版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023人教版新教材高中數(shù)學(xué)B必修第一冊
第三章函數(shù)
3.1函數(shù)的概念與性質(zhì)
3.1.1函數(shù)及其表示方法
第2課時函數(shù)的表示方法
基礎(chǔ)過關(guān)練
題組一函數(shù)的三種表示法
1.觀察下表:
X-3-2-1123
f(X)51-1-335
g(x)1423-2-4
則f(f(-l)-g(3))=()
A.-4B.-3C.3D.5
2.已知函數(shù)y=f(x)的對應(yīng)關(guān)系如下表所示,函數(shù)y=g(x)的圖像是如圖所示的曲
線ABC,則f(g(2))的值為(
X123
f(x)230
A.3B.0C.1D.2
3.如圖,李老師早晨出門鍛煉,一段時間內(nèi)沿半圓形路徑M-A-C-B-M勻速慢
跑一周,那么李老師離出發(fā)點M的距離y與時間x之間的函數(shù)關(guān)系的大致圖像是
()
題組二分段函數(shù)
4.(2°2]山東滕州一中月考)已知函數(shù)f(x)式髭工“則f(2。2。)=(
A.-1B.-2020C.1D.2020
5.已知函數(shù)f(x)弋2+;;&湍'則其圖像是()
AB
A.-4或-2B.-4或2c.-2或4D.-2或2
fx,0^x<1,
7.(2022四J11瀘州教學(xué)質(zhì)量診斷性考試)函數(shù)f(x)=1、1的值域
C,x21
為.
8.已知函數(shù)f(x)=l+平.
⑴用分段函數(shù)的形式表示函數(shù)f(x);
(2)在平面直角坐標(biāo)系中畫出函數(shù)f(x)的圖像;
⑶在同一平面直角坐標(biāo)系中,直接畫出函數(shù)g(x)W(x>。)的圖像,通過觀察圖像,
題組三函數(shù)解析式的求法
9.已知f(x)是一次函數(shù),且f(xT)=3x-5,則f(x)的解析式為()
A.f(x)=3x+2B.f(x)=3x-2
C.f(x)=2x+3D.f(x)=2x-3
10.(2021河南南陽六校聯(lián)考)已知函數(shù)f(乃+2)=x+4?+5,則f(x)的解析式為
()
A.f(x)=x2+lB.f(x)=x?+l(x22)
C.f(x)=x2D.f(x)=x2(x^2)
11.已知f(x)=2x+3,g(x)=4x-5,若f(h(x))=g(x),則h(x)=()
A.2x+3B.2x-llC.2x-4D.4x-5
12.已知函數(shù)F(x)=f(x)+g(x),其中f(x)是x的正比例函數(shù),g(x)是x的反比例
函數(shù),且Fg)=16,F(1)=8,則F(x)的解析式為.
13.(2021黑龍江哈爾濱師范大學(xué)附屬中學(xué)月考)已知函數(shù)f(2x-l)=x2-x+*則
f(x)=.
14.(2022安徽黃山屯溪第一中學(xué)期中)若函數(shù)f(x)滿足關(guān)系式f(x)+2fQ)=3x+l,
則C2)=.
15.(2021四川瀘縣第一中學(xué)月考)
(1)已知f號,求f(x)的解析式;
\xJl—xz
⑵已知g(x)是二次函數(shù),且滿足g(0)=1,g(x+1)飛(x)=2x,求g(x)的解析式.
