2024年高考數(shù)學(xué)重難點突破講義:2021全國甲卷(理)_第1頁
2024年高考數(shù)學(xué)重難點突破講義:2021全國甲卷(理)_第2頁
2024年高考數(shù)學(xué)重難點突破講義:2021全國甲卷(理)_第3頁
2024年高考數(shù)學(xué)重難點突破講義:2021全國甲卷(理)_第4頁
2024年高考數(shù)學(xué)重難點突破講義:2021全國甲卷(理)_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2021年普通高等學(xué)校招生全國統(tǒng)一考試?yán)砜茢?shù)學(xué)甲卷一、選擇題:本題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的.1.設(shè)集合,則()A. B.C. D.【答案】B【解析】因為,所以.2.為了解某地農(nóng)村經(jīng)濟情況,對該地農(nóng)戶家庭年收入進行抽樣調(diào)查,將農(nóng)戶家庭年收入的調(diào)查數(shù)據(jù)整理得到如下頻率分布直方圖:

根據(jù)此頻率分布直方圖,下面結(jié)論中不正確的是()A.該地農(nóng)戶家庭年收入低于4.5萬元的農(nóng)戶比率估計為6%B.該地農(nóng)戶家庭年收入不低于10.5萬元的農(nóng)戶比率估計為10%C.估計該地農(nóng)戶家庭年收入的平均值不超過6.5萬元D.估計該地有一半以上的農(nóng)戶,其家庭年收入介于4.5萬元至8.5萬元之間【答案】C【解析】因為頻率直方圖中的組距為1,所以各組的直方圖的高度等于頻率.樣本頻率直方圖中的頻率即可作為總體的相應(yīng)比率的估計值.該地農(nóng)戶家庭年收入低于4.5萬元的農(nóng)戶的比率估計值為,故A正確;該地農(nóng)戶家庭年收入不低于10.5萬元的農(nóng)戶比率估計值為,故B正確;該地農(nóng)戶家庭年收入介于4.5萬元至8.5萬元之間的比例估計值為,故D正確;該地農(nóng)戶家庭年收入平均值的估計值為(萬元),超過6.5萬元,故C錯誤.綜上,給出結(jié)論中不正確的是C.3.已知,則()A. B. C. D.【答案】B【解析】,.4.青少年視力是社會普遍關(guān)注的問題,視力情況可借助視力表測量.通常用五分記錄法和小數(shù)記錄法記錄視力數(shù)據(jù),五分記錄法的數(shù)據(jù)L和小數(shù)記錄表的數(shù)據(jù)V的滿足.已知某同學(xué)視力的五分記錄法的數(shù)據(jù)為4.9,則其視力的小數(shù)記錄法的數(shù)據(jù)為()()A.1.5 B.1.2 C.0.8 D.0.6【答案】C【解析】由,當(dāng)時,,則.5.已知是雙曲線C的兩個焦點,P為C上一點,且,則C的離心率為()A. B. C. D.【答案】A【解析】因為,由雙曲線的定義可得,所以,;因為,由余弦定理可得,整理可得,所以,即.6.在一個正方體中,過頂點A的三條棱的中點分別為E,F(xiàn),G.該正方體截去三棱錐后,所得多面體的三視圖中,正視圖如圖所示,則相應(yīng)的側(cè)視圖是()A. B. C. D.【答案】D【解析】由題意及正視圖可得幾何體的直觀圖,如圖所示,所以其側(cè)視圖為7.等比數(shù)列的公比為q,前n項和為,設(shè)甲:,乙:是遞增數(shù)列,則()A.甲是乙的充分條件但不是必要條件B.甲是乙的必要條件但不是充分條件C.甲是乙的充要條件D.甲既不是乙的充分條件也不是乙的必要條件【答案】B【解析】由題,當(dāng)數(shù)列時,滿足,但是不是遞增數(shù)列,所以甲不是乙的充分條件.若是遞增數(shù)列,則必有成立,若不成立,則會出現(xiàn)一正一負(fù)的情況,是矛盾的,則成立,所以甲是乙的必要條件.8.2020年12月8日,中國和尼泊爾聯(lián)合公布珠穆朗瑪峰最新高程為8848.86(單位:m),三角高程測量法是珠峰高程測量方法之一.