版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Chapter1WaveNatureofLight
Dr.DaoliZhang
Office:Room409WestBuilding7
Voice:87542894/p>
Email:
zhang_d
aoli@
zhang-daoli@163.com
TextbookandReferences
課程考核
課堂(出勤+評述):20%
課外(練習(xí)+閱讀):20%
期末考試:60%
致謝
承蒙參考書目、論文、網(wǎng)站為課件提供支持
聲明
此課件僅用于課堂教學(xué),不用于各種商業(yè)用途
Outline
LightWavesinaHomogeneousMedium
RefractiveIndexandDispersion
GroupVelocityandGroupIndex
MagneticField,Irradiance,andPoyntingVector
Snell’sLawandTotalInternalReflection(TIR)
Fresnel’sEquations
AntireflectionCoatingsandDielectricMirrors
AbsorptionofLightandComplexRefractiveIndex
TemporalandSpatialCoherence
SuperpositionandInterferenceofWaves
MultipleInterferenceandOpticalResonators
DiffractionPrinciples
AdditionalTopics
Interferometers
ThinFilmOptics:MultipleReflectionsinThinFilms
MultipleReflectionsinPlatesandIncoherentWaves
ScatteringofLight
PhotonicCrystals
1.Lightwavesinahomogeneousmedium
A.PlaneElectromagneticWave
Thewavenatureoflight,quiteasidefromitsphotonicbehavioriswellrecognizedbysuchphenomenaasinterferenceanddiffraction.
Wecantreatlightasanelectromagneticwavewithtimevaryingelectricandmagneticfields,thatisExandByrespectively,whicharepropagatingthroughspaceinsuchawaythattheyare
alwaysperpendiculartoeachotherandthedirectionofpropagatingzdepictedinFigure1.
Anelectromagneticwaveisatravelingwavethathastime-varyingelectricandmagneticfieldsthatareperpendiculartoeachotherandthedirectionofpropagationz.
Thesimplesttravelingwaveissinusoidalwavethat,forpropagationalongz,hasthegeneralmathematicform:
Ex=Eocos(tkz+)
Ex=Electricfieldalongxatpositionzattimetk=Propagationconstant=2/
=Wavelength
=Angularfrequency=2frequency)
Eo=Amplitudeofthewave
=Phaseconstant;att=0andz=0,Exmayormaynotnecessarilybezerodependingonthechoiceoforigin.
(tkz+)==Phaseofthewave
Thisisamonochromaticplanewaveofinfiniteextenttravelinginthepositivezdirection.
Wavefront
Asurfaceoverwhichthephaseofawaveisconstantisreferredtoasawavefront.
Awavefrontofaplanewaveisaplaneperpendiculartothedirectionofpropagation.
Theinteractionofalightwavewithanonconductingmedium(conductivity=0)usestheelectricfieldcomponentExratherthanBy.
Why?
OpticalfieldreferstotheelectricfieldEx.
ItistheelectronicfieldExthatdisplacestheelectronicsinmoleculesorionsandgiverisetopolarizationofmatter
AplaneEMwavetravelingalongz,hasthesameEx(orBy)atanypointinagivenxyplane.Allelectricfieldvectorsinagivenxyplanearethereforeinphase.Thexyplanesareofinfiniteextentinthexandydirections.
PhaseVelocity
Thetimeandspaceevolutionofagivenphase,forexamplethatcorrespondingtoamaximumfieldisdescribedby
=tkz+=constant
Duringatimeintervalt,thisconstantphase(andhencethemaximumfield)movesadistancez.Thephasevelocityofthiswaveisthereforez/t.Thephasevelocityvis
vz
t
k
PhasechangeoveradistanceDz
=tkz+
=
kz
Thephasedifferencebetweentwopointsseparatedbyzissimplykz
sincetisthesameforeachpoint
Ifthisphasedifferenceis0ormultiplesof2thenthetwopointsareinphase.Thus,thephasedifferencecanbeexpressedaskzor2z/
ExponentialNotation
Recallthat
cos=Re[exp(j)]
whereRereferstotherealpart.Wethenneedtotaketherealpartofanycomplexresultattheendofcalculations.Thus,
Ex(z,t)=Re[Eoexp(j)expj(tkz)]
or
Ex(z,t)=Re[Ecexpj(tkz)]
whereEc=Eoexp(jo)isacomplexnumberthatrepresentstheamplitudeofthewaveandincludestheconstantphaseinformation
o.
