版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆河北省淶水縣波峰中學(xué)數(shù)學(xué)高一下期末經(jīng)典模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知圓經(jīng)過點(diǎn),且圓心為,則圓的方程為A. B.C. D.2.設(shè)變量,滿足約束條件,則目標(biāo)函數(shù)的最大值為()A. B. C. D.3.若實(shí)數(shù)滿足,則的最大值是()A. B. C. D.4.在中,,則一定是()A.等腰三角形 B.直角三角形C.等邊三角形 D.等腰直角三角形5.已知,若、、三點(diǎn)共線,則為()A. B. C. D.26.在中,角,,所對(duì)的邊分別為,,,若,,,則()A. B. C. D.7.集合A={x|-2<x<2},B={x|-1<x<3}那么A∪B=()A.{x|-2<x<-1} B.{x|-1<x<2}C.{x|-2<x<1} D.{x|-2<x<3}8.已知,且為第二象限角,則()A. B. C. D.9.“()”是“函數(shù)是奇函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點(diǎn)A.向左平行移動(dòng)個(gè)單位長度B.向右平行移動(dòng)個(gè)單位長度C.向左平行移動(dòng)個(gè)單位長度D.向右平行移動(dòng)個(gè)單位長度二、填空題:本大題共6小題,每小題5分,共30分。11.在中,角,,所對(duì)的邊分別為,,,若,則為______三角形.12.在銳角中,角、、所對(duì)的邊為、、,若的面積為,且,,則的弧度為__________.13.甲、乙兩人下棋,兩人下成和棋的概率是,甲獲勝的概率是,則甲不輸?shù)母怕蕿開_______.14.已知中,,則面積的最大值為_____15.已知實(shí)數(shù)滿足,則的最小值為_______.16.已有無窮等比數(shù)列的各項(xiàng)的和為1,則的取值范圍為__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.制訂投資計(jì)劃時(shí),不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個(gè)項(xiàng)目.根據(jù)預(yù)測,甲、乙項(xiàng)目可能的最大盈利分別為和,可能的最大虧損率分別為和.投資人計(jì)劃投資金額不超過億元,要求確??赡艿馁Y金虧損不超過億元,問投資人對(duì)甲、乙兩個(gè)項(xiàng)目各投資多少億元,才能使可能的盈利最大?18.已知向量a=(5sin(1)求cos(α+β)(2)若0<α<β<π2,且sinα=19.如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差都大于2,則稱這個(gè)數(shù)列為“阿當(dāng)數(shù)列”.(1)若數(shù)列為“阿當(dāng)數(shù)列”,且,,,求實(shí)數(shù)的取值范圍;(2)是否存在首項(xiàng)為1的等差數(shù)列為“阿當(dāng)數(shù)列”,且其前項(xiàng)和滿足?若存在,請(qǐng)求出的通項(xiàng)公式;若不存在,請(qǐng)說明理由.(3)已知等比數(shù)列的每一項(xiàng)均為正整數(shù),且為“阿當(dāng)數(shù)列”,,,當(dāng)數(shù)列不是“阿當(dāng)數(shù)列”時(shí),試判斷數(shù)列是否為“阿當(dāng)數(shù)列”,并說明理由.20.已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點(diǎn).(Ⅰ)求證:PC∥平面EBD;(Ⅱ)求證:平面PBC⊥平面PCD.21.已知向量,滿足:,,.(Ⅰ)求與的夾角;(Ⅱ)求.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解題分析】
先計(jì)算圓半徑,然后得到圓方程.【題目詳解】因?yàn)閳A經(jīng)過,且圓心為所以圓的半徑為,則圓的方程為.故答案選D【題目點(diǎn)撥】本題考查了圓方程,先計(jì)算半徑是解題的關(guān)鍵.2、C【解題分析】
