2024屆山西省呂梁市離石區(qū)數(shù)學(xué)高一第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
2024屆山西省呂梁市離石區(qū)數(shù)學(xué)高一第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
2024屆山西省呂梁市離石區(qū)數(shù)學(xué)高一第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
2024屆山西省呂梁市離石區(qū)數(shù)學(xué)高一第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
2024屆山西省呂梁市離石區(qū)數(shù)學(xué)高一第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆山西省呂梁市離石區(qū)數(shù)學(xué)高一第二學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列四個函數(shù)中,以為最小正周期,且在區(qū)間上為減函數(shù)的是()A. B. C. D.2.不等式的解集為()A. B. C. D.3.函數(shù)的圖象如圖所示,為了得到的圖象,可將的圖象()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位4.已知,且,把底數(shù)相同的指數(shù)函數(shù)與對數(shù)函數(shù)圖象的公共點稱為(或)的“亮點”.當時,在下列四點,,,中,能成為的“亮點”有()A.0個 B.1個 C.2個 D.3個5.等比數(shù)列的前項和為,,且成等差數(shù)列,則等于()A. B. C. D.6.角的終邊落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.圓心為的圓與圓相外切,則圓的方程為()A. B.C. D.8.已知函數(shù),其圖像相鄰的兩個對稱中心之間的距離為,且有一條對稱軸為直線,則下列判斷正確的是()A.函數(shù)的最小正周期為B.函數(shù)的圖象關(guān)于直線對稱C.函數(shù)在區(qū)間上單調(diào)遞增D.函數(shù)的圖像關(guān)于點對稱9.下列函數(shù)中,既是奇函數(shù)又是增函數(shù)的為()A. B. C. D.10.在同一直角坐標系中,函數(shù)且的圖象可能是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若各項均為正數(shù)的等比數(shù)列,,則它的前項和為______.12.設(shè)a>0,b>0,若是與3b的等比中項,則的最小值是__.13.已知向量為單位向量,向量,且,則向量的夾角為__________.14.適合條件的角的取值范圍是______.15.已知向量、滿足||=2,且與的夾角等于,則||的最大值為_____.16.若在上是減函數(shù),則的取值范圍為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知為坐標原點,,,若.(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;(Ⅱ)當時,若方程有根,求的取值范圍.18.關(guān)于的不等式的解集為.(1)求實數(shù)的值;(2)若,求的值.19.已知函數(shù).(1)當時,,求的值;(2)令,若對任意都有恒成立,求的最大值.20.如圖,在四棱錐中,底面為矩形,為等邊三角形,且平面平面.為的中點,為的中點,過點,,的平面交于.(1)求證:平面;(2)若時,求二面角的余弦值.21.設(shè)數(shù)列的前項和為,對于,,其中是常數(shù).(1)試討論:數(shù)列在什么條件下為等比數(shù)列,請說明理由;(2)設(shè),且對任意的,有意義,數(shù)列的前項和為.若,求的最大值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】

分別求出四個選項中函數(shù)的周期,排除選項后,再通過函數(shù)的單調(diào)減區(qū)間找出正確選項即可.【題目詳解】由題意觀察選項,C的周期不是,所以C不正確;對于A,,函數(shù)的周期為,但在區(qū)間上為增函數(shù),故A不正確;對于B,,函數(shù)的周期為,且在區(qū)間上為減函數(shù),故B正確;對于D,,函數(shù)的周期為,但在區(qū)間上為增函數(shù),故D不正確;故選:B【題目點撥】本題主要考查三角函數(shù)的性質(zhì),需熟記正弦、余弦、正切、余切的性質(zhì),屬于基礎(chǔ)題.2、B【解題分析】

可將分式不等式轉(zhuǎn)化為一元二次不等式,注意分母不為零.【題目詳解】原不等式可化為,其解集為,故選B.【題目點撥】一般地,等價于,而則等價于,注意分式不等式轉(zhuǎn)化為整式不等式時分母不為零.3、A【解題分析】

函數(shù)過代入解得,再通過平移得到的圖像.【題目詳解】,函數(shù)過向右平移個單位得到的圖象故答案選A【題目點撥】本題考查了三角函數(shù)圖形,求函數(shù)表達式,函數(shù)平移,意在考查學(xué)生對于三角函數(shù)圖形的理解.4、C【解題分析】