WaveVectororPropagationVector
Directionofpropagationisindicatedwithavectork,calledthewavevector,whosemagnitudeisthepropagationconstant,k=2/.kisperpendiculartoconstantphaseplanes.
Whentheelectromagnetic(EM)waveispropagatingalongsomearbitrarydirectionk,thentheelectricfieldE(r,t)atapointronaplaneperpendiculartokis
E(r,t)=Eocos(tkr+)
Ifpropagationisalongz,krbecomeskz.Ingeneral,ifkhascomponentskx,kyandkzalongx,yandz,thenfromthedefinitionofthedotproduct,kr=kxx+kyy+kzz.
WaveVectork
E(r,t)=Eocos(tkr+)
AtravelingplaneEMwavealongadirectionk
Maxwell’sWaveEquation
(a)Acutof
aplanewaveparalleltothez-axis,theparalleldashed
linesatrightrightanglestothez-directionarewavefronts.Itisanidealizationthatisusefulinanalyzingmanywavephenomena.
Inpractice,therearemanytypesofpossibleEMwaves.Emustobey
Maxwell’sEMwaveequation:
AplanewaveisasolutionofMaxwell’swaveequation
Ex=Eocos(tkz+)
SubstituteintoMaxwell’sEquationtoshowthatthisisasolution.
2E2E2E2E
x2 y2 z2 or ot2 0
AsphericalwaveisdescribedbyatravelingfieldthatemergesfromapointEMsourceandwhoseamplitudedecaywithdistancerfromthesource.Atanypointrfromthesource,thefieldisgivenby
E=Acos(tkr)
Figure1.4(b)illustratedacutofasphericalwavewhereitcanbeseenthatwavefrontsarespherescenteredatthepointsourceO.
Amorepracticalexampleinwhichlightbeamexhibitssome
inevitabledivergencewhilepropagating;thewavefrontsareslowlybentawaytherebyspreadingthewave.
SphericalWave
EAcos(tkr)r
ExamplesofpossibleEMwaves
Opticaldivergencereferstotheangularseparationofwavevectorsonagivenwavefront.
GaussianBeam
TheradiationemittedfromalasercanbeapproximatedbyaGaussianbeam.Gaussianbeamapproximationsarewidelyusedinphotonics.
WavefrontsofaGaussianlightbeam
TheintensityacrossthebeamfollowsaGaussiandistribution
Beamaxis
waistofthebeam
Intensity=I(r,z)=[2P/(w2)]exp(2r2/w2)
2=Farfielddivergence
=w/z=/(wo)
Gaussbeams:Guassianbeamstartsfromafinitewidth2wo(waist,waistradiuswo)wherethewavefrontsareparallelandthenslowlydivergesasthewavefrontscurveoutduringpropagation.Guassianbeamstillhasanexpj(ωt-kz)propagationcharacteristic,buttheamplitude(intensity)variesspatiallyawayfromthebeamaxis,thatisintensityhasaGaussiandistribution.Beamdiameter2w:85%ofthebeampower.
Theincreaseinbeamdiameter2wwithzmakesangle2θ
atO,
whichiscalledthebeamdivergence.
2 4
(20)
TheGaussianIntensityDistributionisNotUnusual
TheGaussianintensitydistributionisalsousedinfiberoptics
ThefundamentalmodeinsinglemodefiberscanbeapproximatedwithaGaussianintensitydistributionacrossthefibercore
I(r)=I(0)exp(2r2/w2)
GaussianBeam
2=Farfielddivergence
zo=wo2/
GaussianBeam
Rayleighrange
1/2
2
z
2w2wo1
2
w
o
1/2
z2
2w2wo1
zo
w2
zo o
RealandIdealGaussianBeams
DefinitionofM2
worr
worr
1/2
2
zM2
M2
2wr2wor1
(/)
wo
2
w
or
RealGaussianBeam
Realbeam
Correctionnote:Page10intextbook,Equation(1.11.1),wshouldbewrasaboveand
wor
shouldbesquaredintheparantheses.
zM221/2
2wr2wor1
w2
or
GaussianBeaminanOpticalCavity
Twosphericalmirrorsreflectwavestoandfromeachother.
