陜師大附中2024屆中考數(shù)學(xué)五模試卷含解析_第1頁
陜師大附中2024屆中考數(shù)學(xué)五模試卷含解析_第2頁
陜師大附中2024屆中考數(shù)學(xué)五模試卷含解析_第3頁
陜師大附中2024屆中考數(shù)學(xué)五模試卷含解析_第4頁
陜師大附中2024屆中考數(shù)學(xué)五模試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

陜師大附中2024屆中考數(shù)學(xué)五模試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.據(jù)媒體報道,我國最新研制的“察打一體”無人機(jī)的速度極快,經(jīng)測試最高速度可達(dá)204000米/分,這個數(shù)用科學(xué)記數(shù)法表示,正確的是()A.204×103B.20.4×104C.2.04×105D.2.04×1062.小明在一次登山活動中撿到一塊礦石,回家后,他使用一把刻度尺,一只圓柱形的玻璃杯和足量的水,就測量出這塊礦石的體積.如果他量出玻璃杯的內(nèi)直徑d,把礦石完全浸沒在水中,測出杯中水面上升了高度h,則小明的這塊礦石體積是()A. B. C. D.3.如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定△ABC≌△ADC的是()A.CB=CD B.∠BCA=∠DCAC.∠BAC=∠DAC D.∠B=∠D=90°4.如圖,在菱形ABCD中,AB=BD,點E,F(xiàn)分別在AB,AD上,且AE=DF,連接BF與DE相交于點G,連接CG與BD相交于點H,下列結(jié)論:①△AED≌△DFB;②S四邊形BCDG=CG2;③若AF=2DF,則BG=6GF,其中正確的結(jié)論A.只有①②. B.只有①③. C.只有②③. D.①②③.5.如圖,AB是的直徑,點C,D在上,若,則的度數(shù)為A. B. C. D.6.不等式組1-x≤0,3x-6<0A. B. C. D.7.若正比例函數(shù)y=kx的圖象上一點(除原點外)到x軸的距離與到y(tǒng)軸的距離之比為3,且y值隨著x值的增大而減小,則k的值為()A.﹣ B.﹣3 C. D.38.一元二次方程x2+2x﹣15=0的兩個根為()A.x1=﹣3,x2=﹣5B.x1=3,x2=5C.x1=3,x2=﹣5D.x1=﹣3,x2=59.如圖,要使□ABCD成為矩形,需添加的條件是()A.AB=BC B.∠ABC=90° C.AC⊥BD D.∠1=∠210.如圖的平面圖形繞直線l旋轉(zhuǎn)一周,可以得到的立體圖形是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.在△ABC中,若∠A,∠B滿足|cosA-|+(sinB-)2=0,則∠C=_________.12.(2017黑龍江省齊齊哈爾市)如圖,在等腰三角形紙片ABC中,AB=AC=10,BC=12,沿底邊BC上的高AD剪成兩個三角形,用這兩個三角形拼成平行四邊形,則這個平行四邊形較長的對角線的長是______.13.如圖,Rt△ABC中,∠ACB=90°,D為AB的中點,F(xiàn)為CD上一點,且CF=CD,過點B作BE∥DC交AF的延長線于點E,BE=12,則AB的長為_____.14.在中,::1:2:3,于點D,若,則______15.2011年,我國汽車銷量超過了18500000輛,這個數(shù)據(jù)用科學(xué)記數(shù)法表示為▲輛.16.如圖,小陽發(fā)現(xiàn)電線桿的影子落在土坡的坡面和地面上,量得,米,與地面成角,且此時測得米的影長為米,則電線桿的高度為__________米.17.為迎接文明城市的驗收工作,某居委會組織兩個檢查組,分別對“垃圾分類”和“違規(guī)停車”的情況進(jìn)行抽查.各組隨機(jī)抽取轄區(qū)內(nèi)某三個小區(qū)中的一個進(jìn)行檢查,則兩個組恰好抽到同一個小區(qū)的概率是_____.三、解答題(共7小題,滿分69分)18.(10分)據(jù)某省商務(wù)廳最新消息,2018年第一季度該省企業(yè)對“一帶一路”沿線國家的投資額為10億美元,第三季度的投資額增加到了14.4億美元.求該省第二、三季度投資額的平均增長率.19.(5分)如圖,已知△ABC,按如下步驟作圖:①分別以A、C為圓心,以大于12②連接MN,分別交AB、AC于點D、O;③過C作CE∥AB交MN于點E,連接AE、CD.(1)求證:四邊形ADCE是菱形;(2)當(dāng)∠ACB=90°,BC=6,△ADC的周長為18時,求四邊形ADCE的面積.20.(8分)矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.(1)如圖1,已知折痕與邊BC交于點O,連接AP、OP、OA.①求證:△OCP∽△PDA;②若△OCP與△PDA的面積比為1:4,求邊AB的長.(2)如圖2,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P、A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M、N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.21.(10分)如圖,四邊形AOBC是正方形,點C的坐標(biāo)是(4,0).正方形AOBC的邊長為,點A的坐標(biāo)是.將正方形AOBC繞點O順時針旋轉(zhuǎn)45°,點A,B,C旋轉(zhuǎn)后的對應(yīng)點為A′,B′,C′,求點A′的坐標(biāo)及旋轉(zhuǎn)后的正方形與原正方形的重疊部分的面積;動點P從點O出發(fā),沿折線OACB方向以1個單位/秒的速度勻速運動,同時,另一動點Q從點O出發(fā),沿折線OBCA方向以2個單位/秒的速度勻速運動,運動時間為t秒,當(dāng)它們相遇時同時停止運動,當(dāng)△OPQ為等腰三角形時,求出t的值(直接寫出結(jié)果即可).22.(10分)如圖,在平面直角坐標(biāo)系xOy中,△ABC的三個頂點坐標(biāo)分別為A(1,1),B(4,0),C(4,4).按下列要求作圖:①將△ABC向左平移4個單位,得到△A1B1C1;②將△A1B1C1繞點B1逆時針旋轉(zhuǎn)90°,得到△A1B1C1.求點C1在旋轉(zhuǎn)過程中所經(jīng)過的路徑長.23.(12分)一名在校大學(xué)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于16元/件,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(件)與銷售價x(元/件)之間的函數(shù)關(guān)系如圖所示.(1)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;(2)求每天的銷售利潤W(元)與銷售價x(元/件)之間的函數(shù)關(guān)系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?24.(14分)已知關(guān)于的一元二次方程(為實數(shù)且).求證:此方程總有兩個實數(shù)根;如果此方程的兩個實數(shù)根都是整數(shù),求正整數(shù)的值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】試題分析:204000米/分,這個數(shù)用科學(xué)記數(shù)法表示2.04×105,故選C.考點:科學(xué)記數(shù)法—表示較大的數(shù).2、A【解析】圓柱體的底面積為:π×()2,∴礦石的體積為:π×()2h=.故答案為.3、B【解析】

