版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆安徽鳳陽縣城西中學高一數(shù)學第二學期期末學業(yè)水平測試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若關于的不等式在區(qū)間上有解,則的取值范圍是()A. B. C. D.2.已知數(shù)列是公差不為零的等差數(shù)列,是等比數(shù)列,,,則下列說法正確的是()A. B.C. D.與的大小不確定3.已知向量,且為正實數(shù),若滿足,則的最小值為()A. B. C. D.4.已知,則下列不等式成立的是()A. B. C. D.5.集合A={x|-2<x<2},B={x|-1<x<3}那么A∪B=()A.{x|-2<x<-1} B.{x|-1<x<2}C.{x|-2<x<1} D.{x|-2<x<3}6.為了了解運動員對志愿者服務質(zhì)量的意見,打算從1200名運動員中抽取一個容量為40的樣本,考慮用系統(tǒng)抽樣,則分段間隔為A.40 B.20 C.30 D.127.在空間中,可以確定一個平面的條件是()A.一條直線B.不共線的三個點C.任意的三個點D.兩條直線8.ΔABC的內(nèi)角A,B,C的對邊分別為a,b,c.已知C=60°,b=6,c=3,則A=A.45° B.60° C.75° D.90°9.△ABC中,三個內(nèi)角A,B,C所對應的邊分別為a,b,c,若c=,b=1,∠B=,則△ABC的形狀為()A.等腰直角三角形 B.直角三角形C.等邊三角形 D.等腰三角形或直角三角形10.已知是橢圓與雙曲線的公共焦點,P是它們的一個公共點,且,線段的垂直平分線過,若橢圓的離心率為,雙曲線的離心率為,則的最小值為()A. B.3 C.6 D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),它的值域是__________.12.若正四棱錐的側(cè)棱長為,側(cè)面與底面所成的角是45°,則該正四棱錐的體積是________.13.已知當時,函數(shù)(且)取得最大值,則時,的值為__________.14.當函數(shù)取得最大值時,=__________.15.數(shù)列滿足,則的前60項和為_____.16.已知無窮等比數(shù)列滿足:對任意的,,則數(shù)列公比的取值集合為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列的前項和為,且滿足(1)求數(shù)列的通項公式;(2)設,令,求18.已知關于的不等式.(1)若不等式的解集為,求實數(shù)的值;(2)若不等式的解集為,求實數(shù)的取值范圍.19.設是等差數(shù)列,且.(Ⅰ)求的通項公式;(Ⅱ)求.20.如圖,在四棱錐中,,且,,,點在上,且.(1)求證:平面⊥平面;(2)求證:直線∥平面.21.已知方程有兩根、,且,.(1)當,時,求的值;(2)當,時,用表示.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】
利用分離常數(shù)法得出不等式在上成立,根據(jù)函數(shù)在上的單調(diào)性,求出的取值范圍【題目詳解】關于的不等式在區(qū)間上有解在上有解即在上成立,設函數(shù)數(shù),恒成立在上是單調(diào)減函數(shù)且的值域為要在上有解,則即的取值范圍是故選【題目點撥】本題是一道關于一元二次不等式的題目,解題的關鍵是掌握一元二次不等式的解法,分離含參量,然后求出結果,屬于基礎題.2、A【解題分析】
設等比數(shù)列的公比為,結合題中條件得出且,將、、、用與表示,利用因式分解思想以及基本不等式可得出與的不等關系,并結合等差數(shù)列下標和性質(zhì)可得出與的大小關系.【題目詳解】設等比數(shù)列的公比為,由于等差數(shù)列是公差不為零,則,從而,且,得,,,即,另一方面,由等差數(shù)列的性質(zhì)可得,因此,,故選:A.【題目點撥】本題考查等差數(shù)列和等比數(shù)列性質(zhì)的應用,解題的關鍵在于將等比中的項利用首項和公比表示,并進行因式分解,考查分析問題和解決問題的能力,屬于中等題.3、A【解題分析】
根據(jù)向量的數(shù)量積結合基本不等式即可.【題目詳解】由題意得,因為,為正實數(shù),則當且僅當時取等.所以選擇A【題目點撥】本題主要考查了向量的數(shù)量積以及基本不等式,在用基本不等式時要滿足一正二定三相等.屬于中等題4、B【解題分析】
