù)分別是()A.27,28 B.27.5,28 C.28,27 D.26.5,27二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在平面直角坐標(biāo)系中有矩形ABCD,A(0,0),C(8,6),M為邊CD上一動點,當(dāng)△ABM是等腰三角形時,M點的坐標(biāo)為_____.12.如圖,在每個小正方形的邊長為1的網(wǎng)格中,A,B為格點(Ⅰ)AB的長等于__(Ⅱ)請用無刻度的直尺,在如圖所示的網(wǎng)格中求作一點C,使得CA=CB且△ABC的面積等于,并簡要說明點C的位置是如何找到的__________________13.如圖,在正方形ABCD中,E是AB上一點,BE=2,AE=3BE,P是AC上一動點,則PB+PE的最小值是.14.如圖,反比例函數(shù)(x>0)的圖象與矩形OABC的邊長AB、BC分別交于點E、F且AE=BE,則△OEF的面積的值為.15.如圖,正方形OABC與正方形ODEF是位似圖形,點O為位似中心,位似比為2:3,點B、E在第一象限,若點A的坐標(biāo)為(1,0),則點E的坐標(biāo)是______.16.甲、乙兩人5次射擊命中的環(huán)數(shù)分別為,甲:7,9,8,6,10;乙:7,8,9,8,8;=8,則這兩人5次射擊命中的環(huán)數(shù)的方差S甲2_____S乙2(填“>”“<”或“=”).17.因式分解:=___.三、解答題(共7小題,滿分69分)18.(10分)已知關(guān)于的一元二次方程.試證明:無論取何值此方程總有兩個實數(shù)根;若原方程的兩根,滿足,求的值.19.(5分)已知關(guān)于x的方程x1+(1k﹣1)x+k1﹣1=0有兩個實數(shù)根x1,x1.求實數(shù)k的取值范圍;若x1,x1滿足x11+x11=16+x1x1,求實數(shù)k的值.20.(8分)對于平面直角坐標(biāo)系中的點,將它的縱坐標(biāo)與橫坐標(biāo)的比稱為點的“理想值”,記作.如的“理想值”.(1)①若點在直線上,則點的“理想值”等于_______;②如圖,,的半徑為1.若點在上,則點的“理想值”的取值范圍是_______.(2)點在直線上,的半徑為1,點在上運動時都有,求點的橫坐標(biāo)的取值范圍;(3),是以為半徑的上任意一點,當(dāng)時,畫出滿足條件的最大圓,并直接寫出相應(yīng)的半徑的值.(要求畫圖位置準(zhǔn)確,但不必尺規(guī)作圖)21.(10分)如圖1,在正方形ABCD中,E是邊BC的中點,F(xiàn)是CD上一點,已知∠AEF=90°.(1)求證:;(2)平行四邊形ABCD中,E是邊BC上一點,F(xiàn)是邊CD上一點,∠AFE=∠ADC,∠AEF=90°.①如圖2,若∠AFE=45°,求的值;②如圖3,若AB=BC,EC=3CF,直接寫出cos∠AFE的值.22.(10分)如圖,在四邊形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,點E,F(xiàn)同時從B點出發(fā),沿射線BC向右勻速移動,已知點F的移動速度是點E移動速度的2倍,以EF為一邊在CB的上方作等邊△EFG,設(shè)E點移動距離為x(0<x<6).(1)∠DCB=度,當(dāng)點G在四邊形ABCD的邊上時,x=;(2)在點E,F(xiàn)的移動過程中,點G始終在BD或BD的延長線上運動,求點G在線段BD的中點時x的值;(3)當(dāng)2<x<6時,求△EFG與四邊形ABCD重疊部分面積y與x之間的函數(shù)關(guān)系式,當(dāng)x取何值時,y有最大值?并求出y的最大值.23.(12分)先化簡,再求值:(1﹣)÷,其中a=﹣1.24.(14分)如圖1,反比例函數(shù)(x>0)的圖象經(jīng)過點A(,1),射線AB與反比例函數(shù)圖象交于另一點B(1,a),射線AC與y軸交于點C,∠BAC=75°,AD⊥y軸,垂足為D.(1)求k的值;(2)求tan∠DAC的值及直線AC的解析式;(3)如圖2,M是線段AC上方反比例函數(shù)圖象上一動點,過M作直線l⊥x軸,與AC相交于點N,連接CM,求△CMN面積的最大值.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
