廣西河池市南丹縣2023-2024學(xué)年中考數(shù)學(xué)對點突破模擬試卷含解析_第1頁
廣西河池市南丹縣2023-2024學(xué)年中考數(shù)學(xué)對點突破模擬試卷含解析_第2頁
廣西河池市南丹縣2023-2024學(xué)年中考數(shù)學(xué)對點突破模擬試卷含解析_第3頁
廣西河池市南丹縣2023-2024學(xué)年中考數(shù)學(xué)對點突破模擬試卷含解析_第4頁
廣西河池市南丹縣2023-2024學(xué)年中考數(shù)學(xué)對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

廣西河池市南丹縣2023-2024學(xué)年中考數(shù)學(xué)對點突破模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端距離地面2米,那么小巷的寬度為()A.0.7米 B.1.5米 C.2.2米 D.2.4米2.|﹣3|=()A. B.﹣ C.3 D.﹣33.一個不透明的袋子里裝著質(zhì)地、大小都相同的3個紅球和2個綠球,隨機從中摸出一球,不再放回袋中,充分?jǐn)噭蚝笤匐S機摸出一球.兩次都摸到紅球的概率是()A. B. C. D.4.已知關(guān)于x的方程恰有一個實根,則滿足條件的實數(shù)a的值的個數(shù)為()A.1 B.2 C.3 D.45.甲隊修路120m與乙隊修路100m所用天數(shù)相同,已知甲隊比乙隊每天多修10m,設(shè)甲隊每天修路xm.依題意,下面所列方程正確的是A.B. C.D.6.下列四個圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.7.若正六邊形的邊長為6,則其外接圓半徑為()A.3 B.3 C.3 D.68.一元二次方程x2﹣2x=0的根是()A.x=2 B.x=0 C.x1=0,x2=2 D.x1=0,x2=﹣29.已知直線m∥n,將一塊含30°角的直角三角板ABC按如圖方式放置(∠ABC=30°),其中A,B兩點分別落在直線m,n上,若∠1=20°,則∠2的度數(shù)為()A.20° B.30° C.45° D.50°10.如圖所示的幾何體的主視圖正確的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點O順時針旋轉(zhuǎn)90°后得Rt△FOE,將線段EF繞點E逆時針旋轉(zhuǎn)90°后得線段ED,分別以O(shè),E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是_____.12.如圖,半圓O的直徑AB=2,弦CD∥AB,∠COD=90°,則圖中陰影部分的面積為_____.13.如圖,在平行四邊形紙片上做隨機扎針實驗,則針頭扎在陰影區(qū)域的概率為__________.14.化簡:=_____.15.如圖,在等腰△ABC中,AB=AC,BC邊上的高AD=6cm,腰AB上的高CE=8cm,則BC=_____cm16.在某一時刻,測得一根高為2m的竹竿的影長為1m,同時測得一棟建筑物的影長為9m,那么這棟建筑物的高度為_____m.17.如圖,在△ABC中,AB=4,AC=3,以BC為邊在三角形外作正方形BCDE,連接BD,CE交于點O,則線段AO的最大值為_____.三、解答題(共7小題,滿分69分)18.(10分)求不等式組的整數(shù)解.19.(5分)計算:.20.(8分)某工廠生產(chǎn)部門為了解本部門工人的生產(chǎn)能力情況,進行了抽樣調(diào)查.該部門隨機抽取了30名工人某天每人加工零件的個數(shù),數(shù)據(jù)如下:202119162718312921222520192235331917182918352215181831311922整理上面數(shù)據(jù),得到條形統(tǒng)計圖:樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)如下表所示:統(tǒng)計量平均數(shù)眾數(shù)中位數(shù)數(shù)值23m21根據(jù)以上信息,解答下列問題:上表中眾數(shù)m的值為;為調(diào)動工人的積極性,該部門根據(jù)工人每天加工零件的個數(shù)制定了獎勵標(biāo)準(zhǔn),凡達(dá)到或超過這個標(biāo)準(zhǔn)的工人將獲得獎勵.如果想讓一半左右的工人能獲獎,應(yīng)根據(jù)來確定獎勵標(biāo)準(zhǔn)比較合適.(填“平均數(shù)”、“眾數(shù)”或“中位數(shù)”)該部門規(guī)定:每天加工零件的個數(shù)達(dá)到或超過25個的工人為生產(chǎn)能手.若該部門有300名工人,試估計該部門生產(chǎn)能手的人數(shù).21.(10分)如圖,兒童游樂場有一項射擊游戲.從O處發(fā)射小球,將球投入正方形籃筐DABC.正方形籃筐三個頂點為A(2,2),B(3,2),D(2,3).小球按照拋物線y=﹣x2+bx+c飛行.小球落地點P坐標(biāo)(n,0)(1)點C坐標(biāo)為;(2)求出小球飛行中最高點N的坐標(biāo)(用含有n的代數(shù)式表示);(3)驗證:隨著n的變化,拋物線的頂點在函數(shù)y=x2的圖象上運動;(4)若小球發(fā)射之后能夠直接入籃,球沒有接觸籃筐,請直接寫出n的取值范圍.22.(10分)先化簡,再求值:,其中,a、b滿足.23.(12分)A,B兩地相距20km.甲、乙兩人都由A地去B地,甲騎自行車,平均速度為10km/h;乙乘汽車,平均速度為40km/h,且比甲晚1.5h出發(fā).設(shè)甲的騎行時間為x(h)(0≤x≤2)(1)根據(jù)題意,填寫下表:時間x(h)與A地的距離0.51.8_____甲與A地的距離(km)520乙與A地的距離(km)012(2)設(shè)甲,乙兩人與A地的距離為y1(km)和y2(km),寫出y1,y2關(guān)于x的函數(shù)解析式;(3)設(shè)甲,乙兩人之間的距離為y,當(dāng)y=12時,求x的值.24.(14分)如圖,已知在梯形ABCD中,,P是線段BC上一點,以P為圓心,PA為半徑的與射線AD的另一個交點為Q,射線PQ與射線CD相交于點E,設(shè).(1)求證:;(2)如果點Q在線段AD上(與點A、D不重合),設(shè)的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;(3)如果與相似,求BP的長.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】