Theopticalcavity
containsaGaussianbeam.Thisparticularopticalcavityissymmetricandconfocal;thetwofocalpointscoincideatF.
1/2
z2
z
25m
1
2w2w
2wo (1mm)1.24m20mm
o
z
z
o
o
2.RefractiveIndexandDispersion
WhenanEMwaveistravelinginadielectricmedium,theoscillatingelectricfieldpolarizesthemoleculesofthemediumatthefrequencyofthewave
Thestrongeristheinteractionbetweenthefieldandthedipoles,thesloweristhepropagationofthewave
ForanEMwavetravelinginanonmagneticdielectricmediumof
thephasevelocityvisgivenby
relativepermittivityεr
1
r00
v
εr=1
vvacuum=1/√[ε0μ0=c=3×108ms-1
Theratioofthespeedoflightinfreespacetoitsspeedinamedium
iscalledtherefractiveindexnofthemedium
nc
v
k
=nk
medium
r
λmedium=λ/n
Maxwell’sWaveEquationinanisotropicmedium
E
E
E
2E0
2
2
2
o r o
x2
y2
z2
t2
AplanewaveisasolutionofMaxwell’swaveequation
E=Ecos(tkz+)
x
o
Thephasevelocityofthisplanewaveinthemediumisgivenby
Thephasevelocityinvacuumis
c 1
ko oo
v 1
k oro
PhaseVelocityandr
permittivity r
The
relative
measures
the
ease
with
which
the
of
medium
becomes
polarized
and
hence
itindicates
theextent
interaction
between
the
field
and
the
induced
dipoles.
ForanEMwavetravelinginanonmagneticdielectricmediumof
v
relativepermittivityr,thephasevelocity
isgivenby
ν 1
roo
RefractiveIndexn
PhaseVelocityandr
Refractiveindexn
definition
nc
v r
ν 1
roo
Opticalfrequencies
Typicalfrequenciesthatareinvolvedinoptoelectronicdevicesareintheinfrared(includingfarinfrared),visible,andUV,andwegenericallyrefertothesefrequenciesasopticalfrequenciesSomewhatarbitraryrange:Roughly1012Hzto1016Hz
Lowfrequency(LF)relativepermittivityr(LF)andrefractiveindexn.
RefractiveIndexandPropagationConstant
koko
o
k
Free-spacepropagationconstant(wavevector)2π/
Free-spacewavelength
Propagationconstant(vavevector)inthemediumWavelengthinthemedium
Innoncrystallinematerialssuchasglassesandliquids,thematerialstructureisthesameinalldirectionsandndoesnotdependonthedirection.Therefractiveindexisthenisotropic
nk
ko
RefractiveIndexandWavelength
Itiscustomarytodropthesubscriptoonkand
Infreespace
medium=/n
kmedium=nk
RefractiveIndexandIsotropy
Crystals,ingeneral,havenonisotropic,oranisotropic,properties
Typicallynoncrystallinesolidssuchasglassesandliquids,andcubiccrystalsareopticallyisotropic;theypossessonlyonerefractiveindexforalldirections
ndependsonthewavelength
Dispersionrelation:n=n()
Thesimplestelectronicpolarizationgives
Nat
=Numberofatomsper
unitvolume
Z=Numberofelectronsintheatom(atomicnumber)
o=A“resonantfrequency”
SellmeierEquation
n 1 2 A2 A2
2 2A2 2 2 2 2
1 2 3
1 2 3
NZe2 2 2
n21 at o
m 2c22
o e o
Cauchydispersionrelation:n=n()
n=n-2(h)-2+n0+n2(h)2+n4(h)4
3.GroupVelocityandGroupIndex
Therearenoperfectmonochromaticwaves
Wehavetoconsiderthewayinwhichagroupofwavesdifferingslightlyinwavelengthtravelalongthez-direction
Whentwoperfectlyharmonicwavesoffrequenciesand+
andwavevectorskkandk+kinterfere,theygenerateawavepacketwhichcontainsanoscillatingfieldatthemeanfrequencythatisamplitudemodulatedbyaslowlyvaryingfieldoffrequency
.Themaximumamplitudemoveswithawavevectorkandthus
withagroupvelocitythatisgivenby
d
v
g
dk
GroupVelocity
Twoslightlydifferentwavelengthwavestravelinginthesamedirectionresultinawavepacketthathasanamplitudevariationthattravelsatthegroupvelocity.