由方程有兩個相等的實數(shù)根,得到根的判別式等于0,求出m的值,經(jīng)檢驗即可得到滿足題意m的值.【詳解】∵一元二次方程mx1+mx﹣=0有兩個相等實數(shù)根,∴△=m1﹣4m×(﹣)=m1+1m=0,解得:m=0或m=﹣1,經(jīng)檢驗m=0不合題意,則m=﹣1.故選C.【點睛】此題考查了根的判別式,根的判別式的值大于0,方程有兩個不相等的實數(shù)根;根的判別式的值等于0,方程有兩個相等的實數(shù)根;根的判別式的值小于0,方程沒有實數(shù)根.2、C【解析】
根據(jù)軸對稱圖形的概念求解.【詳解】A、是軸對稱圖形,故錯誤;B、是軸對稱圖形,故錯誤;C、不是軸對稱圖形,故正確;D、是軸對稱圖形,故錯誤.故選C.【點睛】本題考查了軸對稱圖形的概念:軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合.3、D【解析】
根據(jù)數(shù)據(jù)的變化和其平均數(shù)及方差的變化規(guī)律求得新數(shù)據(jù)的平均數(shù)及方差即可.【詳解】解:∵數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,∴數(shù)據(jù)3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均數(shù)是3×2-2=4;∵數(shù)據(jù)x1,x2,x3,x4,x5的方差為,∴數(shù)據(jù)3x1,3x2,3x3,3x4,3x5的方差是×32=3,∴數(shù)據(jù)3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故選D.【點睛】本題考查了方差的知識,說明了當(dāng)數(shù)據(jù)都加上一個數(shù)(或減去一個數(shù))時,平均數(shù)也加或減這個數(shù),方差不變,即數(shù)據(jù)的波動情況不變;當(dāng)數(shù)據(jù)都乘以一個數(shù)(或除以一個數(shù))時,平均數(shù)也乘以或除以這個數(shù),方差變?yōu)檫@個數(shù)的平方倍.4、B【解析】分析:根據(jù)拋物線y=ax2+bx+c與反比例函數(shù)y=的圖象在第一象限有一個公共點,可得b>0,根據(jù)交點橫坐標(biāo)為1,可得a+b+c=b,可得a,c互為相反數(shù),依此可得一次函數(shù)y=bx+ac的圖象.詳解:∵拋物線y=ax2+bx+c與反比例函數(shù)y=的圖象在第一象限有一個公共點,∴b>0,∵交點橫坐標(biāo)為1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函數(shù)y=bx+ac的圖象經(jīng)過第一、三、四象限.故選B.點睛:考查了一次函數(shù)的圖象,反比例函數(shù)的性質(zhì),二次函數(shù)的性質(zhì),關(guān)鍵是得到b>0,ac<0.5、C【解析】試題解析:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選C.考點:勾股定理.6、C【解析】試題分析:根據(jù)軸對稱圖形的概念:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形.據(jù)此對圖中的圖形進行判斷.解:圖(1)有一條對稱軸,是軸對稱圖形,符合題意;圖(2)不是軸對稱圖形,因為找不到任何這樣的一條直線,使它沿這條直線折疊后,直線兩旁的部分能夠重合,即不滿足軸對稱圖形的定義.不符合題意;圖(3)有二條對稱軸,是軸對稱圖形,符合題意;圖(3)有五條對稱軸,是軸對稱圖形,符合題意;圖(3)有一條對稱軸,是軸對稱圖形,符合題意.故軸對稱圖形有4個.故選C.考點:軸對稱圖形.7、C【解析】
