山東省濟(jì)寧市兗州區(qū)2024屆數(shù)學(xué)高一下期末調(diào)研模擬試題含解析_第1頁
山東省濟(jì)寧市兗州區(qū)2024屆數(shù)學(xué)高一下期末調(diào)研模擬試題含解析_第2頁
山東省濟(jì)寧市兗州區(qū)2024屆數(shù)學(xué)高一下期末調(diào)研模擬試題含解析_第3頁
山東省濟(jì)寧市兗州區(qū)2024屆數(shù)學(xué)高一下期末調(diào)研模擬試題含解析_第4頁
山東省濟(jì)寧市兗州區(qū)2024屆數(shù)學(xué)高一下期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

山東省濟(jì)寧市兗州區(qū)2024屆數(shù)學(xué)高一下期末調(diào)研模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知直三棱柱的所有頂點都在球0的表面上,,,則=()A.1 B.2 C. D.42.為了從甲、乙兩組中選一組參加“喜迎國慶共建小康”知識競賽活動.班主任老師將兩組最近的次測試的成績進(jìn)行統(tǒng)計,得到如圖所示的莖葉圖.若甲、乙兩組的平均成績分別是.則下列說法正確的是()A.,乙組比甲組成績穩(wěn)定,應(yīng)選乙組參加比賽B.,甲組比乙組成績穩(wěn)定.應(yīng)選甲組參加比賽C.,甲組比乙組成績穩(wěn)定.應(yīng)選甲組參加比賽D.,乙組比甲組成績穩(wěn)定,應(yīng)選乙組參加比賽3.已知函數(shù)f:R+→R+滿足:對任意三個正數(shù)x,y,z,均有f().設(shè)a,b,c是互不相等的三個正數(shù),則下列結(jié)論正確的是()A.若a,b,c是等差數(shù)列,則f(a),f(b),f(c)一定是等差數(shù)列B.若a,b,c是等差數(shù)列,則f(),f(),f()一定是等差數(shù)列C.若a,b,c是等比數(shù)列,則f(a),f(b),f(c)一定是等比數(shù)列D.若a,b,c是等比數(shù)列,則f(),f(),f()一定是等比數(shù)列4.角α的終邊上有一點P(a,|a|),a∈R且a≠0,則sinα值為()A. B. C.1 D.或5.根據(jù)下面莖葉圖提供了甲、乙兩組數(shù)據(jù),可以求出甲、乙的中位數(shù)分別為()A.24和29 B.26和29 C.26和32 D.31和296.已知向量是單位向量,=(3,4),且在方向上的投影為,則A.36 B.21 C.9 D.67.圓,那么與圓有相同的圓心,且經(jīng)過點的圓的方程是().A. B.C. D.8.已知為第一象限角,,則()A. B. C. D.9.在同一直角坐標(biāo)系中,函數(shù)且的圖象可能是()A. B.C. D.10.已知,,點在內(nèi),且,設(shè),則等于()A. B.3 C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.當(dāng)時,不等式成立,則實數(shù)k的取值范圍是______________.12.已知,,兩圓和只有一條公切線,則的最小值為________13.已知,且是第一象限角,則的值為__________.14.在銳角中,角的對邊分別為.若,則角的大小為為____.15.設(shè)數(shù)列是首項為0的遞增數(shù)列,函數(shù)滿足:對于任意的實數(shù),總有兩個不同的根,則的通項公式是________.16.利用直線與圓的有關(guān)知識求函數(shù)的最小值為_______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在四邊形中,,,.(1)若,求的面積;(2)若,,求的長.18.已知函數(shù)的部分圖象如圖所示.(1)求與的值;(2)設(shè)的三個角、、所對的邊依次為、、,如果,且,試求的取值范圍;(3)求函數(shù)的最大值.19.己知數(shù)列的前項和,求數(shù)列的通項.20.已知數(shù)列中,,,數(shù)列滿足。(1)求證:數(shù)列為等差數(shù)列。(2)求數(shù)列的通項公式。21.已知函數(shù).(I)當(dāng)時,求不等式的解集;(II)若關(guān)于的不等式有且僅有一個整數(shù)解,求正實數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】