如圖是三角高程測量法的一個示意圖,現(xiàn)有A,B,C三點,且A,B,C在同一水平面上的投影滿足,.由C點測得B點的仰角為,與的差為100;由B點測得A點的仰角為,則A,C兩點到水平面的高度差約為()()A.346 B.373 C.446 D.473【答案】B【解析】過作,過作,故,由題,易知為等腰直角三角形,所以.所以.因為,所以在中,由正弦定理得:,而,所以所以.9.若,則()A. B. C. D.【答案】A【解析】,,,,解得,,.10.將4個1和2個0隨機排成一行,則2個0不相鄰的概率為()A. B. C. D.【答案】C【解析】將4個1和2個0隨機排成一行,可利用插空法,4個1產(chǎn)生5個空,若2個0相鄰,則有種排法,若2個0不相鄰,則有種排法,所以2個0不相鄰的概率為.11.已如A,B,C是半徑為1的球O的球面上的三個點,且,則三棱錐的體積為()A. B. C. D.【答案】A【解析】,為等腰直角三角形,,則外接圓的半徑為,又球的半徑為1,設(shè)到平面的距離為,則,所以.12.設(shè)函數(shù)的定義域為R,為奇函數(shù),為偶函數(shù),當(dāng)時,.若,則()A. B. C. D.【答案】D【解析】因為是奇函數(shù),所以①;因為是偶函數(shù),所以②.令,由①得:,由②得:,因為,所以,令,由①得:,所以.思路一:從定義入手.所以.思路二:從周期性入手由兩個對稱性可知,函數(shù)的周期.所以.二、填空題:本題共4小題,每小題5分,共20分.13.曲線在點處的切線方程為__________.【答案】【解析】由題,當(dāng)時,,故點在曲線上.求導(dǎo)得:,所以.故切線方程為.14.已知向量.若,則________.【答案】.【解析】,,解得.15.已知為橢圓C:的兩個焦點,P,Q為C上關(guān)于坐標(biāo)原點對稱的兩點,且,則四邊形的面積為________.【答案】【解析】因為為上關(guān)于坐標(biāo)原點對稱的兩點,且,所以四邊形為矩形,設(shè),則,所以,,即四邊形面積等于.16.已知函數(shù)的部分圖像如圖所示,則滿足條件的最小正整數(shù)x為________.【答案】2【解析】由圖可知,即,所以;由五點法可得,即;所以.因為,;所以由可得或;因為,所以,方法一:結(jié)合圖形可知,最小正整數(shù)應(yīng)該滿足,即,解得,令,可得,可得的最小正整數(shù)為2.方法二:結(jié)合圖形可知,最小正整數(shù)應(yīng)該滿足,又,符合題意,可得的最小正整數(shù)為2.三、解答題:共70分.解答應(yīng)寫出交字說明、證明過程或演算步驟,第17~21題為必考題,每個試題考生都必須作答.第22、23題為選考題,考生根據(jù)要求作答.(一)必考題:共60分.17.甲、乙兩臺機床生產(chǎn)同種產(chǎn)品,產(chǎn)品按質(zhì)量分為一級品和二級品,為了比較兩臺機床產(chǎn)品的質(zhì)量,分別用兩臺機床各生產(chǎn)了200件產(chǎn)品,產(chǎn)品的質(zhì)量情況統(tǒng)計如下表:一級品二級品合計甲機床15050200乙機床12080200合計270130400(1)甲機床、乙機床生產(chǎn)的產(chǎn)品中一級品的頻率分別是多少?(2)能否有99%的把握認(rèn)為甲機床的產(chǎn)品質(zhì)量與乙機床的產(chǎn)品質(zhì)量有差異?附:0.0500.0100.001k3.8416.63510.828【解析】(1)甲機床生產(chǎn)的產(chǎn)品中的一級品的頻率為,乙機床生產(chǎn)的產(chǎn)品中的一級品的頻率為.(2),故能有99%的把握認(rèn)為甲機床的產(chǎn)品與乙機床的產(chǎn)品質(zhì)量有差異.18.