根據(jù)左視圖發(fā)現(xiàn)最右上角共有2個小立方體,綜合以上,可以發(fā)現(xiàn)一共有4個立方體,主視圖和左視圖都是上下兩行,所以這個幾何體共由上下兩層小正方體組成,俯視圖有3個小正方形,所以下面一層共有3個小正方體,結(jié)合主視圖和左視圖的形狀可知上面一層只有最左邊有個小正方體,故這個幾何體由4個小正方體組成,其體積是4.故選C.【點睛】錯因分析
容易題,失分原因:未掌握通過三視圖還原幾何體的方法.8、C【解析】
解:∵AD∥BE∥CF,根據(jù)平行線分線段成比例定理可得,即,解得EF=6,故選C.9、A【解析】
首先根據(jù)題意畫出樹狀圖,由樹狀圖求得所有等可能的結(jié)果與兩次都摸到黃球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實驗.【詳解】畫樹狀圖如下:由樹狀圖可知,共有9種等可能結(jié)果,其中兩次都摸到黃球的有4種結(jié)果,∴兩次都摸到黃球的概率為,故選A.【點睛】此題考查的是用列表法或樹狀圖法求概率的知識.注意畫樹狀圖與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.10、A【解析】根據(jù)表格可知:數(shù)據(jù)25出現(xiàn)1次,26出現(xiàn)1次,27出現(xiàn)2次,28出現(xiàn)3次,∴眾數(shù)是28,這組數(shù)據(jù)從小到大排列為:25,26,27,27,28,28,28∴中位數(shù)是27∴這周最高氣溫的中位數(shù)與眾數(shù)分別是27,28故選A.二、填空題(共7小題,每小題3分,滿分21分)11、(4,6),(8﹣27,6),(27,6).【解析】
分別取三個點作為定點,然后根據(jù)勾股定理和等腰三角形的兩個腰相等來判斷是否存在符合題意的M的坐標(biāo).【詳解】解:當(dāng)M為頂點時,AB長為底=8,M在DC中點上,所以M的坐標(biāo)為(4,6),當(dāng)B為頂點時,AB長為腰=8,M在靠近D處,根據(jù)勾股定理可知ME=82-所以M的坐標(biāo)為(8﹣27,6);當(dāng)A為頂點時,AB長為腰=8,M在靠近C處,根據(jù)勾股定理可知MF=82-所以M的坐標(biāo)為(27,6);綜上所述,M的坐標(biāo)為(4,6),(8﹣27,6),(27,6);故答案為:(4,6),(8﹣27,6),(27,6).【點睛】本題主要考查矩形的性質(zhì)、坐標(biāo)與圖形性質(zhì),解題關(guān)鍵是根據(jù)對等腰三角形性質(zhì)的掌握和勾股定理的應(yīng)用.12、取格點P、N(S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點C,點C即為所求.【解析】
(Ⅰ)利用勾股定理計算即可;(Ⅱ)取格點P、N(S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點C,點C即為所求.【詳解】解:(Ⅰ)AB==,故答案為.(Ⅱ)如圖取格點P、N(使得S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點C,點C即為所求.故答案為:取格點P、N(S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點C,點C即為所求.【點睛】本題考查作圖﹣應(yīng)用與設(shè)計,線段的垂直平分線的性質(zhì)、等高模型等知識,解題的關(guān)鍵是學(xué)會利用數(shù)形結(jié)合的思想思考問題,屬于中考??碱}型.13、10【解析】