由圖形可知AC=AC,結(jié)合全等三角形的判定方法逐項判斷即可.【詳解】解:在△ABC和△ADC中∵AB=AD,AC=AC,∴當(dāng)CB=CD時,滿足SSS,可證明△ABC≌△ACD,故A可以;當(dāng)∠BCA=∠DCA時,滿足SSA,不能證明△ABC≌△ACD,故B不可以;當(dāng)∠BAC=∠DAC時,滿足SAS,可證明△ABC≌△ACD,故C可以;當(dāng)∠B=∠D=90°時,滿足HL,可證明△ABC≌△ACD,故D可以;故選:B.【點睛】本題考查了全等三角形的判定方法,熟練掌握判定定理是解題關(guān)鍵.4、D【解析】

解:①∵ABCD為菱形,∴AB=AD.∵AB=BD,∴△ABD為等邊三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴點B、C、D、G四點共圓,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.過點C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,則△CBM≌△CDN,(HL)∴S四邊形BCDG=S四邊形CMGN.S四邊形CMGN=1S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四邊形CMGN=1S△CMG=1××CG×CG=CG1.③過點F作FP∥AE于P點.∵AF=1FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=1AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故選D.5、B【解析】試題解析:連接AC,如圖,∵AB為直徑,∴∠ACB=90°,∴∴故選B.點睛:在同圓或等圓中,同弧或等弧所對的圓周角相等.6、D【解析】試題分析:1-x≤0①3x-6<0②,由①得:x≥1,由②得:x<2,在數(shù)軸上表示不等式的解集是:,故選D.考點:1.在數(shù)軸上表示不等式的解集;2.解一元一次不等式組.7、B【解析】