由題得在底面的投影為的外心,故為的中點,再利用數(shù)量積計算得解.【題目詳解】依題意,在底面的投影為的外心,因為,故為的中點,,故選B.【題目點撥】本題主要考查平面向量的運(yùn)算,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.2、D【解題分析】

由莖葉圖數(shù)據(jù)分別計算兩組的平均數(shù);根據(jù)數(shù)據(jù)分布特點可知乙組成績更穩(wěn)定;由平均數(shù)和穩(wěn)定性可知應(yīng)選乙組參賽.【題目詳解】;乙組的數(shù)據(jù)集中在平均數(shù)附近乙組成績更穩(wěn)定應(yīng)選乙組參加比賽本題正確選項:【題目點撥】本題考查莖葉圖的相關(guān)知識,涉及到平均數(shù)的計算、數(shù)據(jù)穩(wěn)定性的估計等知識,屬于基礎(chǔ)題.3、B【解題分析】

令,,,若是等差數(shù)列,計算得,進(jìn)而可得結(jié)論.【題目詳解】由題意,,令,,,若是等差數(shù)列,則所以,即,故,,成等差數(shù)列.若是等比數(shù)列,,,與,,既不能成等差數(shù)列又不等成等比數(shù)列.故選:B.【題目點撥】本題考查抽象函數(shù)的解析式,等差數(shù)列的等差中項的性質(zhì),屬于中檔題.4、B【解題分析】

根據(jù)三角函數(shù)的定義,求出OP,即可求出的值.【題目詳解】因為,所以,故選B.【題目點撥】本題主要考查三角函數(shù)的定義應(yīng)用.5、B【解題分析】

根據(jù)莖葉圖,將兩組數(shù)據(jù)按大小順序排列,因為是12個數(shù),所以中位數(shù)即為中間兩數(shù)的平均數(shù).【題目詳解】從莖葉圖知都有12個數(shù),所以中位數(shù)為中間兩個數(shù)的平均數(shù)甲中間兩個數(shù)為25,27,所以中位數(shù)是26乙中間兩個數(shù)為28,30,所以中位數(shù)是29故選:B【題目點撥】本題主要考查了莖葉圖和中位數(shù),平均數(shù),還考查了數(shù)據(jù)處理的能力,屬于基礎(chǔ)題.6、D【解題分析】

根據(jù)公式把模轉(zhuǎn)化為數(shù)量積,展開后再根據(jù)和已知條件計算.【題目詳解】因為在方向上的投影為,所以,.故選D.【題目點撥】本題主要考查向量模有關(guān)的計算,常用公式有,.7、B【解題分析】

圓的標(biāo)準(zhǔn)方程為,圓心,故排除、,代入點,只有項經(jīng)過此點,也可以設(shè)出要求的圓的方程:,再代入點,可以求得圓的半徑為.故選.點睛:這個題目主要考查圓的標(biāo)準(zhǔn)方程,因為這是一道選擇題,故根據(jù)與條件中的圓的方程可以得到圓心坐標(biāo),進(jìn)而可以排除幾個選項,如果正規(guī)方法,就可以按照已知圓心,寫出標(biāo)準(zhǔn)方程,代入已知點求出標(biāo)準(zhǔn)方程即可.8、B【解題分析】

由式子兩邊平方可算得,又由,即可得到本題答案.【題目詳解】因為,,,,所以.故選:B【題目點撥】本題主要考查利用同角三角函數(shù)的基本關(guān)系及誘導(dǎo)公式化簡求值.9、D【解題分析】