已知數(shù)列的各項均為正數(shù),記為的前n項和,從下面①②③中選取兩個作為條件,證明另外一個成立.①數(shù)列是等差數(shù)列:②數(shù)列是等差數(shù)列;③.注:若選擇不同的組合分別解答,則按第一個解答計分.【解析】選①②作條件證明③:[方法一]:待定系數(shù)法+與關(guān)系式設(shè),則,當(dāng)時,;當(dāng)時,;因為也是等差數(shù)列,所以,解得;所以,,故.[方法二]:待定系數(shù)法設(shè)等差數(shù)列的公差為d,等差數(shù)列的公差為,則,將代入,化簡得對于恒成立.則有,解得.所以.選①③作條件證明②:因為,是等差數(shù)列,所以公差,所以,即,因為,所以是等差數(shù)列.選②③作條件證明①:[方法一]:定義法設(shè),則,當(dāng)時,;當(dāng)時,;因為,所以,解得或;當(dāng)時,,當(dāng)時,滿足等差數(shù)列的定義,此時為等差數(shù)列;當(dāng)時,,不合題意,舍去.綜上可知為等差數(shù)列.[方法二]【最優(yōu)解】:求解通項公式因為,所以,,因為也為等差數(shù)列,所以公差,所以,故,當(dāng)時,,當(dāng)時,滿足上式,故的通項公式為,所以,,符合題意.19.已知直三棱柱中,側(cè)面為正方形,,E,F(xiàn)分別為和的中點,D為棱上的點.(1)證明:;(2)當(dāng)為何值時,面與面所成的二面角的正弦值最小?【解析】(1)[方法一]:幾何法因為,所以.又因為,,所以平面.又因為,構(gòu)造正方體,如圖所示,過E作的平行線分別與交于其中點,連接,因為E,F(xiàn)分別為和的中點,所以是BC的中點,易證,則.又因為,所以.又因為,所以平面.又因為平面,所以.[方法二]【最優(yōu)解】:向量法因為三棱柱是直三棱柱,底面,,,,又,平面.所以兩兩垂直.以為坐標(biāo)原點,分別以所在直線為軸建立空間直角坐標(biāo)系,如圖.,.由題設(shè)().因為,所以,所以.[方法三]:因為,,所以,故,,所以,所以.(2)[方法一]【最優(yōu)解】:向量法設(shè)平面的法向量為,因為,所以,即.令,則因為平面的法向量為,設(shè)平面與平面的二面角的平面角為,則.當(dāng)時,取最小值為,此時取最大值為.所以,此時.[方法二]:幾何法如圖所示,延長交的延長線于點S,聯(lián)結(jié)交于點T,則平面平面.作,垂足為H,因為平面,聯(lián)結(jié),則為平面與平面所成二面角的平面角.設(shè),過作交于點G.由得.又,即,所以.又,即,所以.所以.則,所以,當(dāng)時,.[方法三]:投影法如圖,聯(lián)結(jié),在平面的投影為,記面與面所成的二面角的平面角為,則.設(shè),在中,.在中,,過D作的平行線交于點Q.在中,.在中,由余弦定理得,,,,,當(dāng),即,面與面所成二面角的正弦值最小,最小值為.20.拋物線C的頂點為坐標(biāo)原點O.焦點在x軸上,直線l:交C于P,Q兩點,且.已知點,且與l相切.(1)求C,的方程;(2)設(shè)是C上的三個點,直線,均與相切.判斷直線與的位置關(guān)系,并說明理由.【解析】(1)依題意設(shè)拋物線,,所以拋物線的方程為,與相切,所以半徑為,所以的方程為;(2)[方法一]:設(shè)若斜率不存在,則方程為或,若方程為,根據(jù)對稱性不妨設(shè),則過與圓相切的另一條直線方程為,此時該直線與拋物線只有一個交點,即不存在,不合題意;若方程為,根據(jù)對稱性不妨設(shè)則過與圓相切的直線為,又,,此時直線關(guān)于軸對稱,所以直線與圓相切;若直線斜率均存在,則,所以直線方程為,整理得,同理直線的方程為,直線的方程為,與圓相切,整理得,與圓相切,同理所以為方程的兩根,,到直線的距離為:,所以直線與圓相切;綜上若直線與圓相切,則直線與圓相切.[方法二]【最優(yōu)解】:設(shè).當(dāng)時,同解法1.