設(shè)該點的坐標(biāo)為(a,b),則|b|=1|a|,利用一次函數(shù)圖象上的點的坐標(biāo)特征可得出k=±1,再利用正比例函數(shù)的性質(zhì)可得出k=-1,此題得解.【詳解】設(shè)該點的坐標(biāo)為(a,b),則|b|=1|a|,∵點(a,b)在正比例函數(shù)y=kx的圖象上,∴k=±1.又∵y值隨著x值的增大而減小,∴k=﹣1.故選:B.【點睛】本題考查了一次函數(shù)圖象上點的坐標(biāo)特征以及正比例函數(shù)的性質(zhì),利用一次函數(shù)圖象上點的坐標(biāo)特征,找出k=±1是解題的關(guān)鍵.8、C【解析】

運用配方法解方程即可.【詳解】解:x2+2x﹣15=x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.故選擇C.【點睛】本題考查了解一元二次方程,選擇合適的解方程方法是解題關(guān)鍵.9、B【解析】

根據(jù)一個角是90度的平行四邊形是矩形進(jìn)行選擇即可.【詳解】解:A、是鄰邊相等,可判定平行四邊形ABCD是菱形;

B、是一內(nèi)角等于90°,可判斷平行四邊形ABCD成為矩形;

C、是對角線互相垂直,可判定平行四邊形ABCD是菱形;

D、是對角線平分對角,可判斷平行四邊形ABCD成為菱形;故選:B.【點睛】本題主要應(yīng)用的知識點為:矩形的判定.①對角線相等且相互平分的四邊形為矩形.②一個角是90度的平行四邊形是矩形.10、B【解析】

根據(jù)面動成體以及長方形繞一邊所在直線旋轉(zhuǎn)一周得圓柱即可得答案.【詳解】由圖可知所給的平面圖形是一個長方形,長方形繞一邊所在直線旋轉(zhuǎn)一周得圓柱,故選B.【點睛】本題考查了點、線、面、體,熟記各種常見平面圖形旋轉(zhuǎn)得到的立體圖形是解題關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、75°【解析】【分析】根據(jù)絕對值及偶次方的非負(fù)性,可得出cosA及sinB的值,從而得出∠A及∠B的度數(shù),利用三角形的內(nèi)角和定理可得出∠C的度數(shù).【詳解】∵|cosA-|+(sinB-)2=0,∴cosA=,sinB=,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案為:75°.【點睛】本題考查了特殊角的三角函數(shù)值及非負(fù)數(shù)的性質(zhì),解答本題的關(guān)鍵是得出cosA及sinB的值,另外要求我們熟練掌握一些特殊角的三角函數(shù)值.12、10,,.【解析】解:如圖,過點A作AD⊥BC于點D,∵△ABC邊AB=AC=10,BC=12,∴BD=DC=6,∴AD=8,如圖①所示:可得四邊形ACBD是矩形,則其對角線長為:10;如圖②所示:AD=8,連接BC,過點C作CE⊥BD于點E,則EC=8,BE=2BD=12,則BC=;如圖③所示:BD=6,由題意可得:AE=6,EC=2BE=16,故AC==.故答案為10,,.13、1.【解析】

根據(jù)三角形的性質(zhì)求解即可?!驹斀狻拷猓涸赗t△ABC中,D為AB的中點,根據(jù)直角三角形斜邊的中線等于斜邊的一半可得:AD=BD=CD,因為D為AB的中點,BE//DC,所以DF是△ABE的中位線,BE=2DF=12所以DF==6,設(shè)CD=x,由CF=CD,則DF==6,可得CD=9,故AD=BD=CD=9,故AB=1,故答案:1..【點睛】本題主要考查三角形基本概念,綜合運用三角形的知識可得答案。14、2.1【解析】

