版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆山西省應(yīng)縣第一中學(xué)高一數(shù)學(xué)第二學(xué)期期末質(zhì)量跟蹤監(jiān)視模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.?dāng)?shù)列{an}的通項公式an=,若{an}前n項和為24,則n為().A.25 B.576 C.624 D.6252.已知,則的值等于()A. B. C. D.3.已知,,,,那么()A. B. C. D.4.在△中,若,則△為()A.等腰三角形 B.直角三角形C.等腰或直角三角形 D.等腰直角三角形5.已知數(shù)列的前項和,則的值為()A.-199 B.199 C.-101 D.1016.若變量,滿足條件,則的最大值是()A.-4 B.-2 C.0 D.27.若數(shù)列{an}是等比數(shù)列,且an>0,則數(shù)列也是等比數(shù)列.若數(shù)列是等差數(shù)列,可類比得到關(guān)于等差數(shù)列的一個性質(zhì)為().A.是等差數(shù)列B.是等差數(shù)列C.是等差數(shù)列D.是等差數(shù)列8.直線的斜率是()A. B. C. D.9.已知樣本的平均數(shù)是10,方差是2,則的值為()A.88 B.96 C.108 D.11010.函數(shù)的單調(diào)增區(qū)間是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知是以為首項,為公差的等差數(shù)列,是其前項和,則數(shù)列的最小項為第___項12.我國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一段記載:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān).”其大意為:“有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天才到達(dá)目的地.”則該人第一天走的路程為__________里.13.圓錐的底面半徑是3,高是4,則圓錐的側(cè)面積是__________.14.如圖所示為函數(shù)的部分圖像,其中、分別是函數(shù)圖像的最高點和最低點,且,那么________.15.已知等差數(shù)列的前項和為,且,,則;16.已知函數(shù),則的取值范圍是____三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,,與的夾角為,,,當(dāng)實數(shù)為何值時,(1);(2).18.(1)已知數(shù)列的前項和滿足,求數(shù)列的通項公式;(2)數(shù)列滿足,(),求數(shù)列的通項公式.19.已知函數(shù).(1)求的值及f(x)的對稱軸;(2)將的圖象向左平移個單位得到函數(shù)的圖象,求的單調(diào)遞增區(qū)間.20.在中,角對應(yīng)的邊分別是,且.(1)求的周長;(2)求的值.21.中,角的對邊分別為,且.(I)求角的大?。唬↖I)若,求的最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】an==-(),前n項和Sn=-[(1-)+(-)]+…+()]=-1=24,故n=624.故選C.2、D【解題分析】,所以,則,故選擇D.3、C【解題分析】由于故,故,所以.由于,由于,所以,故.綜上所述選.4、A【解題分析】
利用正弦定理化簡已知條件,得到,由此得到,進(jìn)而判斷出正確選項.【題目詳解】由正弦定理得,所以,所以,故三角形為等腰三角形,故選A.【題目點撥】本小題主要考查利用正弦定理判斷三角形的形狀,考查同角三角函數(shù)的基本關(guān)系式,屬于基礎(chǔ)題.5、D【解題分析】
由特點可采用并項求和的方式求得.【題目詳解】本題正確選項:【題目點撥】本題考查并項求和法求解數(shù)列的前項和,屬于基礎(chǔ)題.6、D【解題分析】