當(dāng)時,直線的方程為,即.由直線與相切得,化簡得,同理,由直線與相切得.因為方程同時經(jīng)過點,所以的直線方程為,點M到直線距離為.所以直線與相切.綜上所述,若直線與相切,則直線與相切.21.已知且,函數(shù).(1)當(dāng)時,求的單調(diào)區(qū)間;(2)若曲線與直線有且僅有兩個交點,求a的取值范圍.【解析】(1)當(dāng)時,,令得,當(dāng)時,,當(dāng)時,,∴函數(shù)在上單調(diào)遞增;上單調(diào)遞減;(2)[方法一]【最優(yōu)解】:分離參數(shù)設(shè)函數(shù),則,令,得,在內(nèi),單調(diào)遞增;在上,單調(diào)遞減;,又,當(dāng)趨近于時,趨近于0,所以曲線與直線有且僅有兩個交點,即曲線與直線有兩個交點的充分必要條件是,這即是,所以的取值范圍是.[方法二]:構(gòu)造差函數(shù)由與直線有且僅有兩個交點知,即在區(qū)間內(nèi)有兩個解,取對數(shù)得方程在區(qū)間內(nèi)有兩個解.構(gòu)造函數(shù),求導(dǎo)數(shù)得.當(dāng)時,在區(qū)間內(nèi)單調(diào)遞增,所以,在內(nèi)最多只有一個零點,不符合題意;當(dāng)時,,令得,當(dāng)時,;當(dāng)時,;所以,函數(shù)的遞增區(qū)間為,遞減區(qū)間為.由于,當(dāng)時,有,即,由函數(shù)在內(nèi)有兩個零點知,所以,即.構(gòu)造函數(shù),則,所以遞減區(qū)間為,遞增區(qū)間為,所以,當(dāng)且僅當(dāng)時取等號,故的解為且.所以,實數(shù)a的取值范圍為.[方法三]分離法:一曲一直曲線與有且僅有兩個交點等價為在區(qū)間內(nèi)有兩個不相同的解.因為,所以兩邊取對數(shù)得,即,問題等價為與有且僅有兩個交點.①當(dāng)時,與只有一個交點,不符合題意.②當(dāng)時,取上一點在點的切線方程為,即.當(dāng)與為同一直線時有得直線的斜率滿足:時,與有且僅有兩個交點.記,令,有.在區(qū)間內(nèi)單調(diào)遞增;在區(qū)間內(nèi)單調(diào)遞減;時,最大值為,所當(dāng)且時有.綜上所述,實數(shù)a的取值范圍為.[方法四]:直接法.因為,由得.當(dāng)時,在區(qū)間內(nèi)單調(diào)遞減,不滿足題意;當(dāng)時,,由得在區(qū)間內(nèi)單調(diào)遞增,由得在區(qū)間內(nèi)單調(diào)遞減.因為,且,所以,即,即,兩邊取對數(shù),得,即.令,則,令,則,所以在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)單調(diào)遞減,所以,所以,則的解為,所以,即.故實數(shù)a的范圍為.](二)選考題:共10分.請考生在第22、23題中任選一題作答.如果多做,則按所做的第一題計分.[選修4-4:坐標(biāo)系與參數(shù)方程](10分)22.在直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.(1)將C的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)設(shè)點A的直角坐標(biāo)為,M為C上的動點,點P滿足,寫出Р的軌跡的參數(shù)方程,并判斷C與是否有公共點.【解析】(1)由曲線C的極坐標(biāo)方程可得,將代入可得,即,即曲線C的直角坐標(biāo)方程為;(2)[方法一]【最優(yōu)解】設(shè),設(shè),,則,即,故P的軌跡的參數(shù)方程為(為參數(shù))曲線C的圓心為,半徑為,曲線的圓心為,半徑為2,則圓

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論