利用“亮點”的定義對每一個點逐一分析得解.【題目詳解】由題得,,由于,所以點不在函數(shù)f(x)的圖像上,所以點不是“亮點”;由于,所以點不在函數(shù)f(x)的圖像上,所以點不是“亮點”;由于,所以點在函數(shù)f(x)和g(x)的圖像上,所以點是“亮點”;由于,所以點在函數(shù)f(x)和g(x)的圖像上,所以點是“亮點”.故選C【題目點撥】本題主要考查指數(shù)和對數(shù)的運算,考查指數(shù)和對數(shù)函數(shù)的圖像和性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.5、A【解題分析】

根據(jù)等差中項的性質(zhì)列方程,并轉(zhuǎn)化為的形式,由此求得的值,進而求得的值.【題目詳解】由于成等差數(shù)列,故,即,所以,,所以,故選A.【題目點撥】本小題主要考查等差中項的性質(zhì),考查等比數(shù)列基本量的計算,屬于基礎(chǔ)題.6、C【解題分析】

由,即可判斷.【題目詳解】,則與的終邊相同,則角的終邊落在第三象限故選:C【題目點撥】本題主要考查了判斷角的終邊所在象限,屬于基礎(chǔ)題.7、A【解題分析】

求出圓的圓心坐標和半徑,利用兩圓相外切關(guān)系,可以求出圓的半徑,求出圓的標準方程,最后化為一般式方程.【題目詳解】設(shè)的圓心為A,半徑為r,圓C的半徑為R,,所以圓心A坐標為,半徑r為3,圓心距為,因為兩圓相外切,所以有,故圓的標準方程為:,故本題選A.【題目點撥】本題考查了圓與圓的相外切的性質(zhì),考查了已知圓的方程求圓心坐標和半徑,考查了數(shù)學(xué)運算能力.8、C【解題分析】

本題首先可根據(jù)相鄰的兩個對稱中心之間的距離為來確定的值,然后根據(jù)直線是對稱軸以及即可確定的值,解出函數(shù)的解析式之后,通過三角函數(shù)的性質(zhì)求出最小正周期、對稱軸、單調(diào)遞增區(qū)間以及對稱中心,即可得出結(jié)果.【題目詳解】圖像相鄰的兩個對稱中心之間的距離為,即函數(shù)的周期為,由得,所以,又是一條對稱軸,所以,,得,又,得,所以.最小正周期,項錯誤;令,,得對稱軸方程為,,選項錯誤;由,,得單調(diào)遞增區(qū)間為,,項中的區(qū)間對應(yīng),故正確;由,,得對稱中心的坐標為,,選項錯誤,綜上所述,故選C.【題目點撥】本題考查根據(jù)三角函數(shù)圖像性質(zhì)來求三角函數(shù)解析式以及根據(jù)三角函數(shù)解析式得出三角函數(shù)的相關(guān)性質(zhì),考查對函數(shù)的相關(guān)性質(zhì)的理解,考查推理能力,是中檔題.9、D【解題分析】

根據(jù)奇函數(shù)和增函數(shù)的定義逐項判斷.【題目詳解】選項A:不是奇函數(shù),不正確;選項B::在是減函數(shù),不正確;選項C:定義域上沒有單調(diào)性,不正確;選項D:設(shè),是奇函數(shù),,在都是單調(diào)遞增,且在處是連續(xù)的,在上單調(diào)遞增,所以正確.故選:D.【題目點撥】本題考查函數(shù)的性質(zhì),對于常用函數(shù)的性質(zhì)要熟練掌握,屬于基礎(chǔ)題.10、D【解題分析】

本題通過討論的不同取值情況,分別討論本題指數(shù)函數(shù)、對數(shù)函數(shù)的圖象和,結(jié)合選項,判斷得出正確結(jié)論.題目不難,注重重要知識、基礎(chǔ)知識、邏輯推理能力的考查.【題目詳解】當時,函數(shù)過定點且單調(diào)遞減,則函數(shù)過定點且單調(diào)遞增,函數(shù)過定點且單調(diào)遞減,D選項符合;當時,函數(shù)過定點且單調(diào)遞增,則函數(shù)過定點且單調(diào)遞減,函數(shù)過定點且單調(diào)遞增,各選項均不符合.綜上,選D.【題目點撥】易出現(xiàn)的錯誤有,一是指數(shù)函數(shù)、對數(shù)函數(shù)的圖象和性質(zhì)掌握不熟,導(dǎo)致判斷失誤;二是不能通過討論的不同取值范圍,認識函數(shù)的單調(diào)性.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

