版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024年浙江省溫州市示范名校數(shù)學(xué)高三上期末統(tǒng)考模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.將一塊邊長(zhǎng)為的正方形薄鐵皮按如圖(1)所示的陰影部分裁下,然后用余下的四個(gè)全等的等腰三角形加工成一個(gè)正四棱錐形容器,將該容器按如圖(2)放置,若其正視圖為等腰直角三角形,且該容器的容積為,則的值為()A.6 B.8 C.10 D.122.為得到函數(shù)的圖像,只需將函數(shù)的圖像()A.向右平移個(gè)長(zhǎng)度單位 B.向右平移個(gè)長(zhǎng)度單位C.向左平移個(gè)長(zhǎng)度單位 D.向左平移個(gè)長(zhǎng)度單位3.已知,,則的大小關(guān)系為()A. B. C. D.4.函數(shù)且的圖象是()A. B.C. D.5.雙曲線(xiàn)的漸近線(xiàn)方程為()A. B.C. D.6.函數(shù)的大致圖象是()A. B.C. D.7.要得到函數(shù)的導(dǎo)函數(shù)的圖像,只需將的圖像()A.向右平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的3倍B.向右平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)縮短到原來(lái)的倍C.向左平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)縮短到原來(lái)的倍D.向左平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的3倍8.已知類(lèi)產(chǎn)品共兩件,類(lèi)產(chǎn)品共三件,混放在一起,現(xiàn)需要通過(guò)檢測(cè)將其區(qū)分開(kāi)來(lái),每次隨機(jī)檢測(cè)一件產(chǎn)品,檢測(cè)后不放回,直到檢測(cè)出2件類(lèi)產(chǎn)品或者檢測(cè)出3件類(lèi)產(chǎn)品時(shí),檢測(cè)結(jié)束,則第一次檢測(cè)出類(lèi)產(chǎn)品,第二次檢測(cè)出類(lèi)產(chǎn)品的概率為()A. B. C. D.9.已知復(fù)數(shù)z滿(mǎn)足(其中i為虛數(shù)單位),則復(fù)數(shù)z的虛部是()A. B.1 C. D.i10.已知平面向量,,,則實(shí)數(shù)x的值等于()A.6 B.1 C. D.11.已知,則的大小關(guān)系為()A. B. C. D.12.已知數(shù)列的首項(xiàng),且,其中,,,下列敘述正確的是()A.若是等差數(shù)列,則一定有 B.若是等比數(shù)列,則一定有C.若不是等差數(shù)列,則一定有 D.若不是等比數(shù)列,則一定有二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)的圖象在處的切線(xiàn)斜率為,則______.14.已知橢圓:的左,右焦點(diǎn)分別為,,過(guò)的直線(xiàn)交橢圓于,兩點(diǎn),若,且的三邊長(zhǎng),,成等差數(shù)列,則的離心率為_(kāi)_________.15.已知半徑為4的球面上有兩點(diǎn)A,B,AB=42,球心為O,若球面上的動(dòng)點(diǎn)C滿(mǎn)足二面角C-AB-O的大小為60°16.在平面直角坐標(biāo)系中,圓.已知過(guò)原點(diǎn)且相互垂直的兩條直線(xiàn)和,其中與圓相交于,兩點(diǎn),與圓相切于點(diǎn).若,則直線(xiàn)的斜率為_(kāi)____________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,求四面體的體積.18.(12分)已知函數(shù).(1)當(dāng)時(shí),求函數(shù)的值域;(2)的角的對(duì)邊分別為且,,求邊上的高的最大值.19.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若函數(shù)在上存在兩個(gè)極值點(diǎn),,且,證明.20.(12分)已知橢圓()經(jīng)過(guò)點(diǎn),離心率為,、、為橢圓上不同的三點(diǎn),且滿(mǎn)足,為坐標(biāo)原點(diǎn).