2024屆遼寧省葫蘆島市協(xié)作體高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第1頁
2024屆遼寧省葫蘆島市協(xié)作體高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第2頁
2024屆遼寧省葫蘆島市協(xié)作體高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第3頁
2024屆遼寧省葫蘆島市協(xié)作體高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第4頁
2024屆遼寧省葫蘆島市協(xié)作體高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆遼寧省葫蘆島市協(xié)作體高一數(shù)學(xué)第二學(xué)期期末監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,飛機的航線和山頂在同一個鉛垂面內(nèi),若飛機的高度為海拔18km,速度為1000m/h,飛行員先看到山頂?shù)母┙菫椋?jīng)過1min后又看到山頂?shù)母┙菫椋瑒t山頂?shù)暮0胃叨葹椋ň_到0.1km,參考數(shù)據(jù):)A.11.4km B.6.6km C.6.5km D.5.6km2.已知角的頂點在坐標(biāo)原點,始邊與軸正半軸重合,終邊經(jīng)過點,則()A. B. C. D.3.在中,角A,B,C所對的邊分別為a,b,c,若,,則是()A.純角三角形 B.等邊三角形C.直角三角形 D.等腰直角三角形4.函數(shù)(其中為自然對數(shù)的底數(shù))的圖象大致為()A. B. C. D.5.若三棱錐的所有頂點都在球的球面上,平面,,,且三棱錐的體積為,則球的體積為()A. B. C. D.6.若函數(shù)在處取最小值,則等于()A.3 B. C. D.47.若數(shù)列前12項的值各異,且對任意的都成立,則下列數(shù)列中可取遍前12項值的數(shù)列為()A. B. C. D.8.已知直線過點,且在縱坐標(biāo)軸上的截距為橫坐標(biāo)軸上的截距的兩倍,則直線的方程為()A. B.C.或 D.或9.向量,,若,則()A.2 B. C. D.10.若兩個球的半徑之比為,則這兩球的體積之比為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若甲、乙、丙三人隨機地站成一排,則甲、乙兩人相鄰而站的概率為_________.12.?dāng)?shù)列的前項和,則__________.13.如圖所示為函數(shù)的部分圖像,其中、分別是函數(shù)圖像的最高點和最低點,且,那么________.14.用數(shù)學(xué)歸納法證明“”,在驗證成立時,等號左邊的式子是______.15.已知關(guān)于的不等式的解集為,則__________.16.不等式的解集為_________________;三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)f(x)=2cosx(sinx﹣cosx).(1)求函數(shù)f(x)的最小正周期及單調(diào)遞減區(qū)間:(2)將f(x)的圖象向左平移個單位后得到函數(shù)g(x)的圖象,若方程g(x)=m在區(qū)間[0,]上有解,求實數(shù)m的取值范圍.18.已知三棱錐中,,.若平面分別與棱相交于點且平面.求證:(1);(2).19.設(shè)函數(shù).(1)當(dāng)時,解關(guān)于的不等式;(2)若關(guān)于的不等式的解集為,求的值.20.已知關(guān)于的一元二次函數(shù),從集合中隨機取一個數(shù)作為此函數(shù)的二次項系數(shù),從集合中隨機取一個數(shù)作為此函數(shù)的一次項系數(shù).(1)若,,求函數(shù)有零點的概率;(2)若,求函數(shù)在區(qū)間上是增函數(shù)的概率.21.已知函數(shù)的圖象過點,,.(1)求,的值;(2)若,且,求的值;(3)若在上恒成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】

根據(jù)題意求得和的長,然后利用正弦定理求得BC,最后利用求得問題答案.【題目詳解】在中,根據(jù)正弦定理,所以:山頂?shù)暮0胃叨葹?8-11.5=6.5km.故選:C【題目點撥】本題考查了正弦定理在實際問題中的應(yīng)用,考查了學(xué)生數(shù)學(xué)應(yīng)用,轉(zhuǎn)化與劃歸,數(shù)學(xué)運算的能力,屬于中檔題.2、B【解題分析】

先由角的終邊過點,求出,再由二倍角公式,即可得出結(jié)果.【題目詳解】因為角的頂點在坐標(biāo)原點,始邊與軸正半軸重合,終邊經(jīng)過點,所以,因此.故選B【題目點撥】本題主要考查三角函數(shù)的定義,以及二倍角公式,熟記三角函數(shù)的定義與二倍角公式即可,屬于??碱}型.3、B【解題分析】