在直角三角形中利用勾股定理計算出直角邊,即可求出小巷寬度.【詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選C.【點睛】本題考查勾股定理的運用,利用梯子長度不變找到斜邊是關(guān)鍵.2、C【解析】

根據(jù)絕對值的定義解答即可.【詳解】|-3|=3故選:C【點睛】本題考查的是絕對值,理解絕對值的定義是關(guān)鍵.3、A【解析】

列表或畫樹狀圖得出所有等可能的結(jié)果,找出兩次都為紅球的情況數(shù),即可求出所求的概率:【詳解】列表如下:

﹣﹣﹣

(紅,紅)

(紅,紅)

(綠,紅)

(綠,綠)

(紅,紅)

﹣﹣﹣

(紅,紅)

(綠,紅)

(綠,紅)

(紅,紅)

(紅,紅)

﹣﹣﹣

(綠,紅)

(綠,紅)

(紅,綠)

(紅,綠)

(紅,綠)

﹣﹣﹣

(綠,綠)

(紅,綠)

(紅,綠)

(紅,綠)

(綠,綠)

﹣﹣﹣

∵所有等可能的情況數(shù)為20種,其中兩次都為紅球的情況有6種,∴,故選A.4、C【解析】

先將原方程變形,轉(zhuǎn)化為整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一個實數(shù)根,因此,方程①的根有兩種情況:(1)方程①有兩個相等的實數(shù)根,此二等根使x(x-2)≠1;(2)方程①有兩個不等的實數(shù)根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.針對每一種情況,分別求出a的值及對應(yīng)的原方程的根.【詳解】去分母,將原方程兩邊同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①方程①的根的情況有兩種:(1)方程①有兩個相等的實數(shù)根,即△=9﹣3×2(3﹣a)=1.解得a=.當(dāng)a=時,解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.(2)方程①有兩個不等的實數(shù)根,而其中一根使原方程分母為零,即方程①有一個根為1或2.(i)當(dāng)x=1時,代入①式得3﹣a=1,即a=3.當(dāng)a=3時,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.而x1=1是增根,即這時方程①的另一個根是x=1.4.它不使分母為零,確是原方程的唯一根.(ii)當(dāng)x=2時,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.當(dāng)a=5時,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣.x1是增根,故x=﹣為方程的唯一實根;因此,若原分式方程只有一個實數(shù)根時,所求的a的值分別是,3,5共3個.故選C.【點睛】考查了分式方程的解法及增根問題.由于原分式方程去分母后,得到一個含有字母的一元二次方程,所以要分情況進行討論.理解分式方程產(chǎn)生增根的原因及一元二次方程解的情況從而正確進行分類是解題的關(guān)鍵.5、A【解析】分析:甲隊每天修路xm,則乙隊每天修(x-10)m,因為甲、乙兩隊所用的天數(shù)相同,所以,。故選A。6、D【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、不是軸對稱圖形,是中心對稱圖形,故此選項不合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不合題意;C、不是軸對稱圖形,不是中心對稱圖形,故此選項不合題意;D、是軸對稱圖形,是中心對稱圖形,故此選項符合題意;故選D.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.7、D【解析】