(1)若直線(xiàn)、的斜率都存在,求證:為定值;(2)求的取值范圍.21.(12分)已知曲線(xiàn)的參數(shù)方程為為參數(shù),曲線(xiàn)的參數(shù)方程為為參數(shù)).(1)求與的普通方程;(2)若與相交于,兩點(diǎn),且,求的值.22.(10分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時(shí),如果方程有兩個(gè)不等實(shí)根,求實(shí)數(shù)t的取值范圍,并證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
推導(dǎo)出,且,,,設(shè)中點(diǎn)為,則平面,由此能表示出該容器的體積,從而求出參數(shù)的值.【詳解】解:如圖(4),為該四棱錐的正視圖,由圖(3)可知,,且,由為等腰直角三角形可知,,設(shè)中點(diǎn)為,則平面,∴,∴,解得.故選:D【點(diǎn)睛】本題考查三視圖和錐體的體積計(jì)算公式的應(yīng)用,屬于中檔題.2、D【解析】,所以要的函數(shù)的圖象,只需將函數(shù)的圖象向左平移個(gè)長(zhǎng)度單位得到,故選D3、D【解析】
由指數(shù)函數(shù)的圖像與性質(zhì)易得最小,利用作差法,結(jié)合對(duì)數(shù)換底公式及基本不等式的性質(zhì)即可比較和的大小關(guān)系,進(jìn)而得解.【詳解】根據(jù)指數(shù)函數(shù)的圖像與性質(zhì)可知,由對(duì)數(shù)函數(shù)的圖像與性質(zhì)可知,,所以最??;而由對(duì)數(shù)換底公式化簡(jiǎn)可得由基本不等式可知,代入上式可得所以,綜上可知,故選:D.【點(diǎn)睛】本題考查了指數(shù)式與對(duì)數(shù)式的化簡(jiǎn)變形,對(duì)數(shù)換底公式及基本不等式的簡(jiǎn)單應(yīng)用,作差法比較大小,屬于中檔題.4、B【解析】
先判斷函數(shù)的奇偶性,再取特殊值,利用零點(diǎn)存在性定理判斷函數(shù)零點(diǎn)分布情況,即可得解.【詳解】由題可知定義域?yàn)?,,是偶函?shù),關(guān)于軸對(duì)稱(chēng),排除C,D.又,,在必有零點(diǎn),排除A.故選:B.【點(diǎn)睛】本題考查了函數(shù)圖象的判斷,考查了函數(shù)的性質(zhì),屬于中檔題.5、A【解析】
將雙曲線(xiàn)方程化為標(biāo)準(zhǔn)方程為,其漸近線(xiàn)方程為,化簡(jiǎn)整理即得漸近線(xiàn)方程.【詳解】雙曲線(xiàn)得,則其漸近線(xiàn)方程為,整理得.故選:A【點(diǎn)睛】本題主要考查了雙曲線(xiàn)的標(biāo)準(zhǔn)方程,雙曲線(xiàn)的簡(jiǎn)單性質(zhì)的應(yīng)用.6、A【解析】
用排除B,C;用排除;可得正確答案.【詳解】解:當(dāng)時(shí),,,所以,故可排除B,C;當(dāng)時(shí),,故可排除D.故選:A.【點(diǎn)睛】本題考查了函數(shù)圖象,屬基礎(chǔ)題.7、D【解析】
先求得,再根據(jù)三角函數(shù)圖像變換的知識(shí),選出正確選項(xiàng).【詳解】依題意,所以由向左平移個(gè)單位長(zhǎng)度,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的3倍得到的圖像.故選:D【點(diǎn)睛】本小題主要考查復(fù)合函數(shù)導(dǎo)數(shù)的計(jì)算,考查誘導(dǎo)公式,考查三角函數(shù)圖像變換,屬于基礎(chǔ)題.8、D【解析】
根據(jù)分步計(jì)數(shù)原理,由古典概型概率公式可得第一次檢測(cè)出類(lèi)產(chǎn)品的概率,不放回情況下第二次檢測(cè)出類(lèi)產(chǎn)品的概率,即可得解.【詳解】類(lèi)產(chǎn)品共兩件,類(lèi)產(chǎn)品共三件,則第一次檢測(cè)出類(lèi)產(chǎn)品的概率為;不放回情況下,剩余4件產(chǎn)品,則第二次檢測(cè)出類(lèi)產(chǎn)品的概率為;故第一次檢測(cè)出類(lèi)產(chǎn)品,第二次檢測(cè)出類(lèi)產(chǎn)品的概率為;故選:D.【點(diǎn)睛】本題考查了分步乘法計(jì)數(shù)原理的應(yīng)用,古典概型概率計(jì)算公式的應(yīng)用,屬于基礎(chǔ)題.9、A【解析】