d
dk
v
g
GroupVelocity
Considertwosinusoidalwavesthatarecloseinfrequency,thatis,theyhavefrequenciesand+.Theirwavevectorswillbekkandk+k.Theresultantwaveis
Ex(z,t)=Eocos[()t(kk)z]
+Eocos[(+)t(k+k)z]
Byusingthetrigonometricidentity
cosA+cosB=2cos[1/2(AB)]cos[1/2(A+B)]wearriveat
Ex(z,t)=2Eocos[()t(k)z][cos(tkz)]
Ex(z,t)=2Eocos[()t(k)z][cos(tkz)]
Thisrepresentsasinusoidalwaveoffrequency.Thisisamplitudemodulatedbyaveryslowlyvaryingsinusoidaloffrequency.
Thissystemofwaves,i.e.themodulation,travelsalongzataspeeddeterminedbythemodulatingterm,cos[()t(k)z].Themaximuminthefieldoccurswhen[()t(k)z]=2m=constant(misaninteger),whichtravelswithavelocity
dz
or
k
dt
Thisisthegroupvelocityofthewavesbecauseitdeterminesthespeedofpropagationofthemaximumelectricfieldalongz.
v d
g dk
Thegroupvelocitythereforedefinesthespeedwithwhich
energyorinformationispropagated.
=2c/oandk=2n/o,oisthefreespacewavelength.
d=2c/o)do
2
Differentiatetheabove
dn
n(1/)d
/)
do
dn
dk2
(2
2
(2
/)
n
d
2
dk
o
o
o
d
d
o
o
o
o
o
d
(2
c/)d
2
vg
o o
dk
dn
d
(2/)n
2
d
o
o
o
wheren=n()isafunctionofthewavelength.
cdnn
o od
o
v d
g dk
inamediumisgivenby,
Thegroupvelocityvg
Thiscanbewrittenas
v(medium)c
g N
g
v(medium)d c
g dk ndnd
GroupIndex
isdefinedasthegroupindexofthemedium
Ingeneral,formanymaterialstherefractiveindexnandhencethegroupindexNgdependonthewavelengthoflight.Suchmaterialsarecalleddispersive
N ndn
g d
RefractiveindexnandthegroupindexNgofpureSiO2(silica)glassasafunctionofwavelength.
4.MagneticField,Irradianceand
PoyntingVector
Themagneticfield(magneticinduction)componentByalwaysaccompaniesExinanEMwavepropagation.
IfvisthephasevelocityofanEMwaveinanisotropicdielectric
mediumandnistherefractiveindex,then
wherev=(oro)1/2andn=1/2
E vB cB
x y n y
EMwavecarriesenergyalongthedirectionofpropagationk.Whatistheradiationpowerflowperunitarea?
AplaneEMwavetravelingalongkcrossesanareaAatrightanglestothedirectionofpropagation.Intimet,theenergyinthecylindricalvolumeAt(showndashed)flowsthroughA.
EnergyDensityinanEMWave
AstheEMwavepropagatesinthedirectionofthewavevectork,thereisanenergyflowinthisdirection.Thewavebringswithitelectromagneticenergy.
TheenergydensitiesintheExandByfieldsarethesame,
ThetotalenergydensityinthewaveisthereforeorEx2.