由約束條件畫出可行域,將問題轉(zhuǎn)化為在軸截距最小,通過平移可知當(dāng)過時,取最大值,代入可得結(jié)果.【題目詳解】由約束條件可得可行域如下圖陰影部分所示:當(dāng)取最大值時,在軸截距最小平移直線可知,當(dāng)過時,在軸截距最小又本題正確選項:【題目點撥】本題考查線性規(guī)劃中的最值問題的求解,關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化為直線在軸截距的最值的求解問題,通過直線平移來進(jìn)行求解,屬于常考題型.7、B【解題分析】試題分析:本題是由等比數(shù)列與等差數(shù)列的相似性質(zhì),推出有關(guān)結(jié)論:由“等比”類比到“等差”,由“幾何平均數(shù)”類比到“算數(shù)平均數(shù)”;所以,所得結(jié)論為是等差數(shù)列.考點:類比推理.8、A【解題分析】
一般式直線方程的斜率為.【題目詳解】直線的斜率為.故選A【題目點撥】此題考察一般直線方程的斜率,屬于較易基礎(chǔ)題目9、B【解題分析】
根據(jù)平均數(shù)和方差公式列方程組,得出和的值,再由可求得的值.【題目詳解】由于樣本的平均數(shù)為,則有,得,由于樣本的方差為,有,得,即,,因此,,故選B.【題目點撥】本題考查利用平均數(shù)與方差公式求參數(shù),解題的關(guān)鍵在于平均數(shù)與方差公式的應(yīng)用,考查計算能力,屬于中等題.10、D【解題分析】
化簡函數(shù)可得y=2sin(2x),把“2x”作為一個整體,再根據(jù)正弦函數(shù)的單調(diào)增區(qū)間,求出x的范圍,即是所求函數(shù)的增區(qū)間.【題目詳解】,由2kπ≤2x2kπ得,kπx≤kπ(k∈z),∴函數(shù)的單調(diào)增區(qū)間是[kπ,kπ](k∈z),故選D.【題目點撥】本題考查了正弦函數(shù)的單調(diào)性應(yīng)用,一般的做法是利用整體思想,根據(jù)正弦函數(shù)(余弦函數(shù))的性質(zhì)進(jìn)行求解.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
先求,利用二次函數(shù)性質(zhì)求最值即可【題目詳解】由題當(dāng)時最小故答案為8【題目點撥】本題考查等差數(shù)列的求和公式,考查二次函數(shù)求最值,是基礎(chǔ)題12、192【解題分析】設(shè)每天走的路程里數(shù)為由題意知是公比為的等比數(shù)列∵∴∴故答案為13、【解題分析】分析:由已知中圓錐的底面半徑是,高是,由勾股定理,我們可以計算出圓錐的母線長,代入圓錐側(cè)面積公式,即可得到結(jié)論.詳解:圓錐的底面半徑是,高是,圓錐的母線長,則圓錐側(cè)面積公式,故答案為.點睛:本題主要考查圓錐的性質(zhì)與圓錐側(cè)面積公式,意在考查對基本公式的掌握與理解,屬于簡單題.14、【解題分析】
由圖可知:,因為,由周期公式得到,結(jié)合以及誘導(dǎo)公式即可求解.【題目詳解】由圖可知:,因為所以,即由題意可知:,即故答案為:【題目點撥】本題主要考查了正弦型函數(shù)的圖像的性質(zhì)以及求值,關(guān)鍵是從圖像得出周期,最值等,屬于基礎(chǔ)題.15、1【解題分析】
若數(shù)列{an}為等差數(shù)列則Sm,S2m-Sm,S3m-S2m仍然成等差數(shù)列.所以S10,S20-S10,S30-S20仍然成等差數(shù)列.因為在等差數(shù)列{an}中有S10=10,S20=30,所以S30=1.故答案為1.16、【解題分析】