由虛數(shù)單位i的運(yùn)算性質(zhì)可得,則答案可求.【詳解】解:∵,∴,,則化為,∴z的虛部為.故選:A.【點(diǎn)睛】本題考查了虛數(shù)單位i的運(yùn)算性質(zhì)、復(fù)數(shù)的概念,屬于基礎(chǔ)題.10、A【解析】
根據(jù)向量平行的坐標(biāo)表示即可求解.【詳解】,,,,即,故選:A【點(diǎn)睛】本題主要考查了向量平行的坐標(biāo)運(yùn)算,屬于容易題.11、A【解析】
根據(jù)指數(shù)函數(shù)的單調(diào)性,可得,再利用對(duì)數(shù)函數(shù)的單調(diào)性,將與對(duì)比,即可求出結(jié)論.【詳解】由題知,,則.故選:A.【點(diǎn)睛】本題考查利用函數(shù)性質(zhì)比較大小,注意與特殊數(shù)的對(duì)比,屬于基礎(chǔ)題..12、C【解析】
根據(jù)等差數(shù)列和等比數(shù)列的定義進(jìn)行判斷即可.【詳解】A:當(dāng)時(shí),,顯然符合是等差數(shù)列,但是此時(shí)不成立,故本說(shuō)法不正確;B:當(dāng)時(shí),,顯然符合是等比數(shù)列,但是此時(shí)不成立,故本說(shuō)法不正確;C:當(dāng)時(shí),因此有常數(shù),因此是等差數(shù)列,因此當(dāng)不是等差數(shù)列時(shí),一定有,故本說(shuō)法正確;D:當(dāng)時(shí),若時(shí),顯然數(shù)列是等比數(shù)列,故本說(shuō)法不正確.故選:C【點(diǎn)睛】本題考查了等差數(shù)列和等比數(shù)列的定義,考查了推理論證能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先對(duì)函數(shù)f(x)求導(dǎo),再根據(jù)圖象在(0,f(0))處切線(xiàn)的斜率為﹣4,得f′(0)=﹣4,由此可求a的值.【詳解】由函數(shù)得,∵函數(shù)f(x)的圖象在(0,f(0))處切線(xiàn)的斜率為﹣4,,.故答案為4【點(diǎn)睛】本題考查了根據(jù)曲線(xiàn)上在某點(diǎn)切線(xiàn)方程的斜率求參數(shù)的問(wèn)題,屬于基礎(chǔ)題.14、【解析】
設(shè),,,根據(jù)勾股定理得出,而由橢圓的定義得出的周長(zhǎng)為,有,便可求出和的關(guān)系,即可求得橢圓的離心率.【詳解】解:由已知,的三邊長(zhǎng),,成等差數(shù)列,設(shè),,,而,根據(jù)勾股定理有:,解得:,由橢圓定義知:的周長(zhǎng)為,有,,在直角中,由勾股定理,,即:,∴離心率.故答案為:.【點(diǎn)睛】本題考查橢圓的離心率以及橢圓的定義的應(yīng)用,考查計(jì)算能力.15、4【解析】
設(shè)△ABC所在截面圓的圓心為O1,AB中點(diǎn)為D,連接OD,易知∠ODO1即為二面角C-AB-O的平面角,可求出OD,?O1D及OO1,然后可判斷出四面體OABC外接球的球心E在直線(xiàn)OO1上,在【詳解】設(shè)△ABC所在截面圓的圓心為O1,AB中點(diǎn)為D,連接OD,OA=OB,所以,OD⊥AB,同理O1D⊥AB,所以,∠ODO1即為二面角∠ODO因?yàn)镺A=OB=4,?AB=42,所以△OAB在Rt△ODO1中,由cos60o=O1D因?yàn)镺1到A、B、C三的距離相等,所以,四面體OABC外接球的球心E在直線(xiàn)OO設(shè)四面體OABC外接球半徑為R,在Rt△O1由勾股定理可得:O1B2+O【點(diǎn)睛】本題考查了三棱錐的外接球問(wèn)題,考查了學(xué)生的空間想象能力、邏輯推理能力及計(jì)算求解能力,屬于中檔題.16、【解析】
設(shè):,:,利用點(diǎn)到直線(xiàn)的距離,列出式子,求出的值即可.【詳解】解:由圓,可知圓心,半徑為.設(shè)直線(xiàn):,則:,圓心到直線(xiàn)的距離為,,.圓心到直線(xiàn)的距離為半徑,即,并根據(jù)垂徑定理的應(yīng)用,可列式得到,解得.故答案為:.【點(diǎn)睛】本題主要考查點(diǎn)到直線(xiàn)的距離公式的運(yùn)用,并結(jié)合圓的方程,垂徑定理的基本知識(shí),屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2).【解析】