連接正六邊形的中心和各頂點,得到六個全等的正三角形,于是可知正六邊形的邊長等于正三角形的邊長,為正六邊形的外接圓半徑.【詳解】如圖為正六邊形的外接圓,ABCDEF是正六邊形,∴∠AOF=10°,∵OA=OF,∴△AOF是等邊三角形,∴OA=AF=1.所以正六邊形的外接圓半徑等于邊長,即其外接圓半徑為1.故選D.【點睛】本題考查了正六邊形的外接圓的知識,解題的關(guān)鍵是畫出圖形,找出線段之間的關(guān)系.8、C【解析】

方程左邊分解因式后,利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉(zhuǎn)化為兩個一元一次方程來求解.【詳解】方程變形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x1=1.故選C.【點睛】考查了解一元二次方程﹣因式分解法,熟練掌握因式分解的方法是解本題的關(guān)鍵.9、D【解析】

根據(jù)兩直線平行,內(nèi)錯角相等計算即可.【詳解】因為m∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故選D.【點睛】本題主要考查平行線的性質(zhì),清楚兩直線平行,內(nèi)錯角相等是解答本題的關(guān)鍵.10、D【解析】

主視圖是從前向后看,即可得圖像.【詳解】主視圖是一個矩形和一個三角形構(gòu)成.故選D.二、填空題(共7小題,每小題3分,滿分21分)11、8﹣π【解析】分析:如下圖,過點D作DH⊥AE于點H,由此可得∠DHE=∠AOB=90°,由旋轉(zhuǎn)的性質(zhì)易得DE=EF=AB,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,結(jié)合∠ABO+∠BAO=90°可得∠BAO=∠DEH,從而可證得△DEH≌△BAO,即可得到DH=BO=2,再由勾股定理求得AB的長,即可由S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF即可求得陰影部分的面積.詳解:如下圖,過點D作DH⊥AE于點H,∴∠DHE=∠AOB=90°,∵OA=3,OB=2,∴AB=,由旋轉(zhuǎn)的性質(zhì)結(jié)合已知條件易得:DE=EF=AB=,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,又∵∠ABO+∠BAO=90°,∴∠BAO=∠DEH,∴△DEH≌△BAO,∴DH=BO=2,∴S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF==.故答案為:.點睛:作出如圖所示的輔助線,利用旋轉(zhuǎn)的性質(zhì)證得△DEH≌△BAO,由此得到DH=BO=2,從而將陰影部分的面積轉(zhuǎn)化為:S陰影=S扇形AOF+S△OEF+S△ADE-S扇形DEF來計算是解答本題的關(guān)鍵.12、【解析】解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S陰影=S扇形COD==.故答案為.13、【解析】

先根據(jù)平行四邊形的性質(zhì)求出對角線所分的四個三角形面積相等,再求出概率即可.【詳解】解:∵四邊形是平行四邊形,∴對角線把平行四邊形分成面積相等的四部分,觀察發(fā)現(xiàn):圖中陰影部分面積=S四邊形,∴針頭扎在陰影區(qū)域內(nèi)的概率為;故答案為:.【點睛】此題主要考查了幾何概率,以及平行四邊形的性質(zhì),用到的知識點為:概率=相應(yīng)的面積與總面積之比.14、【解析】

先算除法,再算減法,注意把分式的分子分母分解因式【詳解】原式===【點睛】此題考查分式的混合運算,掌握運算法則是解題關(guān)鍵15、【解析】

根據(jù)三角形的面積公式求出=,根據(jù)等腰三角形的性質(zhì)得到BD=DC=BC,根據(jù)勾股定理列式計算即可.【詳解】∵AD是BC邊上的高,CE是AB邊上的高,∴AB?CE=BC?AD,∵AD=6,CE=8,∴=,∴=,∵AB=AC,AD⊥BC,∴BD=DC=BC,∵AB2?BD2=AD2,∴AB2=BC2+36,即BC2=BC2+36,解得:BC=.故答案為:.【點睛】本題考查的是等腰三角形的性質(zhì)、勾股定理的應(yīng)用和三角形面積公式的應(yīng)用,根據(jù)三角形的面積公式求出腰與底的比是解題的關(guān)16、1【解析】分析:根據(jù)同時同地的物高與影長成正比列式計算即可得解.詳解:設(shè)這棟建筑物的高度為xm,由題意得,,解得x=1,即這棟建筑物的高度為1m.故答案為1.點睛:同時同地的物高與影長成正比,利用相似三角形的相似比,列出方程,通過解方程求出這棟高樓的高度,體現(xiàn)了方程的思想.17、【解析】

