版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
山東省濟南市山東師范大學(xué)附中2024屆數(shù)學(xué)高一下期末達標(biāo)檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.從裝有2個紅球和2個黑球的口袋內(nèi)任取2個球,則互斥而不對立的兩個事件是()A.恰有1個黑球與恰有2個黑球 B.至少有一個紅球與都是黑球C.至少有一個黑球與至少有1個紅球 D.至少有一個黑球與都是黑球2.若圓心坐標(biāo)為的圓,被直線截得的弦長為,則這個圓的方程是()A. B.C. D.3.函數(shù)的值域為A.[1,] B.[1,2] C.[,2] D.[4.若,且,則xy的最大值為()A. B. C. D.5.已知直線l的方程為2x+3y=5,點P(a,b)在l上位于第一象限內(nèi)的點,則的最小值為()A. B. C. D.6.設(shè)α,β為兩個不同的平面,直線l?α,則“l(fā)⊥β”是“α⊥β”成立的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件7.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,≤)的圖象如下,則點的坐標(biāo)是()A.(,) B.(,)C.(,) D.(,)8.如圖是某幾何體的三視圖,則該幾何體的外接球的表面積是()A. B. C. D.9.已知變量,之間的線性回歸方程為,且變量,之間的一組相關(guān)數(shù)據(jù)如下表所示,則下列說法中錯誤的是()681012632A.變量,之間呈現(xiàn)負(fù)相關(guān)關(guān)系B.的值等于5C.變量,之間的相關(guān)系數(shù)D.由表格數(shù)據(jù)知,該回歸直線必過點10.在等差數(shù)列中,若前項的和,,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最大值是__________.12.已知數(shù)列的通項公式為,的前項和為,則___________.13.如圖,,分別為的中線和角平分線,點P是與的交點,若,,則的面積為______.14.有一個底面半徑為2,高為2的圓柱,點,分別為這個圓柱上底面和下底面的圓心,在這個圓柱內(nèi)隨機取一點P,則點P到點或的距離不大于1的概率是________.15.直線與圓的位置關(guān)系是______.16.圓錐的底面半徑是3,高是4,則圓錐的側(cè)面積是__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知等比數(shù)列的公比,前項和為,且滿足.,,分別是一個等差數(shù)列的第1項,第2項,第5項.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和;(3)若,的前項和為,且對任意的滿足,求實數(shù)的取值范圍.18.四棱錐中,,,底面,,直線與底面所成的角為,、分別是、的中點.(1)求證:直線平面;(2)若,求證:直線平面;(3)求棱錐的體積.19.解下列三角方程:(1);(2).20.如圖,為了測量河對岸、兩點的距離,觀察者找到一個點,從點可以觀察到點、;找到一個點,從點可以觀察到點、;找到一個點,從點可以觀察到點、.并測量得到以下數(shù)據(jù),,,,,米,米.求、兩點的距離.21.已知數(shù)列的前項和為,且,.(1)求證:數(shù)列的通項公式;(2)設(shè),,求.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】
從裝有2個紅球和2個黑球的口袋中任取2個球,包括3種情況:①恰有一個黑球,②恰有兩個黑球,③沒有黑球.
故恰有一個黑球與恰有兩個黑球不可能同時發(fā)生,它們是互斥事件,再由這兩件事的和不是必然事件,故他們是互斥但不對立的事件,
故選:A.2、B【解題分析】
設(shè)出圓的方程,求出圓心到直線的距離,利用圓心到直線的距離、半徑和半弦長滿足勾股定理,求得圓的半徑,即可求得圓的方程,得到答案.【題目詳解】由題意,設(shè)圓的方程為,則圓心到直線的距離為,又由被直線截得的弦長為,則,所以所求圓的方程為,故選B.【題目點撥】本題主要考查了圓的方程的求解,以及直線與圓的弦長的應(yīng)用,其中解答中熟記直線與圓的位置關(guān)系,合理利用圓心到直線的距離、半徑和半弦長滿足勾股定理是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.3、D【解題分析】
因為函數(shù),平方求出的取值范圍,再根據(jù)函數(shù)的性質(zhì)求出的值域.【題目詳解】函數(shù)定義域為:,因為,又,所以的值域為.故選D.【題目點撥】本題考查函數(shù)的值域,此題也可用三角換元求解.求函數(shù)值域常用方法:單調(diào)性法,換元法,判別式法,反函數(shù)法,幾何法,平方法等.4、D【解題分析】