能力提升練
L若函數(shù)f(x)43;支-2,則使f(x)=1成立的x的值是()
A.&或2B.a或3
C.&或4D.土魚或4
2.(2021貴州遵義航天高級中學(xué)月考)設(shè)函數(shù)f(x)定義在整數(shù)集上,且
f()=fx~3>x-1000>%QZ,則(999)=()
xl/(/(x+5)),x<1000,%GZ/jnyyy;k)
A.996B.997C.998D.999
3.(多選)(2022遼寧葫蘆島協(xié)作校月考)已知函數(shù)f(aT)=2x+y-3$!J()
A.f(1)=7
B.f(x)=2/+5x
C.f(x)的最小值為噂
o
D.f(x)的圖像與x軸只有1個交點
4.(2021福建廈門第一中學(xué)入學(xué)測試)如圖,AABC
中,ZACB=90°,ZA=30°,AB=16,點P是斜邊AB上任意一點,過點P作PQ±AB,
垂足為P,交邊AC(或邊CB)于點Q,設(shè)AP=x,AAPQ的面積為y,則y與x之間的函
數(shù)圖像大致是()
5.(2021黑龍江哈爾濱師范大學(xué)青岡實驗中學(xué)月考)為更好實施鄉(xiāng)村振興戰(zhàn)略,加
強村民對本村事務(wù)的參與和監(jiān)督,根據(jù)《村委會組織法》,某鄉(xiāng)鎮(zhèn)準(zhǔn)備在各村推
選村民代表.規(guī)定各村每15戶推選1人,當(dāng)全村戶數(shù)除以15所得的余數(shù)大于10
時再增選1人.那么,各村可推選的人數(shù)y與該村戶數(shù)X之間的函數(shù)關(guān)系用取整
函數(shù)y=[x]([x]表示不大于X的最大整數(shù))可以表示為()
6.(多選)已知函數(shù)£&)=『2+2¥]11'則關(guān)于函數(shù)£a)的結(jié)論正確的是()
(xz,-l<x<2,
A.£6)的值域為(-8,4元.f(l)=3
C.若f(x)=3,則x的值是?f(x)<l的解集為(-1,1)
7.(2020黑龍江哈三中第一次階段性驗收)若函數(shù)f(x)滿足f(0)=1,且對任意
x,y£R都有f(xy+l)=f(x)f(y)-f(y)-x+2,則f(2019)=()
A.0B.1C.2019D.2020
8.(2022重慶西南大學(xué)附屬中學(xué)月考)已知函數(shù)f(x)滿足對任意非零實數(shù)x,均有
f(x)=f(i)x+嚼4則f(x)在(。,+8)上的最小值為一
9.已知函數(shù)f(x),g(x)由下表給出:
X123
f(X)131
g(x)321
則滿足不等式f(g(x))>g(f(x))的解集是.
10.若二次函數(shù)f(x)=ax2+bx+c(a#0,a,b,c£R)滿足f(x+l)-f(x)=4x+l,且
f(0)=3.
⑴求f(x)的解析式;
(2)若在區(qū)間[T,1]上,不等式f(x)>6x+m恒成立,求實數(shù)m的取值范圍.
11.如圖所示,函數(shù)f(x)的圖像是折線段ABC,其中A,B,C三點的坐標(biāo)分別為
(0,4),(2,0),(6,4).
(1)求f(f(0))的值;
(2)求函數(shù)f(x)的解析式.
12.(2021山西平陸中學(xué)月考)已知f(x)噫2+十3竭商?;).
(1)求f(0),f(f(T))的值;
⑵若f(x)=2,求x的值;
(3)試畫出函數(shù)y=f(x)的圖像.
13.(2020湖北武漢期末)某市出租車的收費標(biāo)準(zhǔn)是3千米以內(nèi)(含3千米),收起
步價8元;3千米至8千米(含8千米),超出3千米的部分按1.5元/千米收取;8
千米以上,超出8千米的部分按2元/千米收取.
⑴計算某乘客搭乘出租車行駛7千米應(yīng)付的車費;
⑵試寫出車費y(元)與里程x(千米)之間的函數(shù)解析式并畫出圖像;
⑶小陳周末外出,行程為10千米,他設(shè)計了兩種方案.
方案一:分兩段乘車,乘一輛車行駛5千米,下車換乘另一輛車行駛5千米至目的
地;
方案二:只乘一輛車至目的地.
試問:哪種方案更省錢?請說明理由.
答案與分層梯度式解析
第三章函數(shù)
3.1函數(shù)的概念與性質(zhì)
?3.1.1函數(shù)及其表示方法
?第2課時函數(shù)的表示方法
基礎(chǔ)過關(guān)練
1.P由題中表格得儀-1)=-1"(3)=-4,-3)=5,,f(f(-l)-g(3))=f(-l-(-
4))=f(3)=5,故選D.
2.D由題圖可知g(2)=1,由題表可知f(1)=2,
故f(g(2))=2.故選D.
3.P由題意得,從M到A的過程中,李老師與M的距離在增大,由A經(jīng)C到B的
過程中,李老師與M的距離不變,都是半圓的半徑長,由B到M的過程中,李老師
與M的距離逐漸減小,故選D.