由正方形性質(zhì)的得出B、D關(guān)于AC對稱,根據(jù)兩點之間線段最短可知,連接DE,交AC于P,連接BP,則此時PB+PE的值最小,進而利用勾股定理求出即可.【詳解】如圖,連接DE,交AC于P,連接BP,則此時PB+PE的值最小.∵四邊形ABCD是正方形,∴B、D關(guān)于AC對稱,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案為10.14、【解析】試題分析:如圖,連接OB.∵E、F是反比例函數(shù)(x>0)的圖象上的點,EA⊥x軸于A,F(xiàn)C⊥y軸于C,∴S△AOE=S△COF=×1=.∵AE=BE,∴S△BOE=S△AOE=,S△BOC=S△AOB=1.∴S△BOF=S△BOC﹣S△COF=1﹣=.∴F是BC的中點.∴S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF=6﹣﹣﹣×=.15、(,)【解析】
由題意可得OA:OD=2:3,又由點A的坐標(biāo)為(1,0),即可求得OD的長,又由正方形的性質(zhì),即可求得E點的坐標(biāo).【詳解】解:∵正方形OABC與正方形ODEF是位似圖形,O為位似中心,相似比為2:3,∴OA:OD=2:3,∵點A的坐標(biāo)為(1,0),即OA=1,∴OD=,∵四邊形ODEF是正方形,∴DE=OD=.∴E點的坐標(biāo)為:(,).故答案為:(,).【點睛】此題考查了位似變換的性質(zhì)與正方形的性質(zhì),注意理解位似變換與相似比的定義是解此題的關(guān)鍵.16、>【解析】
分別根據(jù)方差公式計算出甲、乙兩人的方差,再比較大小.【詳解】∵=8,∴=[(7﹣8)2+(9﹣8)2+(8﹣8)2+(6﹣8)2+(10﹣8)2]=(1+1+0+4+4)=2,=[(7﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=(1+0+1+0+0)=0.4,∴>.故答案為:>.【點睛】本題考查了方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.17、【解析】分析:先提公因式,再利用平方差公式因式分解即可.詳解:a2(a-b)-4(a-b)=(a-b)(a2-4)=(a-b)(a-2)(a+2),故答案為:(a-b)(a-2)(a+2).點睛:本題考查的是因式分解,掌握提公因式法、平方差公式進行因式分解是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)-2.【解析】分析:(1)將原方程變形為一般式,根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出△=(2p+1)2≥1,由此即可證出:無論p取何值此方程總有兩個實數(shù)根;(2)根據(jù)根與系數(shù)的關(guān)系可得出x1+x2=5、x1x2=6-p2-p,結(jié)合x12+x22-x1x2=3p2+1,即可求出p值.詳解:(1)證明:原方程可變形為x2-5x+6-p2-p=1.∵△=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥1,∴無論p取何值此方程總有兩個實數(shù)根;(2)∵原方程的兩根為x1、x2,∴x1+x2=5,x1x2=6-p2-p.又∵x12+x22-x1x2=3p2+1,∴(x1+x2)2-3x1x2=3p2+1,∴52-3(6-p2-p)=3p2+1,∴25-18+3p2+3p=3p2+1,∴3p=-6,∴p=-2.點睛:本題考查了根與系數(shù)的關(guān)系以及根的判別式,解題的關(guān)鍵是:(1)牢記“當(dāng)△≥1時,方程有兩個實數(shù)根”;(2)根據(jù)根與系數(shù)的關(guān)系結(jié)合x12+x22-x1x2=3p2+1,求出p值.19、(2)k≤;(2)-2.【解析】試題分析:(2)根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出△=﹣4k+5≥0,解之即可得出實數(shù)k的取值范圍;(2)由根與系數(shù)的關(guān)系可得x2+x2=2﹣2k、x2x2=k2﹣2,將其代入x22+x22=(x2+x2)2﹣2x2x2=26+x2x2中,解之即可得出k的值.