利用基本不等式可直接求得結(jié)果.【題目詳解】(當(dāng)且僅當(dāng)時取等號)的最大值為故選:【題目點撥】本題考查利用基本不等式求解積的最大值的問題,屬于基礎(chǔ)題.5、C【解題分析】
由題意可得2a+3b=5,a,b>0,可得4a=10﹣6b,(3b<5),將所求式子化為b的關(guān)系式,由基本不等式可得所求最小值.【題目詳解】直線l的方程為2x+3y=5,點P(a,b)在l上位于第一象限內(nèi)的點,可得2a+3b=5,a,b>0,可得4a=10﹣6b,(3b<5),則[(11﹣6b)+(9+6b)]()(7),當(dāng)且僅當(dāng)時,即b,a,上式取得最小值,故選:C.【點評】本題考查基本不等式的運用:求最值,考查變形能力和化簡運算能力,屬于中檔題.6、A【解題分析】試題分析:當(dāng)滿足l?α,l⊥β時可得到α⊥β成立,反之,當(dāng)l?α,α⊥β時,l與β可能相交,可能平行,因此前者是后者的充分不必要條件考點:充分條件與必要條件點評:命題:若p則q是真命題,則p是q的充分條件,q是p的必要條件7、C【解題分析】
由函數(shù)f(x)的部分圖象求得A、T、ω和φ的值即可.【題目詳解】由函數(shù)f(x)=Asin(ωx+φ)的部分圖象知,A=2,T=2×(4﹣1)=6,∴ω,又x=1時,y=2,∴φ2kπ,k∈Z;∴φ2kπ,k∈Z;又0<φ,∴φ,∴點P(,).故選C.【題目點撥】已知函數(shù)的圖象求解析式(1).(2)由函數(shù)的周期求(3)利用“五點法”中相對應(yīng)的特殊點求.8、B【解題分析】
由三視圖還原幾何體,可知該幾何體是由邊長為的正方體切割得到的四棱錐,可知所求外接球即為正方體的外接球,通過求解正方體外接球半徑,代入球的表面積公式可得到結(jié)果.【題目詳解】由三視圖可知,幾何體為如下圖所示的四棱錐:由上圖可知:四棱錐可由邊長為的正方體切割得到該正方體的外接球即為四棱錐的外接球四棱錐的外接球半徑外接球的表面積故選:【題目點撥】本題考查棱錐外接球表面積的求解問題,關(guān)鍵是能夠通過三視圖還原幾何體,并將幾何體放入正方體中,通過求解正方體的外接球表面積得到結(jié)果;需明確正方體外接球表面積為其體對角線長的一半.9、C【解題分析】分析:根據(jù)平均數(shù)的計算公式,求得樣本中心為,代入回歸直線的方程,即可求解,得到樣本中心,再根據(jù)之間的變化趨勢,可得其負(fù)相關(guān)關(guān)系,即可得到答案.詳解:由題意,根據(jù)上表可知,即數(shù)據(jù)的樣本中心為,把樣本中心代入回歸直線的方程,可得,解得,則,即數(shù)據(jù)的樣本中心為,由上表中的數(shù)據(jù)可判定,變量之間隨著的增大,值變小,所以呈現(xiàn)負(fù)相關(guān)關(guān)系,由于回歸方程可知,回歸系數(shù),而不是,所以C是錯誤的,故選C.點睛:本題主要考查了數(shù)據(jù)的平均數(shù)的計算公式,回歸直線方程的特點,以及相關(guān)關(guān)系的判定等基礎(chǔ)知識的應(yīng)用,其中熟記回歸分析的基本知識點是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力.10、C【解題分析】試題分析:.考點:等差數(shù)列的基本概念.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】分析:利用兩角和正弦公式簡化為y=,從而得到函數(shù)的最大值.詳解:y=sinx+cosx==.∴函數(shù)的最大值是故答案為點睛:本題考查了兩角和正弦公式,考查了正弦函數(shù)的圖象與性質(zhì),屬于基礎(chǔ)題.12、【解題分析】
計算出,再由可得出的值.【題目詳解】當(dāng)時,則,當(dāng)時,則,當(dāng)時,.,,因此,.故答案為:.【題目點撥】本題考查數(shù)列求和,解題的關(guān)鍵就是找出數(shù)列的規(guī)律,考查分析問題和解決問題的能力,屬于中等題.13、【解題分析】
設(shè),,求點的坐標(biāo),運用換元法,求直線方程,再解出交點的坐標(biāo),再利用向量數(shù)量積運算求出,最后結(jié)合三角形面積公式求解即可.【題目詳解】解:由,可設(shè),,則,設(shè),則,直線的方程為,直線的方程為,聯(lián)立直線、方程解得,則,,可得,解得:,即,即,所以,故答案為:.【題目點撥】本題考查了向量的數(shù)量積運算,重點考查了兩直線的交點坐標(biāo)及三角形面積公式,屬中檔題.14、【解題分析】
本題利用幾何概型求解.先根據(jù)到點的距離等于1的點構(gòu)成圖象特征,求出其體積,最后利用體積比即可得點到點,的距離不大于1的概率;【題目詳解】解:由題意可知,點P到點或的距離都不大于1的點組成的集合分別以、為球心,1為半徑的兩個半球,其體積為,又該圓柱的體積為,則所求概率為.故答案為:【題目點撥】本題主要考查幾何概型、圓柱和球的體積等基礎(chǔ)知識,考查運算求解能力,考查空間想象力、化歸與轉(zhuǎn)化思想.關(guān)鍵是明確滿足題意的測度為體積比.15、相交【解題分析】