作出可行域,利用平移法即可求出.【題目詳解】作出不等式組表示的平面區(qū)域,如圖所示:當(dāng)直線平移至經(jīng)過直線與直線的交點(diǎn)時(shí),取得最大值,.故選:C.【題目點(diǎn)撥】本題主要考查簡單線性規(guī)劃問題的解法應(yīng)用,屬于基礎(chǔ)題.3、B【解題分析】
根據(jù),將等式轉(zhuǎn)化為不等式,求的最大值.【題目詳解】,,,解得,,的最大值是.故選B.【題目點(diǎn)撥】本題考查了基本不等式求最值,屬于基礎(chǔ)題型.4、B【解題分析】
利用余弦定理、三角形面積公式、正弦定理,求得和,通過等式消去,求得的兩個(gè)值,再判斷三角形的形狀.【題目詳解】,又,,,又,,又,,,,,,解得:或,一定是直角三角形.【題目點(diǎn)撥】本題在求解過程中對(duì)存在兩組解,要注意解答的完整性與嚴(yán)謹(jǐn)性,綜合兩種情況,再對(duì)的形狀作出判斷.5、C【解題分析】
由平面向量中的三點(diǎn)共線問題可得:,由基本定理及線性運(yùn)算可得:即得解.【題目詳解】因?yàn)椋?,,三點(diǎn)共線則,解得,即即即即故選:【題目點(diǎn)撥】本題考查平面向量基本定理和共線定理,屬于基礎(chǔ)題.6、C【解題分析】
在中,利用正弦定理求出即可.【題目詳解】在中,角,,所對(duì)的邊分別為,,,已知:,,,利用正弦定理:,解得:.故選C.【題目點(diǎn)撥】本題考查了正弦定理的應(yīng)用及相關(guān)的運(yùn)算問題,屬于基礎(chǔ)題.7、D【解題分析】
根據(jù)并集定義計(jì)算.【題目詳解】由題意A∪B={x|-2<x<3}.故選D.【題目點(diǎn)撥】本題考查集合的并集運(yùn)算,屬于基礎(chǔ)題.8、D【解題分析】
首先根據(jù)題意得到,,再計(jì)算即可.【題目詳解】因?yàn)?,且為第二象限角,?.故選:D【題目點(diǎn)撥】本題主要考查正切二倍角的計(jì)算,同時(shí)考查了三角函數(shù)的誘導(dǎo)公式和同角三角函數(shù)的關(guān)系,屬于簡單題.9、C【解題分析】若,則,函數(shù)為奇函數(shù),所以充分性成立;反之,若函數(shù)是奇函數(shù),則,即,因此必要性也是成立,所以“”是“函數(shù)是奇函數(shù)”充要條件,故選C.10、D【解題分析】試題分析:由題意,為得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點(diǎn)向右平行移動(dòng)個(gè)單位長度,故選D.【考點(diǎn)】三角函數(shù)圖象的平移【名師點(diǎn)睛】本題考查三角函數(shù)圖象的平移,在函數(shù)的圖象平移變換中要注意“”的影響,變換有兩種順序:一種的圖象向左平移個(gè)單位得的圖象,再把橫坐標(biāo)變?yōu)樵瓉淼谋叮v坐標(biāo)不變,得的圖象,另一種是把的圖象橫坐標(biāo)變?yōu)樵瓉淼谋?,縱坐標(biāo)不變,得的圖象,再向左平移個(gè)單位得的圖象.二、填空題:本大題共6小題,每小題5分,共30分。11、等腰或直角【解題分析】
根據(jù)正弦定理化簡得到,得到,故或,得到答案.【題目詳解】利用正弦定理得到:,化簡得到即故或故答案為等腰或直角【題目點(diǎn)撥】本題考查了正弦定理和三角恒等變換,漏解是容易發(fā)生的錯(cuò)誤.12、【解題分析】
利用三角形的面積公式求出的值,結(jié)合角為銳角,可得出角的弧度數(shù).【題目詳解】由三角形的面積公式可知,的面積為,得,為銳角,因此,的弧度數(shù)為,故答案為.【題目點(diǎn)撥】本題考查三角形面積公式的應(yīng)用,考查運(yùn)算求解能力,屬于基礎(chǔ)題.13、【解題分析】甲、乙兩人下棋,只有三種結(jié)果,甲獲勝,乙獲勝,和棋;甲不輸,即甲獲勝或和棋,甲不輸?shù)母怕蕿?4、【解題分析】
設(shè),則,根據(jù)面積公式得,由余弦定理求得代入化簡,由三角形三邊關(guān)系求得,由二次函數(shù)的性質(zhì)求得取得最大值.【題目詳解】解:設(shè),則,根據(jù)面積公式得,由余弦定理可得,可得:,由三角形三邊關(guān)系有:,且,解得:,故當(dāng)時(shí),取得最大值,故答案為:.【題目點(diǎn)撥】本題主要考查余弦定理和面積公式在解三角形中的應(yīng)用.當(dāng)涉及最值問題時(shí),可考慮用函數(shù)的單調(diào)性和定義域等問題,屬于中檔題.15、【解題分析】