利用正弦定理結(jié)合條件,得到,再由,結(jié)合余弦定理,得到,從而得到答案.【題目詳解】在中,由正弦定理得,而,所以得到,即,為的內(nèi)角,所以,因為,所以,由余弦定理得.為的內(nèi)角,所以,所以,為等邊三角形.故選:B.【題目點撥】本題考查正弦定理和余弦定理判斷三角形形狀,屬于簡單題.4、C【解題分析】

由題意,可知,即為奇函數(shù),排除,,又時,,可排除D,即可選出正確答案.【題目詳解】由題意,函數(shù)定義域為,且,即為奇函數(shù),排除,,當(dāng)時,,,即時,,可排除D,故選C.【題目點撥】本題考查了函數(shù)圖象的識別,考查了函數(shù)奇偶性的運用,屬于中檔題.5、A【解題分析】

由的體積計算得高,已知將三棱錐的外接球,轉(zhuǎn)化為長2,寬2,高的長方體的外接球,求出半徑,可得答案.【題目詳解】∵,,故三棱錐的底面面積為,由平面,得,又三棱錐的體積為,得,所以三棱錐的外接球,相當(dāng)于長2,寬2,高的長方體的外接球,故球半徑,得,故外接球的體積.故選:A.【題目點撥】本題考查了三棱錐外接球的體積,三棱錐體積公式的應(yīng)用,根據(jù)已知計算出球的半徑是解答的關(guān)鍵,屬于中檔題.6、A【解題分析】

將函數(shù)的解析式配湊為,再利用基本不等式求出該函數(shù)的最小值,利用等號成立得出相應(yīng)的值,可得出的值.【題目詳解】當(dāng)時,,則,當(dāng)且僅當(dāng)時,即當(dāng)時,等號成立,因此,,故選A.【題目點撥】本題考查基本不等式等號成立的條件,利用基本不等式要對代數(shù)式進行配湊,注意“一正、二定、三相等”這三個條件的應(yīng)用,考查計算能力,屬于中等題.7、C【解題分析】

根據(jù)題意可知利用除以12所得的余數(shù)分析即可.【題目詳解】由題知若要取遍前12項值的數(shù)列,則需要數(shù)列的下標(biāo)能夠取得除以12后所有的余數(shù).因為12的因數(shù)包括3,4,6,故不能除以12后取所有的余數(shù).如除以12的余數(shù)只能取1,4,7,10的循環(huán)余數(shù).又5不能整除12,故能夠取得除以12后取所有的余數(shù).故選:C【題目點撥】本題主要考查了數(shù)列下標(biāo)整除與余數(shù)的問題,屬于中等題型.8、D【解題分析】

根據(jù)題意,分直線是否經(jīng)過原點2種情況討論,分別求出直線的方程,即可得答案.【題目詳解】根據(jù)題意,直線分2種情況討論:①當(dāng)直線過原點時,又由直線經(jīng)過點,所求直線方程為,整理為,②當(dāng)直線不過原點時,設(shè)直線的方程為,代入點的坐標(biāo)得,解得,此時直線的方程為,整理為.故直線的方程為或.故選:D.【題目點撥】本題考查直線的截距式方程,注意分析直線的截距是否為0,屬于基礎(chǔ)題.9、C【解題分析】試題分析:,,得得,故選C.考點:向量的垂直運算,向量的坐標(biāo)運算.10、C【解題分析】

根據(jù)球的體積公式可知兩球體積比為,進而得到結(jié)果.【題目詳解】由球的體積公式知:兩球的體積之比故選:【題目點撥】本題考查球的體積公式的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】記甲、乙兩人相鄰而站為事件A甲、乙、丙三人隨機地站成一排的所有排法有=6,則甲、乙兩人相鄰而站的戰(zhàn)法有=4種站法∴=12、【解題分析】

根據(jù)數(shù)列前項和的定義即可得出.【題目詳解】解:因為所以.故答案為:.【題目點撥】考查數(shù)列的定義,以及數(shù)列前項和的定義,屬于基礎(chǔ)題.13、【解題分析】

由圖可知:,因為,由周期公式得到,結(jié)合以及誘導(dǎo)公式即可求解.【題目詳解】由圖可知:,因為所以,即由題意可知:,即故答案為:【題目點撥】本題主要考查了正弦型函數(shù)的圖像的性質(zhì)以及求值,關(guān)鍵是從圖像得出周期,最值等,屬于基礎(chǔ)題.14、【解題分析】

根據(jù)左邊的式子是從開始,結(jié)束,且指數(shù)依次增加1求解即可.【題目詳解】因為左邊的式子是從開始,結(jié)束,且指數(shù)依次增加1所以,左邊的式子為,故答案為.【題目點撥】項數(shù)的變化規(guī)律,是利用數(shù)學(xué)歸納法解答問題的基礎(chǔ),也是易錯點,要使問題順利得到解決,關(guān)鍵是注意兩點:一是首尾兩項的變化規(guī)律;二是相鄰兩項之間的變化規(guī)律.15、-2【解題分析】為方程兩根,因此16、【解題分析】