由直線系方程可得直線過定點,進而可得點在圓內(nèi)部,即可得到位置關(guān)系.【題目詳解】化直線方程為,令,解得,所以直線過定點,又圓的圓心坐標(biāo)為,半徑,而,所以點在圓內(nèi)部,故直線與圓的位置關(guān)系是相交.故答案為:相交.【題目點撥】本題考查直線與圓位置關(guān)系的判斷,考查直線系方程的應(yīng)用,屬于基礎(chǔ)題.16、【解題分析】分析:由已知中圓錐的底面半徑是,高是,由勾股定理,我們可以計算出圓錐的母線長,代入圓錐側(cè)面積公式,即可得到結(jié)論.詳解:圓錐的底面半徑是,高是,圓錐的母線長,則圓錐側(cè)面積公式,故答案為.點睛:本題主要考查圓錐的性質(zhì)與圓錐側(cè)面積公式,意在考查對基本公式的掌握與理解,屬于簡單題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2);(3)【解題分析】
(1)利用等比數(shù)列通項公式以及求和公式化簡,得到,由,,分別是一個等差數(shù)列的第1項,第2項,第5項,利用等差數(shù)列的定義可得,化簡即可求出,從而得到數(shù)列的通項公式.(2)由(1)可得,利用錯位相減,求出數(shù)列的前項和即可;(3)結(jié)合(1)可得,利用裂項相消法,即可得到的前項和,求出的最大值,即可解得實數(shù)的取值范圍【題目詳解】(1)由得,所以,由,,分別是一個等差數(shù)列的第1項,第2項,第5項,得,即,即,即,因為,所以,所以.(2)由于,所以,所以,,兩式相減得,,所以(3)由知,∴,∴,解得或.即實數(shù)的取值范圍是【題目點撥】本題考查等比數(shù)列通項公式與前項和,等差數(shù)列的定義,以及利用錯位相減法和裂項相消法求數(shù)列的前項和,考查學(xué)生的計算能力,有一定綜合性.18、(1)見解析(2)見解析(3)【解題分析】
(1)由中位線定理可得,,再根據(jù)平行公理可得,,即可根據(jù)線面平行的判定定理證出;(2)根據(jù)題意可計算出,而是的中點,可得,又,即可根據(jù)線面垂直的判定定理證出;(3)根據(jù)等積法,即可求出.【題目詳解】(1)證明:連接,,,、是、中點,,從而.又平面,平面,直線平面;(2)證明:,,.底面,直線與底面成角,..是的中點,.,.面,面,直線平面;(3)由題可知,,.【題目點撥】本題主要考查線面平行的判定定理,線面垂直的判定定理的應(yīng)用,以及利用等積法求三棱錐的體積,意在考查學(xué)生的直觀想象能力,邏輯推理能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題.19、(1);(2)或.【解題分析】
(1)先將等式變形為,并利用兩角和的余弦公式得出,即可得出,即可得出該方程的解;(2)由,將該方程變形為,求出的值,即可求出該方程的解.【題目詳解】(1),,即,,解得;(2),整理得,即,,得或,解得;解,得.因此,原方程的解為或.【題目點撥】本題考查三角方程的求解,對等式進行化簡變形是計算的關(guān)鍵,考查運算求解能力,屬于中等題.20、米【解題分析】
在中,求出,利用正弦定理求出,然后在中利用銳角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2022年甘肅省甘南自治州公開招聘警務(wù)輔助人員筆試自考題2卷含答案
- 2022年四川省雅安市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 2022年浙江省湖州市公開招聘警務(wù)輔助人員輔警筆試自考題1卷含答案
- 晨會主持發(fā)言稿
- 廣西梧州市(2024年-2025年小學(xué)六年級語文)統(tǒng)編版隨堂測試(下學(xué)期)試卷及答案
- 2024年姿態(tài)控制推力器、推進劑貯箱項目資金需求報告代可行性研究報告
- 《應(yīng)收款項新》課件
- 《稱贊教學(xué)》課件
- 2025年毛紡織、染整加工產(chǎn)品項目立項申請報告模范
- 2025年水乳型涂料項目提案報告模范
- 農(nóng)村文化建設(shè)培訓(xùn)
- 教育理念和教育方法
- 九小場所安全檢查表
- 第四代住宅百科知識講座
- 2022-2023學(xué)年佛山市禪城區(qū)六年級數(shù)學(xué)第一學(xué)期期末達標(biāo)測試試題含解析
- 《廣聯(lián)達培訓(xùn)教程》課件
- 揚州育才小學(xué)2023-2024六年級數(shù)學(xué)上冊期末復(fù)習(xí)試卷(一)及答案
- 蔚藍(lán)時代有限公司員工培訓(xùn)現(xiàn)狀分析及改進措施研究
- 浙江省溫州市2022-2023學(xué)年五年級上學(xué)期語文期末試卷(含答案)3
- 軟件系統(tǒng)實施與質(zhì)量保障方案
- 2023-2024學(xué)年度第一學(xué)期四年級數(shù)學(xué)寒假作業(yè)
評論
0/150
提交評論