利用等比數(shù)列的通項公式求出公比,由此能求出它的前項和.【題目詳解】設(shè)各項均為正數(shù)的等比數(shù)列的公比為,由,得,且,解得,它的前項和為.故答案:.【題目點撥】本題考查等比數(shù)列的前項和的求法,考查等比數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.12、【解題分析】由已知,是與的等比中項,則則,當且僅當時等號成立故答案為2【題目點撥】本題考查基本不等式的性質(zhì)、等比數(shù)列的性質(zhì),其中熟練應(yīng)用“乘1法”是解題的關(guān)鍵.13、【解題分析】因為,所以,所以,所以,則.14、【解題分析】

根據(jù)三角函數(shù)的符號法則,得,從而求出的取值范圍.【題目詳解】,的取值范圍的解集為.故答案為:【題目點撥】本題主要考查了三角函數(shù)符號法則的應(yīng)用問題,是基礎(chǔ)題.15、【解題分析】

在中,令,可得,可得點在半徑為的圓上,,可得,進而可得的最大值.【題目詳解】∵向量、滿足||=1,且與的夾角等于,如圖在中,令,,可得可得點B在半徑為R的圓上,1R4,R=1.則||的最大值為1R=4【題目點撥】本題考查了向量的夾角、模的運算,屬于中檔題.16、【解題分析】

化簡函數(shù)解析式,,時,是余弦函數(shù)單調(diào)減區(qū)間的子集,即可求解.【題目詳解】,時,,且在上是減函數(shù),,,因為解得.【題目點撥】本題主要考查了函數(shù)的三角恒等變化,余弦函數(shù)的單調(diào)性,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)的單調(diào)減區(qū)間為;(2).【解題分析】試題分析:(1)根據(jù)向量點積的坐標運算得到,根據(jù)正弦函數(shù)的單調(diào)性得到單調(diào)遞減區(qū)間;(2)將式子變形為.有解,轉(zhuǎn)化為值域問題.解析:(Ⅰ)∵,,∴其單調(diào)遞減區(qū)間滿足,,所以的單調(diào)減區(qū)間為.(Ⅱ)∵當時,方程有根,∴.∵,∴,∴,∴,∴.點睛:這個題目考查了,向量點積運算,三角函數(shù)的化一公式,,正弦函數(shù)的單調(diào)性問題,三角函數(shù)的值域和圖像問題.第二問還要用到了方程的零點的問題.一般函數(shù)的零點和方程的根,圖象的交點是同一個問題,可以互相轉(zhuǎn)化.18、(1);(2).【解題分析】

(1)由行列式的運算法則,得原不等式即,而不等式的解集為,采用比較系數(shù)法,即可得到實數(shù)的值;(2)把代入,求得,進一步得到,再由兩角差的正切公式即可求解.【題目詳解】(1)原不等式等價于,由題意得不等式的解集為,故是方程的兩個根,代入解得,所以實數(shù)的值為.(2)由,得,即.,【題目點撥】本題考查了行列式的運算法則、由一元二次不等式的解集求參數(shù)值、二倍角的正切公式以及兩角差的正切公式,需熟記公式,屬于基礎(chǔ)題.19、(1);(2)【解題分析】

(1)根據(jù)得,得或,結(jié)合取值范圍求解;(2)結(jié)合換元法處理二次不等式恒成立求參數(shù)的取值范圍.【題目詳解】(1),即,即有,所以或,即或由于,,所以;(2),令,對任意都有恒成立,即對恒成立,只需,解得:,所以的最大值為.【題目點撥】此題考查根據(jù)三角函數(shù)值相等求自變量取值的關(guān)系,利用換元法轉(zhuǎn)化為二次函數(shù)處理不等式問題,根據(jù)不等式恒成立求參數(shù)的取值范圍,涉及根的分布的問題.20、(1)證明見解析;(2)【解題分析】

(1)首先證明平面,由平面平面,可說明,由此可得四邊形為平行四邊形,即可證明平面;(2)延長交于點,過點作交直線于點,則即為二面角的平面角,求出的余弦值即可得到答案.【題目詳解】(1)∵為矩形∴,平面,平面∴平面.又因為平面平面,∴.為中點,為中點,所以平行且等于,即四邊形為平行四邊形所以,平面,平面所以平面(2)不妨設(shè),.因為為中點,為等邊三角形,所以,,且∵,所以有平面,故因為平面平面∴平面,又,∴平面,則延長交于點,過點作交直線于點,由于平行且等于,所以為中點,,由于,,,所以平面,則,所以即為二面角的平面角在中,,,所以,所以.【題目點撥】本題考查線面平行的證明,以及二面角的余弦值的求法,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論