試題解析:(2)∵關(guān)于x的方程x2+(2k﹣2)x+k2﹣2=0有兩個實數(shù)根x2,x2,∴△=(2k﹣2)2﹣4(k2﹣2)=﹣4k+5≥0,解得:k≤,∴實數(shù)k的取值范圍為k≤.(2)∵關(guān)于x的方程x2+(2k﹣2)x+k2﹣2=0有兩個實數(shù)根x2,x2,∴x2+x2=2﹣2k,x2x2=k2﹣2.∵x22+x22=(x2+x2)2﹣2x2x2=26+x2x2,∴(2﹣2k)2﹣2×(k2﹣2)=26+(k2﹣2),即k2﹣4k﹣22=0,解得:k=﹣2或k=6(不符合題意,舍去).∴實數(shù)k的值為﹣2.考點:一元二次方程根與系數(shù)的關(guān)系,根的判別式.20、(1)①﹣3;②;(2);(3)【解析】
(1)①把Q(1,a)代入y=x-4,可求出a值,根據(jù)理想值定義即可得答案;②由理想值越大,點與原點連線與軸夾角越大,可得直線與相切時理想值最大,與x中相切時,理想值最小,即可得答案;(2)根據(jù)題意,討論與軸及直線相切時,LQ取最小值和最大值,求出點橫坐標(biāo)即可;(3)根據(jù)題意將點轉(zhuǎn)化為直線,點理想值最大時點在上,分析圖形即可.【詳解】(1)①∵點在直線上,∴,∴點的“理想值”=-3,故答案為:﹣3.②當(dāng)點在與軸切點時,點的“理想值”最小為0.當(dāng)點縱坐標(biāo)與橫坐標(biāo)比值最大時,的“理想值”最大,此時直線與切于點,設(shè)點Q(x,y),與x軸切于A,與OQ切于Q,∵C(,1),∴tan∠COA==,∴∠COA=30°,∵OQ、OA是的切線,∴∠QOA=2∠COA=60°,∴=tan∠QOA=tan60°=,∴點的“理想值”為,故答案為:.(2)設(shè)直線與軸、軸的交點分別為點,點,當(dāng)x=0時,y=3,當(dāng)y=0時,x+3=0,解得:x=,∴,.∴,,∴tan∠OAB=,∴.∵,∴①如圖,作直線.當(dāng)與軸相切時,LQ=0,相應(yīng)的圓心滿足題意,其橫坐標(biāo)取到最大值.作軸于點,∴,∴.∵的半徑為1,∴.∴,∴.∴.②如圖當(dāng)與直線相切時,LQ=,相應(yīng)的圓心滿足題意,其橫坐標(biāo)取到最小值.作軸于點,則.設(shè)直線與直線的交點為.∵直線中,k=,∴,∴,點F與Q重合,則.∵的半徑為1,∴.∴.∴,∴.∴.由①②可得,的取值范圍是.(3)∵M(2,m),∴M點在直線x=2上,∵,∴LQ取最大值時,=,∴作直線y=x,與x=2交于點N,當(dāng)M與ON和x軸同時相切時,半徑r最大,根據(jù)題意作圖如下:M與ON相切于Q,與x軸相切于E,把x=2代入y=x得:y=4,∴NE=4,OE=2,ON==6,∴∠MQN=∠NEO=90°,又∵∠ONE=∠MNQ,∴,∴,即,解得:r=.∴最大半徑為.【點睛】本題是一次函數(shù)和圓的綜合題,主要考查了一次函數(shù)和圓的切線的性質(zhì),解答時要注意做好數(shù)形結(jié)合,根據(jù)圖形進行分類討論.21、(1)見解析;(2)①;②cos∠AFE=【解析】
(1)用特殊值法,設(shè),則,證,可求出CF,DF的長,即可求出結(jié)論;(2)①如圖2,過F作交AD于點G,證和是等腰直角三角形,證,求出的值,即可寫出的值;②如圖3,作交AD于點T,作于H,證,設(shè)CF=2,則CE=6,可設(shè)AT=x,則TF=3x,,,分別用含x的代數(shù)式表示出∠AFE和∠D的余弦值,列出方程,求出x的值,即可求出結(jié)論.【詳解】(1)設(shè)BE=EC=2,則AB=BC=4,∵,∴,∵,∴∠FEC=∠EAB,又∴,∴,∴,即,∴CF=1,則,∴;(2)①如圖2,過F作交AD于點G,∵,∴和是等腰直角三角形,∴,,∴∠AGF=∠C,又∵,∴∠GAF=∠CFE,∴,∴,又∵GF=DF,∴;②如圖3,作交AD于點T,作于H,則,∴,∴∠ATF=∠C,又∵,且∠D=∠AFE,∴∠TAF=∠CFE,∴,∴,設(shè)CF=2,則CE=6,可設(shè)AT=x,則TF=3x,,∴,且,由,得,解得x=5,∴.【點睛】本題主要考查了三角形相似的判定及性質(zhì)的綜合應(yīng)用,熟練掌握三角形相似的判定及性質(zhì)是解決本題的關(guān)鍵.22、(1)30;2;(2)x=1;(3)當(dāng)x=時,y最大=;【解析】
