版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
甘肅省通渭縣2024屆高一數(shù)學第二學期期末經典模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中任取一實數(shù)作為x,則使得不等式成立的概率為()A. B. C. D.2.若復數(shù)(是虛數(shù)單位)是純虛數(shù),則實數(shù)的值為()A. B. C. D.3.已知函數(shù)f(x)=5sinωx-π3(ω>0),若A.0,16 B.0,164.已知等比數(shù)列滿足,,則()A. B. C. D.5.函數(shù),,的部分圖象如圖所示,則函數(shù)表達式為()A. B.C. D.6.直線y=﹣x+1的傾斜角是()A.30° B.45° C.1357.已知直線平面,直線平面,下列四個命題中正確的是().()()()()A.()與() B.()與() C.()與() D.()與()8.《九章算術》卷五商功中有如下問題:今有芻甍(底面為矩形的屋脊狀的幾何體),下廣三丈,袤四丈,上袤二丈,無廣,高一丈,問積幾何.下圖網(wǎng)格紙中實線部分為此芻甍的三視圖,設網(wǎng)格紙上每個小正方形的邊長為1丈,那么此芻甍的體積為()A.3立方丈 B.5立方丈 C.6立方丈 D.12立方丈9.下列命題中不正確的是()A.平面∥平面,一條直線平行于平面,則一定平行于平面B.平面∥平面,則內的任意一條直線都平行于平面C.一個三角形有兩條邊所在的直線分別平行于一個平面,那么該三角形所在的平面與這個平面平行D.分別在兩個平行平面內的兩條直線只能是平行直線或異面直線10.若數(shù)列前12項的值各異,且對任意的都成立,則下列數(shù)列中可取遍前12項值的數(shù)列為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,,若,則實數(shù)___________.12.若點,關于直線l對稱,那么直線l的方程為________.13.已知,,則______.14.已知(),則________.(用表示)15.已知向量,,則的最大值為_______.16.已知滿足約束條件,則的最大值為__三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.若是公差不為0的等差數(shù)列的前n項和,且成等比數(shù)列.(1)求數(shù)列的公比.(2)若,求的通項公式.18.已知,與的夾角為.(1)若,求;(2)若與垂直,求.19.已知:(,為常數(shù)).(1)若,求的最小正周期;(2)若在,上最大值與最小值之和為3,求的值.20.在平面直角坐標系中,直線截以坐標原點為圓心的圓所得的弦長為.(1)求圓的方程;(2)若直線與圓切于第一象限,且與坐標軸交于點,,當時,求直線的方程;(3)設,是圓上任意兩點,點關于軸的對稱點為,若直線,分別交軸于點和,問是否為定值?若是,請求出該定值;若不是,請說明理由.21.已知數(shù)列滿足:,(1)求,的值;(2)求數(shù)列的通項公式;(3)設,數(shù)列的前n項和,求證:
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】
先求解不等式,再利用長度型的幾何概型概率公式求解即可【題目詳解】由題,因為,解得,則,故選:C【題目點撥】本題考查長度型的幾何概型,考查解對數(shù)不等式2、C【解題分析】,且是純虛數(shù),,故選C.3、B【解題分析】
由題得ωπ-π3<ωx-【題目詳解】因為π<x≤2π,ω>0,所以ωπ-π因為fx在區(qū)間(π,2π]所以ωπ-π3≥kπ解得k+13≤ω<因為k+1所以-4因為k∈Z,所以k=-1或k=0.當k=-1時,0<ω<16;當k=0時,故選:B【題目點撥】本題主要考查三角函數(shù)的零點問題和三角函數(shù)的圖像和性質,意在考查學生對該知識的理解掌握水平,屬于中檔題.4、C【解題分析】試題分析:由題意可得,所以,故,選C.考點:本題主要考查等比數(shù)列性質及基本運算.5、A【解題分析】
根據(jù)圖像的最值求出,由周期求出,可得,再代入特殊點求出,化簡即得所求.【題目詳解】由圖像知,,,解得,因為函數(shù)過點,所以,,即,解得,因為,所以,.故選:A【題目點撥】本題考查根據(jù)圖像求正弦型函數(shù)的解析式,三角函數(shù)誘導公式,屬于基礎題.6、C【解題分析】