利用不等式的基本性質(zhì)即可得出結果.【題目詳解】因為,所以,所以,故選B【題目點撥】本題主要考查不等式的基本性質(zhì),屬于基礎題型.5、D【解題分析】
根據(jù)并集定義計算.【題目詳解】由題意A∪B={x|-2<x<3}.故選D.【題目點撥】本題考查集合的并集運算,屬于基礎題.6、C【解題分析】
根據(jù)系統(tǒng)抽樣的定義和方法,結合題意可分段的間隔等于個體總數(shù)除以樣本容量,即可求解.【題目詳解】根據(jù)系統(tǒng)抽樣的定義和方法,結合題意可分段的間隔,故選C.【題目點撥】本題主要考查了系統(tǒng)抽樣的定義和方法,其中解答中熟記系統(tǒng)抽樣的定義和方法是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.7、B【解題分析】試題分析:根據(jù)平面的基本性質(zhì)及推論,即確定平面的幾何條件,即可知道答案.解:對于A.過一條直線可以有無數(shù)個平面,故錯;對于C.過共線的三個點可以有無數(shù)個平面,故錯;對于D.過異面的兩條直線不能確定平面,故錯;由平面的基本性質(zhì)及推論知B正確.故選B.考點:平面的基本性質(zhì)及推論.8、C【解題分析】
利用正弦定理求出sinB的值,由b<c得出B<C,可得出角B的值,再利用三角形的內(nèi)角和定理求出角A【題目詳解】由正弦定理得bsinB=∵b<c,則B<C,所以,B=45°,由三角形的內(nèi)角和定理得故選:C.【題目點撥】本題考查利用正弦定理解三角形,也考查了三角形內(nèi)角和定理的應用,在解題時要注意正弦值所對的角有可能有兩角,可以利用大邊對大角定理或兩角之和小于180°9、D【解題分析】試題分析:在中,由正弦定理可得,因為,所以或,所以或,所以的形狀一定為等腰三角形或直角三角形,故選D.考點:正弦定理.10、C【解題分析】
利用橢圓和雙曲線的性質(zhì),用橢圓雙曲線的焦距長軸長表示,再利用均值不等式得到答案.【題目詳解】設橢圓長軸,雙曲線實軸,由題意可知:,又,,兩式相減,可得:,,.,,當且僅當時等立,的最小值為6,故選:C.【題目點撥】本題考查了橢圓雙曲線的性質(zhì),用橢圓雙曲線的焦距長軸長表示是解題的關鍵,意在考查學生的計算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
由反余弦函數(shù)的值域可求出函數(shù)的值域.【題目詳解】,,因此,函數(shù)的值域為.故答案為:.【題目點撥】本題考查反三角函數(shù)值域的求解,解題的關鍵就是依據(jù)反余弦函數(shù)的值域進行計算,考查計算能力,屬于基礎題.12、【解題分析】
過棱錐頂點作,平面,則為的中點,為正方形的中心,連結,設正四棱錐的底面長為,根據(jù)已知求出a=2,SO=1,再求該正四棱錐的體積.【題目詳解】過棱錐頂點作,平面,則為的中點,為正方形的中心,連結,則為側(cè)面與底面所成角的平面角,即,設正四棱錐的底面長為,則,所以,在中,∵∴,解得,∴∴棱錐的體積.故答案為【題目點撥】本題主要考查空間線面角的計算,考查棱錐體積的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.13、3【解題分析】
先將函數(shù)的解析式利用降冪公式化為,再利用輔助角公式化為,其中,由題意可知與的關系,結合誘導公式以及求出的值.【題目詳解】,其中,當時,函數(shù)取得最大值,則,,所以,,解得,故答案為.【題目點撥】本題考查三角函數(shù)最值,解題時首先應該利用降冪公式、和差角公式進行化簡,再利用輔助角公式化簡為的形式,本題中用到了與之間的關系,結合誘導公式進行求解,考查計算能力,屬于中等題.14、【解題分析】
利用輔助角將函數(shù)利用兩角差的正弦公式進行化簡,求得函數(shù)取得最大值時的與的關系,從而求得,,可得結果.【題目詳解】因為函數(shù),其中,,當時,函數(shù)取得最大值,此時,∴,,∴故答案為【題目點撥】本題考查了兩角差的正弦公式的逆用,著重考查輔助角公式的應用與正弦函數(shù)的性質(zhì),屬于中檔題.15、1830【解題分析】