本題通過討論的不同取值情況,分別討論本題指數(shù)函數(shù)、對數(shù)函數(shù)的圖象和,結(jié)合選項,判斷得出正確結(jié)論.題目不難,注重重要知識、基礎(chǔ)知識、邏輯推理能力的考查.【題目詳解】當(dāng)時,函數(shù)過定點且單調(diào)遞減,則函數(shù)過定點且單調(diào)遞增,函數(shù)過定點且單調(diào)遞減,D選項符合;當(dāng)時,函數(shù)過定點且單調(diào)遞增,則函數(shù)過定點且單調(diào)遞減,函數(shù)過定點且單調(diào)遞增,各選項均不符合.綜上,選D.【題目點撥】易出現(xiàn)的錯誤有,一是指數(shù)函數(shù)、對數(shù)函數(shù)的圖象和性質(zhì)掌握不熟,導(dǎo)致判斷失誤;二是不能通過討論的不同取值范圍,認(rèn)識函數(shù)的單調(diào)性.10、B【解題分析】

先根據(jù),可得,又因為,,所以可得:在軸方向上的分量為,在軸方向上的分量為,又根據(jù),可得答案.【題目詳解】,,

,,

在軸方向上的分量為,

在軸方向上的分量為,

,,

兩式相比可得:.故選B.【題目點撥】.向量的坐標(biāo)運(yùn)算主要是利用加、減、數(shù)乘運(yùn)算法則進(jìn)行的.若已知有向線段兩端點的坐標(biāo),則應(yīng)先求出向量的坐標(biāo),解題過程中要注意方程思想的運(yùn)用及運(yùn)算法則的正確使用.二、填空題:本大題共6小題,每小題5分,共30分。11、k∈(﹣∞,1]【解題分析】

此題先把常數(shù)k分離出來,再構(gòu)造成再利用導(dǎo)數(shù)求函數(shù)的最小值,使其最小值大于等于k即可.【題目詳解】由題意知:∵當(dāng)0≤x≤1時(1)當(dāng)x=0時,不等式恒成立k∈R(2)當(dāng)0<x≤1時,不等式可化為要使不等式恒成立,則k成立令f(x)x∈(0,1]即f'(x)再令g(x)g'(x)∵當(dāng)0<x≤1時,g'(x)<0∴g(x)為單調(diào)遞減函數(shù)∴g(x)<g(0)=0∴f'(x)<0即函數(shù)f(x)為單調(diào)遞減函數(shù)所以f(x)min=f(1)=1即k≤1綜上所述,由(1)(2)得k≤1故答案為:k∈(﹣∞,1].【題目點撥】本題主要考查利用導(dǎo)數(shù)求函數(shù)的最值,屬于中檔題型.12、9【解題分析】

兩圓只有一條公切線,可以判斷兩圓是內(nèi)切關(guān)系,可以得到一個等式,結(jié)合這個等式,可以求出的最小值.【題目詳解】,圓心為,半徑為2;,圓心為,半徑為1.因為兩圓只有一條公切線,所以兩圓是內(nèi)切關(guān)系,即,于是有(當(dāng)且僅當(dāng)取等號),因此的最小值為9.【題目點撥】本題考查了圓與圓的位置關(guān)系,考查了基本不等式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力.13、;【解題分析】

利用兩角和的公式把題設(shè)展開后求得的值,進(jìn)而利用的范圍判斷的范圍,利用同角三角函數(shù)的基本關(guān)系求得的值,最后利用誘導(dǎo)公式和對原式進(jìn)行化簡,把的值和題設(shè)條件代入求解即可.【題目詳解】,,即,,兩邊同時平方得到:,解得,是第一象限角,,得,,即為第一或第四象限,,.故答案為:.【題目點撥】本題考查了兩角差的余弦公式、誘導(dǎo)公式以及同角三角函數(shù)的基本關(guān)系,需熟記三角函數(shù)中的公式,屬于中檔題.14、【解題分析】由,兩邊同除以得,由余弦定理可得是銳角,,故答案為.15、【解題分析】