由直線方程可得直線的斜率,進而可得傾斜角.【題目詳解】直線y=﹣x+1的斜率為﹣1,設傾斜角為α,則tanα=﹣1,∴α=135°故選:C.【題目點撥】本題考查直線的傾斜角和斜率的關系,屬基礎題.7、D【解題分析】
∵直線l⊥平面α,若α∥β,則直線l⊥平面β,又∵直線m?平面β,∴l(xiāng)⊥m,即(1)正確;∵直線l⊥平面α,若α⊥β,則l與m可能平行、異面也可能相交,故(2)錯誤;∵直線l⊥平面α,若l∥m,則m⊥平面α,∵直線m?平面β,∴α⊥β;故(3)正確;∵直線l⊥平面α,若l⊥m,則m∥α或m?α,則α與β平行或相交,故(4)錯誤;故選D.8、B【解題分析】幾何體如圖:體積為,選B.點睛:(1)解決本類題目的關鍵是準確理解幾何體的定義,真正把握幾何體的結構特征,可以根據(jù)條件構建幾何模型,在幾何模型中進行判斷;(2)解決本類題目的技巧:三棱柱、四棱柱、三棱錐、四棱錐是常用的幾何模型,有些問題可以利用它們舉特例解決或者學會利用反例對概念類的命題進行辨析.9、A【解題分析】
逐一考查所給的選項是否正確即可.【題目詳解】逐一考查所給的選項:A.平面∥平面,一條直線平行于平面,可能a在平面內或與相交,不一定平行于平面,題中說法錯誤;B.由面面平行的定義可知:若平面∥平面,則內的任意一條直線都平行于平面,題中說法正確;C.由面面平行的判定定理可得:若一個三角形有兩條邊所在的直線分別平行于一個平面,那么該三角形所在的平面與這個平面平行,題中說法正確;D.分別在兩個平行平面內的兩條直線只能是平行直線或異面直線,不可能相交,題中說法正確.本題選擇A選項.【題目點撥】本題考查了空間幾何體的線面位置關系判定與證明:(1)對于異面直線的判定要熟記異面直線的概念:把既不平行也不相交的兩條直線稱為異面直線;(2)對于線面位置關系的判定中,熟記線面平行與垂直、面面平行與垂直的定理是關鍵.10、C【解題分析】
根據(jù)題意可知利用除以12所得的余數(shù)分析即可.【題目詳解】由題知若要取遍前12項值的數(shù)列,則需要數(shù)列的下標能夠取得除以12后所有的余數(shù).因為12的因數(shù)包括3,4,6,故不能除以12后取所有的余數(shù).如除以12的余數(shù)只能取1,4,7,10的循環(huán)余數(shù).又5不能整除12,故能夠取得除以12后取所有的余數(shù).故選:C【題目點撥】本題主要考查了數(shù)列下標整除與余數(shù)的問題,屬于中等題型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
由垂直關系可得數(shù)量積等于零,根據(jù)數(shù)量積坐標運算構造方程求得結果.【題目詳解】,解得:故答案為:【題目點撥】本題考查根據(jù)向量垂直關系求解參數(shù)值的問題,關鍵是明確兩向量垂直,則向量數(shù)量積為零.12、【解題分析】
利用直線垂直求出對稱軸斜率,利用中點坐標公式求出中點,再由點斜式可得結果.【題目詳解】求得,∵點,關于直線l對稱,∴直線l的斜率1,直線l過AB的中點,∴直線l的方程為,即.故答案為:.【題目點撥】本題主要考查直線垂直的性質,考查了直線點斜式方程的應用,屬于基礎題.13、【解題分析】
利用同角三角函數(shù)的基本關系求得的值,利用二倍角的正切公式,求得,再利用兩角和的正切公式,求得的值,再結合的范圍,求得的值.【題目詳解】,,,,,,故答案:.【題目點撥】本題主要考查同角三角函數(shù)的基本關系,兩角和的正切公式,二倍角的正切公式,根據(jù)三角函數(shù)的值求角,屬于基礎題.14、【解題分析】
根據(jù)同角三角函數(shù)之間的關系,結合角所在的象限,即可求解.【題目詳解】因為,所以,故,解得,又,,所以.故填.【題目點撥】本題主要考查了同角三角函數(shù)之間的關系,三角函數(shù)在各象限的符號,屬于中檔題.15、.【解題分析】
計算出,利用輔助角公式進行化簡,并求出的最大值,可得出的最大值.【題目詳解】,,,所以,,當且僅當,即當,等號成立,因此,的最大值為,故答案為.【題目點撥】本題考查平面向量模的最值的計算,涉及平面向量數(shù)量積的坐標運算以及三角恒等變換思想的應用,考查分析問題和解決問題的能力,屬于中等題.16、【解題分析】