1E2 1 B2
2 o r x 2 y
o
PoyntingVectorandEMPowerFlow
IfSistheEMpowerflowperunitarea,
S=Energyflowperunittimeperunitarea
(Avt)(E2)
2
2
vorExvorExBy
o r x
S
At
Inanisotropicmedium,theenergyflowisinthedirectionofwavepropagation.IfweusethevectorsEandBtorepresenttheelectricandmagneticfieldsintheEMwave,thentheEMpowerflowperunitareacanbewrittenas
whereS,calledthePoyntingvector
S=v2orEB
PoyntingVectorandIntensity
SrepresentstheenergyflowperunittimeperunitareainadirectiondeterminedbyEB(directionofpropagation).Itsmagnitude,powerflowperunitarea,iscalledtheirradiance(instantaneousirradiance,orintensity).
Theaverageirradianceis
ISaverage1vorE2
2 o
AverageIrradianceorIntensity
Sincev=c/nandr=n2wecanwrite
cnE
ISaverage
10 )nE
2
3
2
o
(1.33
1
2
o
o
Theinstantaneousirradiancecanonlybemeasuredifthepowermetercanrespondmorequicklythantheoscillationsoftheelectricfield.Sincethisisintheopticalfrequenciesrange,allpracticalmeasurementsyieldtheaverageirradiancebecausealldetectorshavearesponseratemuchslowerthanthefrequencyofthewave.
IrradianceofaSphericalWave
Perfectsphericalwave
I Po
4r2
Sphericalwavefront
Source
O
Po
A
4A
9A
r
2r
3r
I Po
4r2
AGaussianBeam
I(r,z)=[2P/(w2)]exp(2r2/w2)
o=w/z=/(wo)
2o=Farfielddivergence
PowerinaGaussianBeam
I(r)2I(0)2exp[2(r/w)2]
and
Areaofacircularthinstrip(annulus)withradiusris2rdr.PowerpassingthroughthisstripisproportionaltoI(r)(2r)dr
w
I(r)2rdr
0
Fractionofopticalpowerwithin2w
0.865
=
I(r)2rdr
0
5.Snell’sLaworDescartes’sLawand
TotalInternalReflection
Snell'sLaw
sinisint
n2
n1
DerivationofSnell’sLaw
Alightwavetravelinginamediumwithagreaterrefractiveindex(n1>n2)suffersreflectionandrefractionattheboundary.(Noticethattisslightlylongerthan)
Wecanuseconstructiveinterferencetoshowthattherecanonlybeonereflectedwavewhichoccursatanangleequaltotheincidenceangle.ThetwowavesalongAiandBiareinphase.
WhenthesewavesarereflectedtobecomewavesArandBrthentheymuststillbeinphase,otherwisetheywillinterferedestructivelyanddestroyeachother.Theonlywaythetwowavescanstayinphaseisifr=i.AllotheranglesleadtothewavesArandBrbeingoutofphaseandinterferingdestructively.
UnlessthetwowavesatAandBstillhavethesamephase,therewillbenotransmittedwave.AandBpointsonthefrontareonlyinphaseforoneparticulartransmittedangle,t.
IttakestimetforthephaseatBonwaveBitoreachBBB=v1t=ct/n1
Duringthistimet,thephaseAhasprogressedtoA
AA=v2t=ct/n2
AandBbelongtothesamefrontjustlikeAandBsothatABis
perpendiculartokiinmedium1andABisperpendiculartoktinmedium2.Fromgeometricalconsiderations,
AB=BB/siniandAB=AA/sintsothat
v1t
sini
v2t
sint
AB
or
sini v1 n2
sint v2 n1
ThisisSnell'slawwhichrelatestheanglesofincidenceandrefractiontotherefractiveindicesofthemedia.