利用三角函數(shù)的圖象與性質(zhì)、誘導(dǎo)公式和數(shù)列的遞推公式,可得,再利用“累加”法和等差數(shù)列的前n項和公式,即可求解.【題目詳解】由題意,因為,當(dāng)時,,又因為對任意的實數(shù),總有兩個不同的根,所以,所以,又,對任意的實數(shù),總有兩個不同的根,所以,又,對任意的實數(shù),總有兩個不同的根,所以,由此可得,所以,所以.故答案為:.【題目點撥】本題主要考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用,以及誘導(dǎo)公式,數(shù)列的遞推關(guān)系式和“累加”方法等知識的綜合應(yīng)用,著重考查了推理與運(yùn)算能力,屬于中檔試題.16、【解題分析】

令得,轉(zhuǎn)化為z==,再利用圓心到直線距離求最值即可【題目詳解】令,則故轉(zhuǎn)化為z==,表示上半個圓上的點到直線的距離的最小值的5倍,即故答案為3【題目點撥】本題考查直線與圓的位置關(guān)系,點到直線的距離公式,考查數(shù)形結(jié)合思想,是中檔題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】

(1)由余弦定理求出BC,由此能求出△ABC的面積.(2)設(shè)∠BAC=θ,AC=x,由正弦定理得從而,在中,由正弦定理得,建立關(guān)于θ的方程,由此利用正弦定理能求出sin∠CAD.再利用余弦定理可得結(jié)果.【題目詳解】(1)因為,,,所以,即,所以.所以.(2)設(shè),,則,在中,由正弦定理得:,所以;在中,,所以.即,化簡得:,所以,所以,,所以在中,.即,解得或(舍).【題目點撥】本題考查正、余弦定理在解三角形中的應(yīng)用,考查了引入角的技巧方法,考查運(yùn)算求解能力,考查函數(shù)與方程思想,是中檔題.18、(1),;(2);(3).【解題分析】

(1)由圖象有,可得的值,然后根據(jù)五點法作圖可得,進(jìn)而求出(2)根據(jù),可得,然后由行列式求出,再由正弦定理轉(zhuǎn)化為,根據(jù)的范圍求出的范圍(3)將化簡到最簡形式,然后逐步換元,轉(zhuǎn)化為利用導(dǎo)數(shù)求值問題.【題目詳解】(1)由函數(shù)圖象可得,解得,再根據(jù)五點法作圖可得,解得,.(2),由正弦定理知,,,,.(3)令,因為,所以,則,令,因為,所以,則令,則,只需求出的最大值,,令,則,當(dāng)時,,此時單調(diào)遞增,當(dāng)時,,此時單調(diào)遞減,.函數(shù)的最大值為.【題目點撥】本題主要考查了利用三角函數(shù)的部分圖象求解析式和三角函數(shù)的圖象與性質(zhì),考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于難題.19、【解題分析】

根據(jù)通項前項和的關(guān)系求解即可.【題目詳解】解:當(dāng)時,.當(dāng)時,.當(dāng)時,上式也成立.【題目點撥】本題主要考查了根據(jù)前項公式求解通項公式的方法.屬于基礎(chǔ)題.20、(1)見解析;(2)【解題分析】

(1)將題目過給已知代入進(jìn)行化簡,結(jié)合的表達(dá)式,可證得為等差數(shù)列;(2)利用(1)的結(jié)論求得的通項公式,代入求得的通項公式.【題目詳解】(1)證明:由題意知,,又,故,又易知,故數(shù)列是首項為,公差為1的等差數(shù)列。(2)由(1)知,所以由,可得,故數(shù)列的通項公式為。【題目點撥】本小題第一問考查利用數(shù)列的遞推公式證明數(shù)列為等差數(shù)列,然后利用這個等差數(shù)列來求另一個等差數(shù)列的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論