(1)如圖1中,作DH⊥BC于H,則四邊形ABHD是矩形.AD=BH=3,BC=6,CH=BC﹣BH=3,當(dāng)?shù)冗吶切巍鱁GF的高=時,點G在AD上,此時x=2;(2)根據(jù)勾股定理求出的長度,根據(jù)三角函數(shù),求出∠ADB=30°,根據(jù)中點的定義得出根據(jù)等邊三角形的性質(zhì)得到,即可求出x的值;
(3)圖2,圖3三種情形解決問題.①當(dāng)2<x<3時,如圖2中,點E、F在線段BC上,△EFG與四邊形ABCD重疊部分為四邊形EFNM;②當(dāng)3≤x<6時,如圖3中,點E在線段BC上,點F在射線BC上,重疊部分是△ECP;【詳解】(1)作DH⊥BC于H,則四邊形ABHD是矩形.∵AD=BH=3,BC=6,∴CH=BC﹣BH=3,在Rt△DHC中,CH=3,∴當(dāng)?shù)冗吶切巍鱁GF的高等于時,點G在AD上,此時x=2,∠DCB=30°,故答案為30,2,(2)如圖∵AD∥BC∴∠A=180°﹣∠ABC=180°﹣90°=90°在Rt△ABD中,∴∠ADB=30°∵G是BD的中點∴∵AD∥BC∴∠ADB=∠DBC=30°∵△GEF是等邊三角形,∴∠GFE=60°∴∠BGF=90°在Rt△BGF中,∴2x=2即x=1;(3)分兩種情況:當(dāng)2<x<3,如圖2點E、點F在線段BC上△GEF與四邊形ABCD重疊部分為四邊形EFNM∵∠FNC=∠GFE﹣∠DCB=60°﹣30°=30°∴∠FNC=∠DCB∴FN=FC=6﹣2x∴GN=x﹣(6﹣2x)=3x﹣6∵∠FNC=∠GNM=30°,∠G=60°∴∠GMN=90°在Rt△GNM中,∴∴當(dāng)時,最大當(dāng)3≤x<6時,如圖3,點E在線段BC上,點F在線段BC的延長線上,△GEF與四邊形ABCD重疊部分為△ECP∵∠PCE=30°,∠PEC=60°∴∠EPC=90°在Rt△EPC中EC=6﹣x,對稱軸為當(dāng)x<6時,y隨x的增大而減小∴當(dāng)x=3時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 樹立規(guī)則為本服務(wù)理念,強化病歷書寫證據(jù)意識課件
- 2025年高考語文??急厮⒃囶}庫300題(含答案)
- 2025年畢節(jié)職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測試近5年常考版參考題庫含答案解析
- 2025年桐城師范高等??茖W(xué)校高職單招高職單招英語2016-2024歷年頻考點試題含答案解析
- 2025科學(xué)儀器行業(yè)發(fā)展趨勢與市場前景分析
- 2025養(yǎng)老行業(yè)發(fā)展趨勢與市場前景分析
- 建筑工程可行性研究合同協(xié)議書
- 演員合同書范本
- 經(jīng)典借款合同
- 海運貨物運輸合同范文
- 搞笑小品劇本《大城小事》臺詞完整版
- 人大代表小組活動計劃人大代表活動方案
- Vue3系統(tǒng)入門與項目實戰(zhàn)
- 2024年寧夏回族自治區(qū)中考英語試題含解析
- 光伏發(fā)電項目試驗檢測計劃
- 房屋建筑工程投標(biāo)方案(技術(shù)方案)
- 靜脈輸液法操作并發(fā)癥的預(yù)防及處理
- 2025年高考語文作文備考:議論文萬能模板
- T-BJCC 1003-2024 首店、首發(fā)活動、首發(fā)中心界定標(biāo)準(zhǔn)
- 外科手術(shù)及護理常規(guī)
- 鐵嶺衛(wèi)生職業(yè)學(xué)院單招參考試題庫(含答案)
評論
0/150
提交評論