先求出△ABC是∠A等于30°的直角三角形,再根據(jù)30°角所對的直角邊等于斜邊的一半求解.【詳解】解:根據(jù)題意,設(shè)∠A、∠B、∠C為k、2k、3k,則k+2k+3k=180°,解得k=30°,2k=60°,3k=90°,∵AB=10,∴BC=AB=1,∵CD⊥AB,∴∠BCD=∠A=30°,∴BD=BC=2.1.故答案為2.1.【點睛】本題主要考查含30度角的直角三角形的性質(zhì)和三角形內(nèi)角和定理,掌握30°角所對的直角邊等于斜邊的一半、求出△ABC是直角三角形是解本題的關(guān)鍵.15、2.85×2.【解析】

根據(jù)科學(xué)記數(shù)法的定義,科學(xué)記數(shù)法的表示形式為a×20n,其中2≤|a|<20,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.在確定n的值時,看該數(shù)是大于或等于2還是小于2.當(dāng)該數(shù)大于或等于2時,n為它的整數(shù)位數(shù)減2;當(dāng)該數(shù)小于2時,-n為它第一個有效數(shù)字前0的個數(shù)(含小數(shù)點前的2個0).【詳解】解:28500000一共8位,從而28500000=2.85×2.16、(14+2)米【解析】

過D作DE⊥BC的延長線于E,連接AD并延長交BC的延長線于F,根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出DE,再根據(jù)勾股定理求出CE,然后根據(jù)同時同地物高與影長成正比列式求出EF,再求出BF,再次利用同時同地物高與影長成正比列式求解即可.【詳解】如圖,過D作DE⊥BC的延長線于E,連接AD并延長交BC的延長線于F.∵CD=8,CD與地面成30°角,∴DE=CD=×8=4,根據(jù)勾股定理得:CE===4.∵1m桿的影長為2m,∴=,∴EF=2DE=2×4=8,∴BF=BC+CE+EF=20+4+8=(28+4).∵=,∴AB=(28+4)=14+2.故答案為(14+2).【點睛】本題考查了相似三角形的應(yīng)用,主要利用了同時同地物高與影長成正比的性質(zhì),作輔助線求出AB的影長若全在水平地面上的長BF是解題的關(guān)鍵.17、【解析】

將三個小區(qū)分別記為A、B、C,列舉出所有情況即可,看所求的情況占總情況的多少即可.【詳解】解:將三個小區(qū)分別記為A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9種等可能結(jié)果,其中兩個組恰好抽到同一個小區(qū)的結(jié)果有3種,所以兩個組恰好抽到同一個小區(qū)的概率為=.故答案為:.【點睛】此題主要考查了列表法求概率,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時還要注意是放回試驗還是不放回試驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.三、解答題(共7小題,滿分69分)18、第二、三季度的平均增長率為20%.【解析】

設(shè)增長率為x,則第二季度的投資額為10(1+x)萬元,第三季度的投資額為10(1+x)2萬元,由第三季度投資額為10(1+x)2=14.4萬元建立方程求出其解即可.【詳解】設(shè)該省第二、三季度投資額的平均增長率為x,由題意,得:10(1+x)2=14.4,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:第二、三季度的平均增長率為20%.【點睛】本題考查了增長率問題的數(shù)量關(guān)系的運用,一元二次方程的解法的運用,解答時根據(jù)第三季度投資額為10(1+x)2=14.4建立方程是關(guān)鍵.19、(1)詳見解析;(2)1.【解析】

(1)利用直線DE是線段AC的垂直平分線,得出AC⊥DE,即∠AOD=∠COE=90°,從而得出△AOD≌△COE,即可得出四邊形ADCE是菱形.