根據(jù)絕對值定義去掉絕對值符號后再解不等式.【題目詳解】時,原不等式可化為,,∴;時,原不等式可化為,,∴.綜上原不等式的解為.故答案為.【題目點撥】本題考查解絕對值不等式,解絕對值不等式的常用方法是根據(jù)絕對值定義去掉絕對值符號,然后求解.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)函數(shù)的最小正周期為π;函數(shù)的減區(qū)間為[kπ,kπ],k∈Z(2)m∈[﹣2,1]【解題分析】

(1)利用三角恒等變換化簡函數(shù)的解析式,再根據(jù)正弦函數(shù)的周期性和單調(diào)性,得出結(jié)論;(2)利用正弦函數(shù)的定義域和值域,求得的范圍,進而可得的范圍.【題目詳解】(1)函數(shù)f(x)=2cosx(sinx﹣cosx)sin2x﹣(1+cos2x)=2sin(2x)﹣1,故函數(shù)的最小正周期為π.令2kπ2x2kπ,求得kπx≤kπ,可得函數(shù)的減區(qū)間為[kπ,kπ],k∈Z.(2)將f(x)的圖象向左平移個單位后,得到函數(shù)g(x)=2sin(2x)﹣1=2sin(2x)﹣1的圖象.在區(qū)間[0,]上,2x∈[,],sin(2x)∈[,1],f(x)∈[﹣2,1].若方程g(x)=m在區(qū)間[0,]上有解,則m∈[﹣2,1].【題目點撥】本題主要考查三角恒等變換,正弦函數(shù)的周期性和單調(diào)性,函數(shù)的恒成立問題,正弦函數(shù)的定義域和值域,屬于中檔題.18、(1)證明見解析;(2)證明見解析.【解題分析】

(1)利用線面平行的性質(zhì)定理可得線線平行,最后利用平行公理可以證明出;(2)利用線面垂直的判定定理可以證明線面垂直,利用線面垂直的性質(zhì)可以證明線線垂直,利用平行線的性質(zhì),最后證明出.【題目詳解】證明(1)因為平面,平面平面,平面,所以有,同理可證出,根據(jù)平行公理,可得;(2)因為,,,平面,所以平面,而平面,所以,由(1)可知,所以.【題目點撥】本題考查了線面平行的性質(zhì)定理,線面垂直的判定定理、以及平行公理的應(yīng)用.19、(1)(2)【解題分析】

(1)不等式為,根據(jù)一元二次不等式的解法直接求得結(jié)果;(2)根據(jù)一元二次不等式與一元二次方程的關(guān)系可知的兩根為:和,且,利用韋達定理構(gòu)造方程可求得結(jié)果.【題目詳解】(1)當(dāng)時,由得:,解得:或不等式的解集為:(2)由不等式得:解集為方程的兩根為:和,且,即,解得:【題目點撥】本題考查一元二次不等式的求解、一元二次不等式解集和一元二次方程根的關(guān)系;關(guān)鍵是能夠根據(jù)不等式解集得到方程的根,利用韋達定理求得結(jié)果.20、(1);(2)【解題分析】

(1)依次列出所有可能的情況,求出滿足的情況總數(shù),即可得到概率;(2)列出不等關(guān)系,表示出平面區(qū)域,求出滿足表示的區(qū)域的面積,即可得到概率.【題目詳解】(1)由題可得,,從集合中隨機取一個數(shù)作為此函數(shù)的二次項系數(shù),從集合中隨機取一個數(shù)作為此函數(shù)的一次項系數(shù),記為,這樣的有序數(shù)對共有,9種情況;函數(shù)有零點,即滿足,滿足條件的有:,6種情況,所以其概率為;(2),滿足條件的有序數(shù)對,,即平面直角坐標(biāo)系內(nèi)區(qū)域:矩形及內(nèi)部區(qū)域,面積為4,函數(shù)在區(qū)間上是增函數(shù),即滿足,,,即,平面直角坐標(biāo)系內(nèi)區(qū)域:直角梯形及內(nèi)部區(qū)域,面積為3,所以其概率為.【題目點撥】此題考查古典概型與幾何概型,關(guān)鍵在于準(zhǔn)確得出二次函數(shù)有零點和在區(qū)間上是增函數(shù),分別所對應(yīng)的基本事件個數(shù)以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論