分類討論,去掉絕對值,利用函數(shù)的單調(diào)性,求得函數(shù)各段上的取值,進(jìn)而得到函數(shù)的取值范圍,得到答案.【題目詳解】由題意,當(dāng)時,函數(shù),此時函數(shù)為單調(diào)遞減函數(shù),所以最大值為,此時函數(shù)的取值當(dāng)時,函數(shù),此時函數(shù)為單調(diào)遞減函數(shù),所以最大值為,最小值,所以函數(shù)的取值為當(dāng)時,函數(shù),此時函數(shù)為單調(diào)遞增函數(shù),所以最大值為,此時函數(shù)的取值,綜上可知,函數(shù)的取值范圍是.【題目點撥】本題主要考查了分段函數(shù)的值域問題,其中解答中合理分類討論去掉絕對值,利用函數(shù)的單調(diào)性求得各段上的值域是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】試題分析:(1)利用平面向量共線的判定條件進(jìn)行求解;(2),利用平面向量的數(shù)量積為0進(jìn)行求解.試題解析:(1)若,則存在實數(shù),使,即,則,解得得;(2)若,則,解得.考點:1.平面向量共線的判定;2.平面向量垂直的判定.18、(1);(2).【解題分析】
(1)利用求出數(shù)列的通項公式;(2)利用累加法求數(shù)列的通項公式;【題目詳解】解:(1)①當(dāng)時,即當(dāng)時,②①減②得經(jīng)檢驗時,成立故(2)()……將上述式相加可得【題目點撥】本題考查作差法求數(shù)列的通項公式以及累加法求數(shù)列的通項公式,屬于基礎(chǔ)題.19、(1),;(2)?!窘忸}分析】
(1)求得函數(shù),代入即可求解的值,令,即可求得函數(shù)的對稱軸的方程;(2)由(1),結(jié)合三角函數(shù)的圖象變換,求得,再根據(jù)三角函數(shù)的性質(zhì),即可求解.【題目詳解】(1)由函數(shù),則,令,解得,即函數(shù)的對稱軸的方程為(2)由(1)可知函數(shù)的圖象向左平移個單位得到函數(shù)的圖象,可得的圖象,令,解得,所以函數(shù)的單調(diào)遞增區(qū)間為.【題目點撥】本題主要考查了三函數(shù)的圖象與性質(zhì),以及三角函數(shù)的圖象變換的應(yīng)用,其中解答中熟記三角函數(shù)的圖象與性質(zhì),以及三角函數(shù)的圖象變換求得函數(shù)的解析式是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.20、(1)(2)【解題分析】
(1)由余弦定理求得,從而得周長;(2)由余弦定理求得,由平方關(guān)系得,同理得,然后由兩角差的余弦公式得結(jié)論.【題目詳解】解:(1)在中,,由余弦定理,得,即,∴的周長為(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)茶青采購協(xié)議范例一
- 個人承包車輛運輸協(xié)議合同模板
- 2025年度新能源儲能技術(shù)研發(fā)與應(yīng)用合作協(xié)議4篇
- 專業(yè)無人機航拍拍攝合同文檔2024版版B版
- 2025年度智能廠區(qū)綜合環(huán)境管理服務(wù)合同4篇
- 個人保險理賠服務(wù)合同(2024版)3篇
- 二零二五年度廠房出租合同附設(shè)備故障應(yīng)急響應(yīng)及維修服務(wù)協(xié)議3篇
- 2025年新型智能化廠房土地購置與使用權(quán)合同4篇
- 2025年新型廠房設(shè)備購置及安裝服務(wù)協(xié)議4篇
- 2025年度二零二五智能家居攤位租賃及智慧城市建設(shè)合同4篇
- 使用錯誤評估報告(可用性工程)模版
- 公司章程(二個股東模板)
- GB/T 19889.7-2005聲學(xué)建筑和建筑構(gòu)件隔聲測量第7部分:樓板撞擊聲隔聲的現(xiàn)場測量
- 世界奧林匹克數(shù)學(xué)競賽6年級試題
- 藥用植物學(xué)-課件
- 文化差異與跨文化交際課件(完整版)
- 國貨彩瞳美妝化消費趨勢洞察報告
- 云南省就業(yè)創(chuàng)業(yè)失業(yè)登記申請表
- UL_標(biāo)準(zhǔn)(1026)家用電器中文版本
- 國網(wǎng)三個項目部標(biāo)準(zhǔn)化手冊(課堂PPT)
- 快速了解陌生行業(yè)的方法論及示例PPT課件
評論
0/150
提交評論