Whenn1>n2thenobviouslythetransmittedangleisgreaterthantheincidenceangleasapparentinthefigure.Whentherefractionangletreaches90°,theincidenceangleiscalledthecriticalangle
cwhichisgivenby
n2
sin
c
n
1
n1 i n2 t
nsinconstant
sin
sin
Whentheincidenceangleiexceedscthenthereisnotransmittedwavebutonlyareflectedwave.Thelatterphenomenoniscalledtotalinternalreflection(TIR).TIRphenomenonthatleadstothepropagationofwavesinadielectricmediumsurroundedbyamediumofsmallerrefractiveindexasinopticalwaveguides,e.g.opticalfibers.
AlthoughSnell'slawfori>cshowsthatsint>1andhencetisan"imaginary"angleofrefraction,thereishoweveranattenuated
wavecalledtheevanescentwave.
TotalInternalReflection
Lightwavetravelinginamoredensemediumstrikesalessdensemedium.Dependingontheincidenceanglewithrespecttoc,whichisdeterminedbytheratiooftherefractiveindices,thewavemaybetransmitted(refracted)orreflected.
(a)i<c(b)i=c(c)i>candtotalinternalreflection(TIR).
Prisms
LateralDisplacement
dsin cosi
L i1 2 2
(n/n) sini
Lighttravelsbytotalinternalreflectioninopticalfibers
Anopticalfiberlinkfortransmittingdigitalinformationincommunications.Thefibercorehasahigherrefractiveindexsothatthelighttravelsalongthefiberinsidethefibercore
bytotalinternalreflectionatthecore-claddinginterface.
Asmallholeismadeinaplasticbottlefullofwatertogenerateawaterjet.Whentheholeisilluminatedwithalaserbeam(fromagreenlaserpointer),thelightisguidedbytotalinternalreflectionsalongthejettothetray.ThelightguidingbyawaterjetwasfirstdemonstratedbyJean-DanielColladan,aSwissscientist(Waterwithairbubbleswasusedtoincreasethevisibilityoflight.Airbubblesscatterlight.)[Left:Copyright:S.O.Kasap,2005][Right:ComptesRendes,15,800–802,October24,1842;Cnum,ConservatoireNumériquedesArtsetMétiers,France
6.Fresnel'sEquations
Lightwavetravelinginamoredensemediumstrikesalessdensemedium.Theplaneofincidenceistheplaneofthepaperandisperpendiculartotheflatinterfacebetweenthetwomedia.Theelectricfieldisnormaltothedirectionofpropagation.Itcanberesolvedintoperpendicularandparallelcomponents.
Describetheincident,reflectedandrefractedwavesbytheexponentialrepresentationofatravelingplanewave,i.e.
Ei=Eioexpj(tkir)Er=Eroexpj(tkrr)Et=Etoexpj(tktr)
IncidentwaveReflectedwave
Transmittedwave
whereristhepositionvector,thewavevectorski,krandktdescribethedirectionsoftheincident,reflectedandtransmittedwavesandEio,EroandEtoaretherespectiveamplitudes.
Thesearetravelingplanewaves
Anyphasechangessuchasrandtinthereflectedandtransmittedwaveswithrespecttothephaseoftheincidentwaveareincorporatedintothecomplexamplitudes,EroandEto.OurobjectiveistofindEroandEtowithrespecttoEio.
Theelectricandmagneticfieldsanywhereonthewavemustbeperpendiculartoeachotherasarequirementofelectromagneticwavetheory.ThismeansthatwithE//intheEMwavewehaveamagneticfieldBassociatedwithitsuchthat,B(n/c)E//.SimilarlyEwillhaveamagneticfieldB//associatedwithitsuchthatB//(n/c)E.
Weuseboundaryconditions
Etangential(1)=Etangential(2)
Non-magneticmedia(relativepermeability,r=1),
Btangential(1)=Btangential(2)
Usingtheaboveboundaryconditionsforthefieldsaty=0,andtherelationshipbetweentheelectricandmagneticfields,wecanfindthereflectedandtransmittedwavesintermsoftheincidentwave.