由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數(shù)得答案.【題目詳解】由約束條件作出可行域,如圖所示,化目標函數(shù)為,由圖可得,當直線過時,直線在軸上的截距最大,所以有最大值為.故答案為1.【題目點撥】本題主要考查簡單線性規(guī)劃求解目標函數(shù)的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標函數(shù)的最優(yōu)解是解答的關鍵,著重考查了數(shù)形結合思想,及推理與計算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)公比為4;(2)【解題分析】
(1)設,然后根據(jù)相關條件去計算公比;(2)由(1)的結論計算的表達式,然后再計算的通項公式.【題目詳解】(1)設.∴,∴,.∴,即的公比為4(2)∵,∴,即,當時,,當時,符合,∴【題目點撥】(1)已知等差數(shù)列的三項成等比數(shù)列,可利用首項和公差將等式列出,找到首項和公差的關系;(2)利用計算通項公式時,要注意驗證的情況.18、(1);(2)【解題分析】
(1)根據(jù)向量共線,對向量的夾角分類討論,利用數(shù)量積公式即可完成求解;(2)根據(jù)向量垂直得到數(shù)量積為,再根據(jù)已知條件并借助數(shù)量積公式即可計算出的值.【題目詳解】(1)∵,∴與的夾角為或,當時,,當時,,綜上所述,;(2)∵,∴,即,∵,∴,∴∵向量的夾角的范圍是,∴【題目點撥】本題考查根據(jù)向量的平行、垂直求解向量的夾角以及向量數(shù)量積公式的運用,難度較易.注意共線向量的夾角為或.19、(1);(2)1【解題分析】
(1)利用二倍角和輔助角公式化簡,即可求出最小正周期;(2)根據(jù)在,上,求解內層函數(shù)范圍,即可求解最值,由最大值與最小值之和為3,求的值.【題目詳解】解:,(1)的最小正周期;(2),,當時,即,取得最小值為,當時,即,取得最大值為,最大值與最小值之和為3,,,故的值為1.【題目點撥】本題主要考查三角函數(shù)的性質和圖象的應用,屬于基礎題.20、(1);(2);(3)見解析【解題分析】
(1)利用點到直線距離公式,可以求出弦心距,根據(jù)垂徑定理結合勾股定理,可以求出圓的半徑,進而可以求出圓的方程;(2)設出直線的截距式方程,利用圓的切線性質,得到一個方程,結合已知,又得到一個方程,兩個方程聯(lián)立,解方程組,即可求出直線直線的方程;(3)設,,則,,,分別求出直線與軸交點坐標、直線與軸交點坐標,求出的表達式,通過計算可得.【題目詳解】(1)因為點到直線的距離為,所以圓的半徑為,故圓的方程為.(2)設直線的方程為,即,由直線與圓相切,得,①.②由①②解得,此時直線的方程為.(3)設,,則,,,直線與軸交點坐標為,,直線與軸交點坐標為,,,為定值2.【題目點撥】本題考查了圓的垂徑定理、圓的切線性質、勾
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)茶青采購協(xié)議范例一
- 個人承包車輛運輸協(xié)議合同模板
- 2025年度新能源儲能技術研發(fā)與應用合作協(xié)議4篇
- 專業(yè)無人機航拍拍攝合同文檔2024版版B版
- 2025年度智能廠區(qū)綜合環(huán)境管理服務合同4篇
- 個人保險理賠服務合同(2024版)3篇
- 二零二五年度廠房出租合同附設備故障應急響應及維修服務協(xié)議3篇
- 2025年新型智能化廠房土地購置與使用權合同4篇
- 2025年新型廠房設備購置及安裝服務協(xié)議4篇
- 2025年度二零二五智能家居攤位租賃及智慧城市建設合同4篇
- 使用錯誤評估報告(可用性工程)模版
- 公司章程(二個股東模板)
- GB/T 19889.7-2005聲學建筑和建筑構件隔聲測量第7部分:樓板撞擊聲隔聲的現(xiàn)場測量
- 世界奧林匹克數(shù)學競賽6年級試題
- 藥用植物學-課件
- 文化差異與跨文化交際課件(完整版)
- 國貨彩瞳美妝化消費趨勢洞察報告
- 云南省就業(yè)創(chuàng)業(yè)失業(yè)登記申請表
- UL_標準(1026)家用電器中文版本
- 國網(wǎng)三個項目部標準化手冊(課堂PPT)
- 快速了解陌生行業(yè)的方法論及示例PPT課件
評論
0/150
提交評論