過O作OF⊥AO且使OF=AO,連接AF、CF,可知△AOF是等腰直角三角形,進而可得AF=AO,根據(jù)正方形的性質(zhì)可得OB=OC,∠BOC=90°,由銳角互余的關(guān)系可得∠AOB=∠COF,進而可得△AOB≌△COF,即可證明AB=CF,當(dāng)點A、C、F三點不共線時,根據(jù)三角形的三邊關(guān)系可得AC+CF>AF,當(dāng)點A、C、F三點共線時可得AC+CF=AC+AB=AF=7,即可得AF的最大值,由AF=AO即可得答案.【詳解】如圖,過O作OF⊥AO且使OF=AO,連接AF、CF,∴∠AOF=90°,△AOF是等腰直角三角形,∴AF=AO,∵四邊形BCDE是正方形,∴OB=OC,∠BOC=90°,∵∠BOC=∠AOF=90°,∴∠AOB+∠AOC=∠COF+∠AOC,∴∠AOB=∠COF,又∵OB=OC,AO=OF,∴△AOB≌△COF,∴CF=AB=4,當(dāng)點A、C、F三點不共線時,AC+CF>AF,當(dāng)點A、C、F三點共線時,AC+CF=AC+AB=AF=7,∴AF≤AC+CF=7,∴AF的最大值是7,∴AF=AO=7,∴AO=.故答案為【點睛】本題考查正方形的性質(zhì),全等三角形的判定與性質(zhì),熟練掌握相關(guān)定理及性質(zhì)是解題關(guān)鍵.三、解答題(共7小題,滿分69分)18、-1,-1,0,1,1【解析】分析:先求出不等式組的解集,然后求出整數(shù)解.詳解:,由不等式①,得:x≥﹣1,由不等式②,得:x<3,故原不等式組的解集是﹣1≤x<3,∴不等式組的整數(shù)解是:﹣1、﹣1、0、1、1.點睛:本題考查了解一元一次不等式的整數(shù)解,解答本題的關(guān)鍵是明確解一元一次不等式組的方法.19、.【解析】

利用特殊角的三角函數(shù)值以及負(fù)指數(shù)冪的性質(zhì)和絕對值的性質(zhì)化簡即可得出答案.【詳解】解:原式==.故答案為.【點睛】本題考查實數(shù)運算,特殊角的三角函數(shù)值,負(fù)整數(shù)指數(shù)冪,正確化簡各數(shù)是解題關(guān)鍵.20、(1)18;(2)中位數(shù);(3)100名.【解析】【分析】(1)根據(jù)條形統(tǒng)計圖中的數(shù)據(jù)可以得到m的值;(2)根據(jù)題意可知應(yīng)選擇中位數(shù)比較合適;(3)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以計該部門生產(chǎn)能手的人數(shù).【詳解】(1)由圖可得,眾數(shù)m的值為18,故答案為:18;(2)由題意可得,如果想讓一半左右的工人能獲獎,應(yīng)根據(jù)中位數(shù)來確定獎勵標(biāo)準(zhǔn)比較合適,故答案為:中位數(shù);(3)300×=100(名),答:該部門生產(chǎn)能手有100名工人.【點睛】本題考查了條形統(tǒng)計圖、用樣本估計總體、加權(quán)平均數(shù)、中位數(shù)和眾數(shù),解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.21、(1)(3,3);(2)頂點N坐標(biāo)為(,);(3)詳見解析;(4)<n<.【解析】

(1)由正方形的性質(zhì)及A、B、D三點的坐標(biāo)求得AD=BC=1即可得;(2)把(0,0)(n,0)代入y=-x2+bx+c求得b=n、c=0,據(jù)此可得函數(shù)解析式,配方成頂點式即可得出答案;(3)將點N的坐標(biāo)代入y=x2,看是否符合解析式即可;(4)根據(jù)“小球發(fā)射之后能夠直接入籃,球沒有接觸籃筐”知:當(dāng)x=2時y>3,當(dāng)x=3時y<2,據(jù)此列出關(guān)于n的不等式組,解之可得.【詳解】(1)∵A(2,2),B(3,2),D(2,3),∴AD=BC=1,則點C(3,3),故答案為:(3,3);(2)把(0,0)(n,0)代入y=﹣x2+bx+c得:,解得:,∴拋物線解析式為y=﹣x2+nx=﹣(x﹣)2+,∴頂點N坐標(biāo)為(,);(3)由(2)把x=代入y=x2=()2=,∴拋物線的頂點在函數(shù)y=x2的圖象上運動;(4)根據(jù)題意,得:當(dāng)x=2時y>3,當(dāng)x=3時y<2,即,解得:<n<.【點睛】本題主要考查二次函數(shù)的應(yīng)用,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質(zhì)及將實際問題轉(zhuǎn)化為二次函數(shù)的問題能力.22、【解析】

先根據(jù)分式混合運算順序和運算法則化簡原式,再解方程組求得a、b的值,繼而代入計算可得.【詳解】原式=,=,=,解方程組得,所以原式=.【點睛】本題主要考查分式的化簡求值和解二元一次方程組,解題的關(guān)鍵是熟練掌握分式混合運

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論