4.8由題意得,f(2020)=f(2019)-l=f(2018)-2=-=f(0)-2020=0-2020=-2
020.
5.A當(dāng)x=T時,f(T)=0,即圖像過點(T,0),顯然D錯;當(dāng)x=0時,f(0)=l,即
圖像過點(0,1),C錯;當(dāng)x=l時,f⑴=2,即圖像過點(1,2),B錯.故選A.
6.B當(dāng)aWO時,f(a)=-a=4,解得a=-4;
當(dāng)a>0時,f(a)=a2=4,解得a=±2,
因為a>0,所以a=2.
綜上,a的值為-4或2.
7.答案[o,1]
解橋函數(shù)'f(x)的圖像如圖所示,
012345.X
由圖可知,函數(shù)f(X)的值域為[0,1].
8.解析⑴當(dāng)x20時,f(x)=1+^=1;
當(dāng)x<0時,f(x)=l+牛gx+1.
flY>0
所以f(x)=U<0
⑵函數(shù)f(x)的圖像如圖所示.
⑶函數(shù)g(x)4(x>0)的圖像如⑵中所示,當(dāng)f(x)》;時,f(x)的圖像在g(X)的圖
像的上方,所以由⑵中圖像可知f(X)片的解集是{x|x>l}.
9.B由題意可設(shè)f(x)=kx+b(kWO),則f(x-1)=k(xT)+b=kx-k+b,
解得吐.
因此,f(x)的解析式為f(x)=3x-2,故選B.
10.13令五+2=t,則122,Vx=t-2,x=(t-2)2,
所以f(t)=(t-2)2+4(t-2)+5=t「+l(t22),
所以f(x)=x2+l(x》2).
11.C由f(x)=2x+3,得f(h(x))=2h(x)+3,
則f(h(x))=g(x)可化為2h(x)+3=4x-5,
所以h(x)=2x-4,故選C.
12.答案F(x)=3x+|
解析設(shè)f(x)=kx(kNO),g(x)=£(mW0),則F(x)=kx+?(kNO,mWO).由
Fg)=16,F⑴=8,得生;16解得仁二所以F(x)=3x+|.
13.答案]
解析令t=2x-1,則x=^,所以f(t)=(『)2號%號所以f(x)4
14.答案-|
解析函數(shù)f(x)滿足關(guān)系式f(x)+2f&)=3x+l①,用:替換X,得f?+2f(x)W+1②,
由①②得f(x)=:-x+g,
所以f(2)=l-2+々=-|.
1
15.解析⑴設(shè)t=j則x[(tWO),代入f6尸表,得f(t)=—^=若,
1-(t)
故f(x)?j(xWO且xW±l).
(2)設(shè)所求的二次函數(shù)為g(x)=ax2+bx+c(aWO).
Vg(O)=l,/.c=l,g(x)=ax2+bx+l.
又?.,g(x+l)-g(x)=2x,
:.a(x+1)2+b(x+1)+1-(ax2+bx+l)=2x,
整理,得2ax+a+b=2x,即(2a-2)x+a+b=O,
?(2a-2=0,?(a=1,
???所求函數(shù)解析式為g(x)=x2-x+l.
能力提升練
1.C當(dāng)-1<XW2時,令3-x2=l,得X=±V2,而-魚陣[T,2],故舍去;當(dāng)2<xW5時,
令x-3=l,得x=4,滿足題意.
綜上,x=V^或4,故選C.
2.C因為f(x)=x-3,x>1000,4
/(/(%+5)),x<1000,x^Z,
所以f(999)=f(f(l004))=f(l001)=998.
3.AD令t=QLteT,則爪=t+l,x=(t+l)2,所以f(G
l)=f(t)=2(t+l)2+(t+l)-3=2t2+5t,tG[-1,+cxo),
所以f(x)=2x,5x,xG[-1,+8),f⑴=7,A正確,B錯誤;
作出函數(shù)f(x)=2x?+5x,x£[-1,+8)的圖像,
結(jié)合圖像可知,f(x)rain=f(-1)=-3,f(x)的圖像與x軸只有1個交點.
4.D過點C作CDLAB,垂足為D,
因為NACB=90°,NA=30°,AB=16,
所以BC=8,ZB=60°,
所以BD=iBC=4,AD=AB-BD=12.
