版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省常德市桃源一中2024屆高三高考模擬訓練(五)數(shù)學試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),當時,恒成立,則的取值范圍為()A. B. C. D.2.已知復數(shù)滿足:,則的共軛復數(shù)為()A. B. C. D.3.已知函數(shù)(),若函數(shù)在上有唯一零點,則的值為()A.1 B.或0 C.1或0 D.2或04.若干年前,某教師剛退休的月退休金為6000元,月退休金各種用途占比統(tǒng)計圖如下面的條形圖.該教師退休后加強了體育鍛煉,目前月退休金的各種用途占比統(tǒng)計圖如下面的折線圖.已知目前的月就醫(yī)費比剛退休時少100元,則目前該教師的月退休金為().A.6500元 B.7000元 C.7500元 D.8000元5.已知平面向量,滿足且,若對每一個確定的向量,記的最小值為,則當變化時,的最大值為()A. B. C. D.16.已知,則的大小關(guān)系為()A. B. C. D.7.公元前世紀,古希臘哲學家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當比賽開始后,若阿基里斯跑了米,此時烏龜便領(lǐng)先他米,當阿基里斯跑完下一個米時,烏龜先他米,當阿基里斯跑完下-個米時,烏龜先他米....所以,阿基里斯永遠追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時,烏龜爬行的總距離為()A.米 B.米C.米 D.米8.已知拋物線的焦點為,對稱軸與準線的交點為,為上任意一點,若,則()A.30° B.45° C.60° D.75°9.已知正方體的體積為,點,分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.10.已知,滿足條件(為常數(shù)),若目標函數(shù)的最大值為9,則()A. B. C. D.11.設,其中a,b是實數(shù),則()A.1 B.2 C. D.12.已知點是拋物線:的焦點,點為拋物線的對稱軸與其準線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積是______.14.若變量,滿足約束條件則的最大值是______.15.雙曲線的離心率為_________.16.小李參加有關(guān)“學習強國”的答題活動,要從4道題中隨機抽取2道作答,小李會其中的三道題,則抽到的2道題小李都會的概率為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某工廠的機器上有一種易損元件A,這種元件在使用過程中發(fā)生損壞時,需要送維修處維修.工廠規(guī)定當日損壞的元件A在次日早上8:30之前送到維修處,并要求維修人員當日必須完成所有損壞元件A的維修工作.每個工人獨立維修A元件需要時間相同.維修處記錄了某月從1日到20日每天維修元件A的個數(shù),具體數(shù)據(jù)如下表:日期1日2日3日4日5日6日7日8日9日10日元件A個數(shù)91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A個數(shù)12241515151215151524從這20天中隨機選取一天,隨機變量X表示在維修處該天元件A的維修個數(shù).(Ⅰ)求X的分布列與數(shù)學期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前維修處有兩名工人從事維修工作,為使每個維修工人每天維修元件A的個數(shù)的數(shù)學期望不超過4個,至少需要增加幾名維修工人?(只需寫出結(jié)論)18.(12分)已知函數(shù)(1)若,試討論的單調(diào)性;(2)若,實數(shù)為方程的兩不等實根,求證:.19.(12分)已知(1)當時,判斷函數(shù)的極值點的個數(shù);(2)記,若存在實數(shù),使直線與函數(shù)的圖象交于不同的兩點,求證:.20.(12分)已知函數(shù),且.(1)求的解析式;(2)已知,若對任意的,總存在,使得成立,求的取值范圍.21.(12分)已知.(1)當時,求不等式的解集;(2)若時不等式成立,求的取值范圍.22.(10分)已知,均為給定的大于1的自然數(shù),設集合,.(Ⅰ)當,時,用列舉法表示集合;(Ⅱ)當時,,且集合滿足下列條件:①對任意,;②.證明:(?。┤?,則(集合為集合在集合中的補集);(ⅱ)為一個定值(不必求出此定值);(Ⅲ)設,,,其中,,若,則.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】