實(shí)數(shù)滿足表示點(diǎn)在直線上,可以看作點(diǎn)到原點(diǎn)的距離,最小值是原點(diǎn)到直線的距離,根據(jù)點(diǎn)到直線的距離公式求解.【題目詳解】因?yàn)閷?shí)數(shù)滿足=1所以表示直線上點(diǎn)到原點(diǎn)的距離,故的最小值為原點(diǎn)到直線的距離,即,故的最小值為1.【題目點(diǎn)撥】本題考查點(diǎn)到點(diǎn),點(diǎn)到直線的距離公式,此題的關(guān)鍵在于的最小值所表示的幾何意義的識(shí)別.16、【解題分析】
根據(jù)無窮等比數(shù)列的各項(xiàng)和表達(dá)式,將用公比表示,根據(jù)的范圍求解的范圍.【題目詳解】因?yàn)榍遥?,且,則.【題目點(diǎn)撥】本題考查無窮等比數(shù)列各項(xiàng)和的應(yīng)用,難度一般.關(guān)鍵是將待求量與公比之間的關(guān)系找到,然后根據(jù)的取值范圍解決問題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、投資人用億元投資甲項(xiàng)目,億元投資乙項(xiàng)目,才能在確保虧損不超過億元的前提下,使可能的盈利最大.【解題分析】
設(shè)投資人分別用億元、億元投資甲、乙兩個(gè)項(xiàng)目,根據(jù)題意列出變量、所滿足的約束條件和線性目標(biāo)函數(shù),利用平移直線的方法得出線性目標(biāo)函數(shù)取得最大值時(shí)的最優(yōu)解,并將最優(yōu)解代入線性目標(biāo)函數(shù)可得出盈利的最大值,從而解答該問題.【題目詳解】設(shè)投資人分別用億元、億元投資甲、乙兩個(gè)項(xiàng)目,由題意知,即,目標(biāo)函數(shù)為.上述不等式組表示平面區(qū)域如圖所示,陰影部分(含邊界)即可行域.由圖可知,當(dāng)直線經(jīng)過點(diǎn)時(shí),該直線在軸上截距最大,此時(shí)取得最大值,解方程組,得,所以,點(diǎn)的坐標(biāo)為.當(dāng),時(shí),取得最大值,此時(shí),(億元).答:投資人用億元投資甲項(xiàng)目,億元投資乙項(xiàng)目,才能在確保虧損不超過億元的前提下,使可能的盈利最大.【題目點(diǎn)撥】本題考查線性規(guī)劃的實(shí)際應(yīng)用,考查利用數(shù)學(xué)知識(shí)解決實(shí)際問題,解題的關(guān)鍵就是列出變量所滿足的約束條件,并利用數(shù)形結(jié)合思想求解,考查分析問題和解決問題的能力,屬于中等題.18、(1)cos(α+β)=2【解題分析】
(1)根據(jù)向量數(shù)列積的坐標(biāo)運(yùn)算,化簡整理得到5cos(2)根據(jù)題中條件求出cosα=310再由cos(2α+β)=【題目詳解】解:(1)因?yàn)閍=(所以a?=5因?yàn)閍?b=2,所以5(2)因?yàn)?<α<π2,因?yàn)?<α<β<π2,所以因?yàn)閏os(α+β)=2所以cos因?yàn)?<α<β<π2,所以0<2α+β<【題目點(diǎn)撥】本題主要考查三角恒等變換,熟記兩角和的余弦公式即可,屬于常考題型.19、(1);(2)不存在,理由見詳解;(3)見詳解.【解題分析】
(1)根據(jù)題意,得到,求解即可得出結(jié)果;(2)先假設(shè)存在等差數(shù)列為“阿當(dāng)數(shù)列”,設(shè)公差為,則,根據(jù)等差數(shù)列求和公式,結(jié)合題中條件,得到,即對(duì)任意都成立,判斷出,推出矛盾,即可得出結(jié)果;(3)設(shè)等比數(shù)列的公比為,根據(jù)為“阿當(dāng)數(shù)列”,推出在數(shù)列中,為最小項(xiàng);在數(shù)列中,為最小項(xiàng);得到,,再由數(shù)列每一項(xiàng)均為正整數(shù),得到,或,;分別討論,和,兩種情況,結(jié)合數(shù)列的增減性,即可得出結(jié)果.