(2)利用當(dāng)∠ACB=90°時,OD∥BC,即有△ADO∽△ABC,即可由相似三角形的性質(zhì)和勾股定理得出OD和AO的長,即根據(jù)菱形的性質(zhì)得出四邊形ADCE的面積.【詳解】(1)證明:由題意可知:∵分別以A、C為圓心,以大于12∴直線DE是線段AC的垂直平分線,∴AC⊥DE,即∠AOD=∠COE=90°;且AD=CD、AO=CO,又∵CE∥AB,∴∠1=∠2,在△AOD和△COE中∠1=∠2∠AOD=∠COE=∴△AOD≌△COE(AAS),∴OD=OE,∵A0=CO,DO=EO,∴四邊形ADCE是平行四邊形,又∵AC⊥DE,∴四邊形ADCE是菱形;(2)解:當(dāng)∠ACB=90°時,OD∥BC,即有△ADO∽△ABC,∴ODBC又∵BC=6,∴OD=3,又∵△ADC的周長為18,∴AD+AO=9,即AD=9﹣AO,∴OD=A可得AO=4,∴DE=6,AC=8,∴S=1【點睛】考查線段垂直平分線的性質(zhì),菱形的判定,相似三角形的判定與性質(zhì)等,綜合性比較強(qiáng).20、(1)①證明見解析;②10;(2)線段EF的長度不變,它的長度為25..【解析】試題分析:(1)先證出∠C=∠D=90°,再根據(jù)∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可證出△OCP∽△PDA;根據(jù)△OCP與△PDA的面積比為1:4,得出CP=12(2)作MQ∥AN,交PB于點Q,求出MP=MQ,BN=QM,得出MP=MQ,根據(jù)ME⊥PQ,得出EQ=12PQ,根據(jù)∠QMF=∠BNF,證出△MFQ≌△NFB,得出QF=12QB,再求出EF=12試題解析:(1)如圖1,∵四邊形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折疊可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP與△PDA的面積比為1:4,∴OPPA=CPDA=14(2)作MQ∥AN,交PB于點Q,如圖2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP,∴MP=MQ,∵BN=PM,∴BN=QM.∵M(jìn)P=MQ,ME⊥PQ,∴EQ=12PQ.∵M(jìn)Q∥AN,∴∠QMF=∠BNF,在△MFQ和△NFB中,∵∠QFM=∠NFB,∠QMF=∠BNF,MQ=BN,∴△MFQ≌△NFB(AAS),∴QF=12QB,∴EF=EQ+QF=12PQ+12QB=12PB,由(1)中的結(jié)論可得:PC=4,BC=8,∠C=90°,∴PB=82+42考點:翻折變換(折疊問題);矩形的性質(zhì);相似形綜合題.21、(1)4,;(2)旋轉(zhuǎn)后的正方形與原正方形的重疊部分的面積為;(3).【解析】

(1)連接AB,根據(jù)△OCA為等腰三角形可得AD=OD的長,從而得出點A的坐標(biāo),則得出正方形AOBC的面積;

(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得OA′的長,從而得出A′C,A′E,再求出面積即可;

(3)根據(jù)P、Q點在不同的線段上運動情況,可分為三種列式①當(dāng)點P、Q分別在OA、OB時,②當(dāng)點P在OA上,點Q在BC上時,③當(dāng)點P、Q在AC上時,可方程得出t.【詳解】解:(1)連接AB,與OC交于點D,四邊形是正方形,

∴△OCA為等腰Rt△,∴AD=OD=OC=2,

∴點A的坐標(biāo)為.4,.(2)如圖∵四邊形是正方形,∴,.∵將正方形繞點順時針旋轉(zhuǎn),∴點落在軸上.∴.∴點的坐標(biāo)為.∵,∴.∵四邊形,是正方形,∴,.∴,.∴.∴.∵,,∴.∴旋轉(zhuǎn)后的正方形與原正方形的重疊部分的面積為.(3)設(shè)t秒后兩點相遇,3t=16,∴t=①當(dāng)點P、Q分別在OA、OB時,∵,OP=t,OQ=2t∴不能為等腰三角形②當(dāng)點P在OA上,點Q在BC上時如圖2,當(dāng)OQ=QP,QM為OP的垂直平分線,

OP=2OM=2BQ,OP=t,BQ=2t-4,

t=2(2t-4),

解得:t=.③當(dāng)點P、Q在AC上時,不能為等腰三角形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論