分析可得,顯然在上恒成立,只需討論時的情況即可,,然后構(gòu)造函數(shù),結(jié)合的單調(diào)性,不等式等價于,進而求得的取值范圍即可.【題目詳解】由題意,若,顯然不是恒大于零,故.,則在上恒成立;當時,等價于,因為,所以.設,由,顯然在上單調(diào)遞增,因為,所以等價于,即,則.設,則.令,解得,易得在上單調(diào)遞增,在上單調(diào)遞減,從而,故.故選:A.【題目點撥】本題考查了不等式恒成立問題,利用函數(shù)單調(diào)性是解決本題的關(guān)鍵,考查了學生的推理能力,屬于基礎題.2、B【解題分析】
轉(zhuǎn)化,為,利用復數(shù)的除法化簡,即得解【題目詳解】復數(shù)滿足:所以故選:B【題目點撥】本題考查了復數(shù)的除法和復數(shù)的基本概念,考查了學生概念理解,數(shù)學運算的能力,屬于基礎題.3、C【解題分析】
求出函數(shù)的導函數(shù),當時,只需,即,令,利用導數(shù)求其單調(diào)區(qū)間,即可求出參數(shù)的值,當時,根據(jù)函數(shù)的單調(diào)性及零點存在性定理可判斷;【題目詳解】解:∵(),∴,∴當時,由得,則在上單調(diào)遞減,在上單調(diào)遞增,所以是極小值,∴只需,即.令,則,∴函數(shù)在上單調(diào)遞增.∵,∴;當時,,函數(shù)在上單調(diào)遞減,∵,,函數(shù)在上有且只有一個零點,∴的值是1或0.故選:C【題目點撥】本題考查利用導數(shù)研究函數(shù)的零點問題,零點存在性定理的應用,屬于中檔題.4、D【解題分析】
設目前該教師的退休金為x元,利用條形圖和折線圖列出方程,求出結(jié)果即可.【題目詳解】設目前該教師的退休金為x元,則由題意得:6000×15%﹣x×10%=1.解得x=2.故選D.【題目點撥】本題考查由條形圖和折線圖等基礎知識解決實際問題,屬于基礎題.5、B【解題分析】
根據(jù)題意,建立平面直角坐標系.令.為中點.由即可求得點的軌跡方程.將變形,結(jié)合及平面向量基本定理可知三點共線.由圓切線的性質(zhì)可知的最小值即為到直線的距離最小值,且當與圓相切時,有最大值.利用圓的切線性質(zhì)及點到直線距離公式即可求得直線方程,進而求得原點到直線的距離,即為的最大值.【題目詳解】根據(jù)題意,設,則由代入可得即點的軌跡方程為又因為,變形可得,即,且所以由平面向量基本定理可知三點共線,如下圖所示:所以的最小值即為到直線的距離最小值根據(jù)圓的切線性質(zhì)可知,當與圓相切時,有最大值設切線的方程為,化簡可得由切線性質(zhì)及點到直線距離公式可得,化簡可得即所以切線方程為或所以當變化時,到直線的最大值為即的最大值為故選:B【題目點撥】本題考查了平面向量的坐標應用,平面向量基本定理的應用,圓的軌跡方程問題,圓的切線性質(zhì)及點到直線距離公式的應用,綜合性強,屬于難題.6、A【解題分析】
根據(jù)指數(shù)函數(shù)的單調(diào)性,可得,再利用對數(shù)函數(shù)的單調(diào)性,將與對比,即可求出結(jié)論.【題目詳解】由題知,,則.故選:A.【題目點撥】本題考查利用函數(shù)性質(zhì)比較大小,注意與特殊數(shù)的對比,屬于基礎題..7、D【解題分析】
根據(jù)題意,是一個等比數(shù)列模型,設,由,解得,再求和.【題目詳解】根據(jù)題意,這是一個等比數(shù)列模型,設,所以,解得,所以.故選:D【題目點撥】本題主要考查等比數(shù)列的實際應用,還考查了建模解模的能力,屬于中檔題.8、C【解題分析】
如圖所示:作垂直于準線交準線于,則,故,得到答案.【題目詳解】如圖所示:作垂直于準線交準線于,則,在中,,故,即.故選:.【題目點撥】本題考查了拋物線中角度的計算,意在考查學生的計算能力和轉(zhuǎn)化能力.9、D【解題分析】
由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當時最小,設正方體的棱長為,得,進一步求出四面體的體積即可.【題目詳解】解:如圖,
∵點M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時,最小,
∴
設正方體的棱長為,則,∴.