【題目詳解】(1)由題意可得:,,即,解得或;所以實(shí)數(shù)的取值范圍是;(2)假設(shè)存在等差數(shù)列為“阿當(dāng)數(shù)列”,設(shè)公差為,則,由可得:,又,所以對(duì)任意都成立,即對(duì)任意都成立,因?yàn)?,且,所以,與矛盾,因此,不存在等差數(shù)列為“阿當(dāng)數(shù)列”;(3)設(shè)等比數(shù)列的公比為,則,且每一項(xiàng)均為正整數(shù),因?yàn)闉椤鞍?dāng)數(shù)列”,所以,所以,;因?yàn)椋丛跀?shù)列中,為最小項(xiàng);同理,在數(shù)列中,為最小項(xiàng);由為“阿當(dāng)數(shù)列”,只需,即,又因?yàn)閿?shù)列不是“阿當(dāng)數(shù)列”,所以,即,由數(shù)列每一項(xiàng)均為正整數(shù),可得:,所以,或,;當(dāng),時(shí),,則,令,則,所以,即數(shù)列為遞增數(shù)列,所以,因?yàn)?,所以?duì)任意,都有,即數(shù)列是“阿當(dāng)數(shù)列”;當(dāng),時(shí),,則,顯然數(shù)列是遞減數(shù)列,,故數(shù)列不是“阿當(dāng)數(shù)列”;綜上,當(dāng)時(shí),數(shù)列是“阿當(dāng)數(shù)列”;當(dāng)時(shí),數(shù)列不是“阿當(dāng)數(shù)列”.【題目點(diǎn)撥】本題主要考查數(shù)列的綜合,熟記等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式,以及數(shù)列的性質(zhì)即可,屬于常考題型.20、(Ⅰ)見解析(Ⅱ)見解析【解題分析】試題分析:(1)連,與交于,利用三角形的中位線,可得線線平行,從而可得線面平行;
(2)證明,即可證得平面平面.試題解析:(Ⅰ)連接AC交BD與O,連接EO,∵E、O分別為PA、AC的中點(diǎn),∴EO∥PC,∵PC?平面EBD,EO?平面EBD∴PC∥平面EBD(Ⅱ)∵PD⊥平面ABCD,BC?平面ABCD,∴PD⊥BC,∵ABCD為正方形,∴BC⊥CD,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個(gè)人住房維修基金擔(dān)保責(zé)任協(xié)議4篇
- 2025年金融機(jī)構(gòu)間協(xié)議存款風(fēng)險(xiǎn)管理合同3篇
- 二零二五版汽車分期付款及二手車交易及售后服務(wù)合同3篇
- 2025版學(xué)校活動(dòng)中心租賃合同范本2篇
- 2025版出租車司機(jī)職業(yè)操守?fù)?dān)保合同2篇
- 2025版?zhèn)€人車輛抵押債權(quán)債務(wù)處理執(zhí)行條款4篇
- 2025年長沙考貨運(yùn)從業(yè)資格證駕校
- 2025年綠色建筑項(xiàng)目施工連帶責(zé)任保證合同4篇
- 2025餐飲拆伙協(xié)議書退伙后品牌使用權(quán)及保密協(xié)議3篇
- 卸車事故緊急處理與賠償協(xié)議2025年度3篇
- 山東省桓臺(tái)第一中學(xué)2024-2025學(xué)年高一上學(xué)期期中考試物理試卷(拓展部)(無答案)
- 中華人民共和國保守國家秘密法實(shí)施條例培訓(xùn)課件
- 管道坡口技術(shù)培訓(xùn)
- 2024年全國統(tǒng)一高考英語試卷(新課標(biāo)Ⅰ卷)含答案
- 2024年認(rèn)證行業(yè)法律法規(guī)及認(rèn)證基礎(chǔ)知識(shí) CCAA年度確認(rèn) 試題與答案
- 皮膚儲(chǔ)存新技術(shù)及臨床應(yīng)用
- 外研版七年級(jí)英語上冊(cè)《閱讀理解》專項(xiàng)練習(xí)題(含答案)
- 2024年遼寧石化職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫必考題
- 上海市復(fù)旦大學(xué)附中2024屆高考沖刺模擬數(shù)學(xué)試題含解析
- 幼兒園公開課:大班健康《國王生病了》課件
- 小學(xué)六年級(jí)說明文閱讀題與答案大全
評(píng)論
0/150
提交評(píng)論