由題意可得,,,,,,…,,變形可得,,,,,,,,…,利用數(shù)列的結構特征,求出的前60項和.【題目詳解】解:,∴,,,,,,…,,∴,,,,,,,,…,從第一項開始,依次取2個相鄰奇數(shù)項的和都等于2,從第二項開始,依次取2個相鄰偶數(shù)項的和構成以8為首項,以16為公差的等差數(shù)列,的前60項和為,故答案為:.【題目點撥】本題主要考查遞推公式的應用,考查利用構造等差數(shù)列求數(shù)列的前項和,屬于中檔題.16、【解題分析】
根據(jù)條件先得到:的表示,然后再根據(jù)是等比數(shù)列討論公比的情況.【題目詳解】因為,所以,即;取連續(xù)的有限項構成數(shù)列,不妨令,則,且,則此時必為整數(shù);當時,,不符合;當時,,符合,此時公比;當時,,不符合;當時,,不符合;故:公比.【題目點撥】本題考查無窮等比數(shù)列的公比,難度較難,分析這種抽象類型的數(shù)列問題時,經(jīng)常需要進行分類,可先通過列舉的方式找到思路,然后再準確分析.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】
試題分析:(1)利用得到相鄰兩項的關系,把問題轉(zhuǎn)化為等比數(shù)列問題;(2)利用裂項相消法求和.試題解析:(1)由,得得∴是等比數(shù)列,且公比為(2)由(1)及得,18、(1)(2)【解題分析】
(1)不等式的解集為說明和1是的兩個實數(shù)根,運用韋達定理,可以求出實數(shù)的值;(2)不等式的解集為,只需,或即可,解不等式組求出實數(shù)的取值范圍.【題目詳解】(1)若關于的不等式的解集為,則和1是的兩個實數(shù)根,由韋達定理可得,求得.(2)若關于的不等式解集為,則,或,求得或,故實數(shù)的取值范圍為.【題目點撥】本題考查了已知一元二次不等式的解集求參問題,考查了數(shù)學運算能力19、(I);(II).【解題分析】
(I)設公差為,根據(jù)題意可列關于的方程組,求解,代入通項公式可得;(II)由(I)可得,進而可利用等比數(shù)列求和公式進行求解.【題目詳解】(I)設等差數(shù)列的公差為,∵,∴,又,∴.∴.(II)由(I)知,∵,∴是以2為首項,2為公比的等比數(shù)列.∴.∴點睛:等差數(shù)列的通項公式及前項和共涉及五個基本量,知道其中三個可求另外兩個,體現(xiàn)了用方程組解決問題的思想.20、(1)見解析;(2)見解析【解題分析】
(1)通過邊長關系可知,所以,又,所以平面,所以平面平面.(2)連接交與點,連接,易得∽,所以,所以直線平面.,【題目詳解】(1)因為,,所以,所以又,且,平面,平面所以平面又平面所以平面平面(2)連接交與點,連接在四邊形中,,∽,所以又,即所以又直線平面,直線平面所以直線平面【題目點撥】(1)證明面面垂直:先正線面垂直,線又屬于另一個面,即可證明面面垂直.(2)證明線面平行,在面內(nèi)找一個線與已知直線平行即可.21、(1);(2).【解題分析】
(1)由反三角函數(shù)的定義得出,,再由韋達定理結合兩角和的正切公式求出的值,并求出的取值范圍,即可得出的值;(2)由韋達定理得出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高端會議策劃與銷售服務合同模板
- 2025年度某局數(shù)字化轉(zhuǎn)型勞務分包結算規(guī)范合同2篇
- 2025版辦公樓小型裝飾裝修工程施工合同示范6篇
- 2025版建筑工地挖掘機駕駛員勞動合同標準范本3篇
- 《全球化與兩岸關系》課件
- 可燃冰資源地質(zhì)評價方法與實踐考核試卷
- 2025版學校食堂蔬菜采購及食品安全追溯服務合同3篇
- 2025年度美術品藝術品投資顧問合同范本4篇
- 2025年學校節(jié)日慶祝協(xié)議
- 2025年合伙人員協(xié)議
- 山東省桓臺第一中學2024-2025學年高一上學期期中考試物理試卷(拓展部)(無答案)
- 中華人民共和國保守國家秘密法實施條例培訓課件
- 管道坡口技術培訓
- 2024年全國統(tǒng)一高考英語試卷(新課標Ⅰ卷)含答案
- 2024年認證行業(yè)法律法規(guī)及認證基礎知識 CCAA年度確認 試題與答案
- 皮膚儲存新技術及臨床應用
- 外研版七年級英語上冊《閱讀理解》專項練習題(含答案)
- 2024年遼寧石化職業(yè)技術學院單招職業(yè)適應性測試題庫必考題
- 上海市復旦大學附中2024屆高考沖刺模擬數(shù)學試題含解析
- 幼兒園公開課:大班健康《國王生病了》課件
- 小學六年級說明文閱讀題與答案大全
評論
0/150
提交評論