取,連接,則共面,在中,設到的距離為,
設到平面的距離為,
.
故選D.【題目點撥】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計算能力,是中檔題.10、B【解題分析】
由目標函數(shù)的最大值為9,我們可以畫出滿足條件件為常數(shù))的可行域,根據(jù)目標函數(shù)的解析式形式,分析取得最優(yōu)解的點的坐標,然后根據(jù)分析列出一個含參數(shù)的方程組,消參后即可得到的取值.【題目詳解】畫出,滿足的為常數(shù))可行域如下圖:由于目標函數(shù)的最大值為9,可得直線與直線的交點,使目標函數(shù)取得最大值,將,代入得:.故選:.【題目點撥】如果約束條件中含有參數(shù),我們可以先畫出不含參數(shù)的幾個不等式對應的平面區(qū)域,分析取得最優(yōu)解是哪兩條直線的交點,然后得到一個含有參數(shù)的方程(組,代入另一條直線方程,消去,后,即可求出參數(shù)的值.11、D【解題分析】
根據(jù)復數(shù)相等,可得,然后根據(jù)復數(shù)模的計算,可得結(jié)果.【題目詳解】由題可知:,即,所以則故選:D【題目點撥】本題考查復數(shù)模的計算,考驗計算,屬基礎題.12、D【解題分析】
根據(jù)拋物線的性質(zhì),設出直線方程,代入拋物線方程,求得k的值,設出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【題目詳解】直線F2A的直線方程為:y=kx,F(xiàn)1(0,),F(xiàn)2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【題目點撥】本題考查拋物線及雙曲線的方程及簡單性質(zhì),考查轉(zhuǎn)化思想,考查計算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
先由三視圖在長方體中將其還原成直觀圖,再利用球的直徑是長方體體對角線即可解決.【題目詳解】由三視圖知該幾何體是一個三棱錐,如圖所示長方體對角線長為,所以三棱錐外接球半徑為,故所求外接球的表面積.故答案為:.【題目點撥】本題考查幾何體三視圖以及幾何體外接球的表面積,考查學生空間想象能力以及基本計算能力,是一道基礎題.14、9【解題分析】
做出滿足條件的可行域,根據(jù)圖形,即可求出的最大值.【題目詳解】做出不等式組表示的可行域,如圖陰影部分所示,目標函數(shù)過點時取得最大值,聯(lián)立,解得,即,所以最大值為9.故答案為:9.【題目點撥】本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合求線性目標函數(shù)的最值,屬于基礎題.15、2【解題分析】16、【解題分析】
從四道題中隨機抽取兩道共6種情況,抽到的兩道全都會的情況有3種,即可得到概率.【題目詳解】由題:從從4道題中隨機抽取2道作答,共有種,小李會其中的三道題,則抽到的2道題小李都會的情況共有種,所以其概率為.故答案為:【題目點撥】此題考查根據(jù)古典概型求概率,關(guān)鍵在于根據(jù)題意準確求出基本事件的總數(shù)和某一事件包含的基本事件個數(shù).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)分布列見解析,;(Ⅱ);(Ⅲ)至少增加2人.【解題分析】
(Ⅰ)求出X的所有可能取值為9,12,15,18,24,求出概率,得到X的分布列,然后求解期望即可.(Ⅱ)當P(a≤X≤b)取到最大值時,求出a,b的可能值,然后求解P(a≤X≤b)的最大值即可.(Ⅲ)利用前兩問的結(jié)果,判斷至少增加2人.【題目詳解】(Ⅰ)X的取值為:9,12,15,18,24;,,,,,X的分布列為:X912151824P故X的數(shù)學期望;(Ⅱ)當P(a≤X≤b)取到最大值時,a,b的值可能為:,或,或.經(jīng)計算,,,所以P(a≤X≤b)的最大值為.(Ⅲ)至少增加2人.【題目點撥】本題考查離散型隨機變量及其分布列,離散型隨機變量的期望與方差,屬于中等題.18、(1)答案不唯一,具體見解析(2)證明見解析【解題分析】