如圖1,當(dāng)0WxW12時,PQ=AP?tan300=fx,
所以y=jx?安*x2(OWxW12),其圖像為開口向上的拋物線的一部分.
如圖2,當(dāng)12<xW16時,BP=AB-AP=16-x,
所以PQ=BP?tan60°=V3(16-x),
所以y=1x?百(16川=-我2+8倔((128?16),其圖像為開口向下的拋物線的一部
分.
分析各選項中圖像,可知選D.
5.B根據(jù)規(guī)定,各村每15戶推選1人當(dāng)全村戶數(shù)除以15所得的余數(shù)大于10
時再增選1人,即余數(shù)為11,12,13,14時可以增加1個代表,也就是y的值加1.
所以x應(yīng)該加4,因此利用取整函數(shù)可表示為y=[矍].
6.AC函數(shù)f(x)的圖像如圖所示:
由圖可得f(x)的值域為(-8,4),f(x)<l的解集為(-8,-1)U(T,1),故A正
確,D錯誤;f⑴=「=1,故B錯誤;由圖可知,若f(x)=3,則X2=3,且-1<X<2,所以
X=V3,故C正確.故選AC.
7.Pf(xy+l)=f(x)f(y)-f(y)-x+2,f(0)=l,
當(dāng)x=0時,f(l)=f(0)f(y)-f(y)+2=2,
當(dāng)y=0時,f(l)=f(x)f(0)-f(0)-x+2=2,
因此f(x)=x+l,
則f(2019)=2020,故選9
8.答案妥;
解析???對任意非零實數(shù)X,均有f(x)=f⑴x+嚼W,
??.£(1)=-1)+竽),解得£(2)=1,
??.f(2)=2f(l)+*T,解得f(1)=|,
'f(x)=29Aj29戶打,當(dāng)且僅當(dāng)初噎即x考(負(fù)值舍去)時,等號成立?
9.答案{2}
解析若x=l,則f(g(l))=f(3)=1,g(f(l))=g(l)=3,此時f(g(x))>g(f(x))不成
立;
若x=2,則f(g(2))=f(2)=3,g(f(2))=g(3)=l,此時f(g(x))>g(f(x))成立;
若x=3,貝0f(g(3))=f(1)=1,g(f(3))=g⑴=3,止匕時f(g(x))>g(f(x))不成立.故不
等式£心儀))次(£&))的解集為{2}.
10.解析(1)由f(0)=3得c=3,
f(x)=ax2+bx+3.
5Z.e*'f(x+1)-f(x)=4x+1,.*.a(x+1)2+b(x+1)+3-(ax2+bx+3)=4x+1,即2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)老院老人家庭溝通制度
- 數(shù)碼產(chǎn)品租賃合同(2篇)
- 2024年物業(yè)設(shè)施管理合同3篇
- 2025年平頂山貨運駕駛員從業(yè)資格證考試題庫答案
- 2025年林芝貨運從業(yè)資格證模擬考試下載
- 2025年懷化經(jīng)營性道路客貨運輸駕駛員從業(yè)資格考試
- 《催眠治療》課件
- 2024年教育設(shè)施融資租賃擔(dān)保合同示例2篇
- 2025年東莞a2駕駛證貨運從業(yè)資格證模擬考試
- 2024年版礦業(yè)開發(fā)合同
- 《復(fù)雜網(wǎng)絡(luò)入門必讀》課件
- 國開《小學(xué)數(shù)學(xué)教學(xué)研究》形考期末大作業(yè)答案
- 倉庫管理培訓(xùn)課件
- 傳感器基礎(chǔ)知識單選題100道及答案解析
- 總裁秘書勞動合同模板
- 傳播學(xué)概論習(xí)題與參考答案
- 政治-湖南省長沙市(炎德英才大聯(lián)考)長郡中學(xué)2025屆高三上學(xué)期月考試卷(三)試題和答案
- 2023級《中國特色社會主義》學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 2024年學(xué)校聯(lián)席會議制度范例(五篇)
- 瑞士萬通831KF卡爾費休水分測定儀干貨-庫侖法
- 廣東省肇慶市2023-2024學(xué)年高二上學(xué)期期末教學(xué)質(zhì)量檢測試題 化學(xué) 含解析
評論
0/150
提交評論