Theboundaryconditionscanonlybesatisfiedifthereflectionandincidenceanglesareequal,r=iandtheanglesforthetransmittedandincidentwaveobeySnell'slaw,n1sin1=n2sin2
Ei=Eioexpj(tkir)Er=Eroexpj(tkrr)Et=Etoexpj(tktr)
IncidentwaveReflectedwaveTransmittedwave
Applyingmedium
theboundary
conditionsto
the
EM
wavegoing
from
1
to
2,
the
amplitudes
of
the
reflected
and
transmitted
wavescanbereadilyobtainedintermsofn1,n2andtheincidenceangleialone.TheserelationshipsarecalledFresnel'sequations.Ifwedefinen=n2/n1,astherelativerefractiveindexofmedium2tothatof1,thenthereflectionandtransmissioncoefficientsforEare,
E cosn2sin21/2
r r0, i i1/2
E cos n2 sin2
i0, i i
TherearecorrespondingcoefficientsfortheE//fieldswithcorrespondingreflectionandtransmissioncoefficients,r//andt//,
t Et0,// 2ncosi 1/2
// E n2cos n2sin2
i0,// i i
E n2sin21/2n2cos
r//E n2sin21/2n2cos
r0,// i i
i0,// i i
t Et0, 2cosi 1/2
E cos n2sin2
i0, i i
Further,theabovecoefficientsarerelatedby
r//
=
1
and
+
1
+nt//
r
=t
ForconveniencewetakeEiotobearealnumbersothatphaseanglesofr andt correspondtothephasechangesmeasuredwithrespecttotheincidentwave.
Fornormalincidence(i=0)intoFresnel'sequationswefind,
rr n1n2
// nn
1 2
Internalreflection
Magnitudeofthereflectioncoefficientsr//andrvs.angleofincidenceiforn1
=1.44andn2=1.00.Thecriticalangleis44.
Thecorrespondingchanges//andvs.incidenceangle.
ReflectionandPolarizationAngle
asp,
We
find
a
special
incidence
angle,
labeled
by
solving
the
r//
Fresnelequationfor
=0.Thefieldinthereflectedwaveisthen
alwaysperpendicular
to
the
plane
of
incidence
and
hence
well-
defined.
This
special
angle
is
called
the
polarization
angle
or
Brewster'sangle,
n2
tan
Forbothn1>n2
orn1<n2.
p
n
1
E n2sin21/2n2cos
r//E n2sin21/2n2cos
r0,// i i 0
i0,// i i
PolarizedLight
y
Planeofpolarization
E
x
z
Alinearlypolarizedwavehasitselectricfieldoscillationsdefinedalongalineperpendiculartothedirectionofpropagation,z.ThefieldvectorEandzdefineaplaneofpolarization.
Brewster'sangle
E
Reflectedlightati=phasonlyE
forbothn1>n2
orn1<n2.
TotalInternalReflection
Inlinearlypolarizedlight,however,thefieldoscillationsarecontainedwithinawelldefinedplane.LightemittedfrommanylightsourcessuchasatungstenlightbulboranLEDdiodeisunpolarizedandthefieldisrandomlyorientedinadirectionthatisperpendiculartothedirectionofpropagation.
Atthecriticalangleandbeyond(past44°inthefigure),i.e.when
ic,themagnitudesofboth
r//
and
rgotounitysothatthe
reflectedwavehasthesameamplitudeastheincidentwave.Theincidentwavehassufferedtotalinternalreflection,TIR.
Phasechangeupontotalinternalreflection
Wheni>c,inthepresenceofTIR,thereflectioncoefficientsbecomecomplexquantitiesofthetype
r=1exp(j)andr//=1exp(j)
withthephaseanglesand//beingotherthanzeroor180°.Thereflectedwavethereforesuffersphasechanges,and//,inthe
componentsEandE//.Thesephasechangesdependonthe
incidenceangle,andonnandn.
1
2
Thephasechange
isgivenby
FortheE//component,thephasechange//isgivenby
1/2
sin
n
2
2
tan
1
2
1
2
i
n2cos
//
i
1 sin2n212
tan i
2 cosi
ExternalReflection
Thereflectioncoefficientsr//andrversusangleofincidenceiforn1=1.00andn2=1.44.