(1)根據(jù)題意得,分與討論即可得到函數(shù)的單調(diào)性;(2)根據(jù)題意構(gòu)造函數(shù),得,參變分離得,分析不等式,即轉(zhuǎn)化為,設,再構(gòu)造函數(shù),利用導數(shù)得單調(diào)性,進而得證.【題目詳解】(1)依題意,當時,,①當時,恒成立,此時在定義域上單調(diào)遞增;②當時,若,;若,;故此時的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2)方法1:由得令,則,依題意有,即,要證,只需證(不妨設),即證,令,設,則,在單調(diào)遞減,即,從而有.方法2:由得令,則,當時,時,故在上單調(diào)遞增,在上單調(diào)遞減,不妨設,則,要證,只需證,易知,故只需證,即證令,(),則==,(也可代入后再求導)在上單調(diào)遞減,,故對于時,總有.由此得【題目點撥】本題考查了函數(shù)的單調(diào)性、最值問題,考查導數(shù)的應用以及分類討論思想,轉(zhuǎn)化思想,屬于難題.19、(1)沒有極值點;(2)證明見解析【解題分析】
(1)求導可得,再求導可得,則在遞增,則,從而在遞增,即可判斷;(2)轉(zhuǎn)化問題為存在且,使,可得,由(1)可知,即,則,整理可得,則,設,則可整理為,設,利用導函數(shù)可得,即可求證.【題目詳解】(1)當時,,,所以在遞增,所以,所以在遞增,所以函數(shù)沒有極值點.(2)由題,,若存在實數(shù),使直線與函數(shù)的圖象交于不同的兩點,即存在且,使.由可得,,由(1)可知,可得.,所以,即,下面證明,只需證明:,令,則證,即.設,那么,所以,所以,即【題目點撥】本題考查利用導函數(shù)求函數(shù)的極值點,考查利用導函數(shù)解決雙變量問題,考查運算能力與推理論證能力.20、(1);(2)【解題分析】
(1)由,可求出的值,進而可求得的解析式;(2)分別求得和的值域,再結(jié)合兩個函數(shù)的值域間的關(guān)系可求出的取值范圍.【題目詳解】(1)因為,所以,解得,故.(2)因為,所以,所以,則,圖象的對稱軸是.因為,所以,則,解得,故的取值范圍
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 ISO 16281:2025 EN Rolling bearings - Methods for calculating the modified reference rating life for universally loaded rolling bearings
- 箱子材料成型課程設計
- 生物數(shù)字化課程設計
- 公司薪酬福利管理制度
- 發(fā)展集團財務管理管控規(guī)章制度匯編
- 研究生幼兒游戲課程設計
- 繼電器電路控制課程設計
- 住院部護理工作總結(jié)
- 泰拳系統(tǒng)課程設計案例
- 2025年高考歷史一輪復習之經(jīng)濟發(fā)展與社會進步
- 2022版義務教育物理課程標準
- 數(shù)字資產(chǎn)管理與優(yōu)化考核試卷
- 期末測試-2024-2025學年語文四年級上冊統(tǒng)編版
- 教案-“枚舉法”信息技術(shù)(信息科技)
- 2024年內(nèi)部審計年度工作計劃范文(六篇)
- 四川省成都市2021-2022學年物理高一下期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析
- 光伏發(fā)電系統(tǒng)租賃合同范本
- 新教科版六年級上冊科學全冊知識點(期末總復習資料)
- 綠色建筑工程監(jiān)理實施細則
- 2024年安全員b證繼續(xù)教育考試
- 科研倫理與學術(shù)規(guī)范期末考試試題
評論
0/150
提交評論