EvanescentWave
Ininternalreflection(n1>n2),theamplitudeofthereflectedwavefromTIRisequaltotheamplitudeoftheincidentwavebutitsphasehasshifted.
Whathappenstothetransmittedwavewheni>c?
Accordingtotheboundaryconditions,theremuststillbeanelectricfieldinmedium2,otherwise,theboundaryconditionscannotbesatisfied.Wheni>c,thefieldinmedium2isattenuated(decreaseswithy,andiscalledtheevanescentwave.
Wheni>c,foraplanewavethatisreflected,thereisanevanescentwaveattheboundarypropagatingalongz.
Evanescentwavewhenplanewavesareincidentandreflected
wherekiz=kisiniisthewavevectoroftheincidentwavealongthez-axis,and2isanattenuationcoefficientfortheelectricfieldpenetratingintomedium2
2nn2 1/2
2 2 1sini1
2
n2
y
Et,(y,z,t)e 2 expj(tkizz)
Penetrationdepthofevanescentwave
2=
Attenuationcoefficientfortheelectricfieldpenetratinginto
medium2
Thefieldoftheevanescentwaveise1inmedium2when
y=1/2==Penetrationdepth
2nn2
2 1sin21
2 n i
2
Goos-H?nchenShift
Virtualreflectingplane
n2
y
z
A
n1>n2
i
r
z
Reflectedlight
Incidentlight
z=2tani
B d
OpticalTunneling
y
d
z
A
n
>n
i
r
1
2
Reflectedlight
issmall),thefieldpenetratesfromtheABinterface
Incidentlight
Bisthin(thicknessd
Whenmedium
intomediumBandreachesBCinterface,andgivesrisetoatransmittedwaveinmediumC.TheeffectisthetunnelingoftheincidentbeaminAthroughBtoC.Themaximumfield
Emax
oftheevanescentwaveinBdecaysinBalongyandbutisfiniteattheBCboundary
andexcitesthetransmittedwave.
C n1
B n2
BeamSplitters
FrustratedTotalInternalReflection(FTIR)
(b)Twoprismsseparatedbyathinlowrefractiveindexfilmformingabeam-splittercube.TheincidentbeamissplitintotwobeamsbyFTIR.
(a)AlightincidentatthelongfaceofaglassprismsuffersTIR;theprismdeflectsthelight.
Beamsplittercubes(CourtesyofCVIMellesGriot)
Twoprismsseparatedbyathinlowrefractiveindexfilmformingabeam-splittercube.TheincidentbeamissplitintotwobeamsbyFTIR.
OpticalTunneling
Lightpropagationalonganopticalguidebytotalinternalreflections
Couplingoflaserlightintoathinlayer
-opticalguide-usingaprism.Thelight
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 內(nèi)蒙古行政職業(yè)能力真題2015年
- 四川省申論模擬200
- 河南申論模擬74
- 建筑與小區(qū)海綿城市建設(shè)項(xiàng)目評分表
- 2010年3月6日山西省公務(wù)員面試真題
- 建筑工程弱電基礎(chǔ)培訓(xùn)課件
- 2024年幼兒園轉(zhuǎn)讓合同
- 2024年棋牌室承包經(jīng)營協(xié)議
- 2024年信用借款合同書范本
- 河北省公務(wù)員面試模擬178
- 中南大學(xué)學(xué)位證書樣本掃描件WORD
- 微機(jī)原理及單片機(jī)接口技術(shù)課后題答案_1-6章_
- 中國股票市場反向投資策略的實(shí)證研究
- 通靈藍(lán)色火焰 柏林電影節(jié)事件營銷方
- 多重中介模型及其應(yīng)用
- 車位租賃合同電子版
- 化妝品行業(yè)標(biāo)準(zhǔn)操作程序《玻璃瓶檢驗(yàn)標(biāo)準(zhǔn)》
- 可分離變量的微分方程(8)課件
- 蘇J01-2005圖集
- (精選)臺階和樹木移除申請書
- 《人類成長與社會環(huán)境》形考作業(yè)1-4答案
評論
0/150
提交評論