(1)取中點(diǎn),連接,根據(jù)等腰三角形的性質(zhì)得到,利用全等三角形證得,由此證得平面,進(jìn)而證得平面平面.(2)由(1)知平面,即是四面體的面上的高,結(jié)合錐體體積公式,求得四面體的體積.【詳解】(1)證明:如圖,取中點(diǎn),連接,由則,則,故故,平面.又平面,故平面平面(2)由(1)知平面,即是四面體的面上的高,且.在中,,由勾股定理易知故四面體的體積【點(diǎn)睛】本小題主要考查面面垂直的證明,考查錐體體積計(jì)算,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1).(2)【解析】
(1)由題意利用三角恒等變換化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)的定義域和值域,得出結(jié)論.(2)由題意利用余弦定理?三角形的面積公式?基本不等式求得的最大值,可得邊上的高的最大值.【詳解】解:(1)∵函數(shù),當(dāng)時(shí),,.(2)中,,∴.由余弦定理可得,當(dāng)且僅當(dāng)時(shí),取等號(hào),即的最大值為3.再根據(jù),故當(dāng)取得最大值3時(shí),取得最大值為.【點(diǎn)睛】本題考查降冪公式、兩角和的正弦公式,考查正弦函數(shù)的性質(zhì),余弦定理,三角形面積公式,所用公式較多,選用恰當(dāng)?shù)墓绞墙忸}關(guān)鍵,本題屬于中檔題.19、(1)若,則在定義域內(nèi)遞增;若,則在上單調(diào)遞增,在上單調(diào)遞減(2)證明見(jiàn)解析【解析】
(1),分,討論即可;(2)由題可得到,故只需證,,即,采用換元法,轉(zhuǎn)化為函數(shù)的最值問(wèn)題來(lái)處理.【詳解】由已知,,若,則在定義域內(nèi)遞增;若,則在上單調(diào)遞增,在上單調(diào)遞減.(2)由題意,對(duì)求導(dǎo)可得從而,是的兩個(gè)變號(hào)零點(diǎn),因此下證:,即證令,即證:,對(duì)求導(dǎo)可得,,,因?yàn)楣剩栽谏蠁握{(diào)遞減,而,從而所以在單調(diào)遞增,所以,即于是【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及證明不等式,考查學(xué)生邏輯推理能力、轉(zhuǎn)化與化歸能力,是一道有一定難度的壓軸題.20、(1)證明見(jiàn)解析;(2).【解析】
(1)首先根據(jù)題中條件求出橢圓方程,設(shè)、、點(diǎn)坐標(biāo),根據(jù)利用坐標(biāo)表示出即可得證;(2)設(shè)直線(xiàn)方程,再與橢圓方程聯(lián)立利用韋達(dá)定理表示出,即可求出范圍.【詳解】(1)依題有,所以橢圓方程為.設(shè),,,由為的重心,;又因?yàn)?,,,,?)當(dāng)?shù)男甭什淮嬖跁r(shí):,,,代入橢圓得,,,當(dāng)?shù)男甭蚀嬖跁r(shí):設(shè)直線(xiàn)為,這里,由,,根據(jù)韋達(dá)定理有,,,故,代入橢圓方程有,又因?yàn)椋C上,的范圍是.【點(diǎn)睛】本題主要考查了橢圓方程的求解,三角形重心的坐標(biāo)關(guān)系,直線(xiàn)與橢圓所交弦長(zhǎng),屬于一般題.21、(1),(2)0【解析】
(1)分別把兩曲線(xiàn)參數(shù)方程中的參數(shù)消去,即可得到普通方程;(2)把直線(xiàn)的參數(shù)方程代入的普通方程,化為關(guān)于的一元二次方程,再由根與系數(shù)的關(guān)系及此時(shí)的幾何意義求解.【詳解】(1)由曲線(xiàn)的參數(shù)方程為為參數(shù)),消去參數(shù),可得;由曲線(xiàn)的參數(shù)方程為為參數(shù)),消去參數(shù),可得,即.(2)把為參數(shù))代入,得.,..解得:,即,滿(mǎn)足△..【點(diǎn)睛】本題考查參數(shù)方程化普通方程,特別是直線(xiàn)參數(shù)方程中參數(shù)的幾何意義的應(yīng)用,是中檔題.22、(1)當(dāng)時(shí),的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;當(dāng)時(shí),的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;(2),證明見(jiàn)解析.【解析】
(1)求出,對(duì)分類(lèi)討論,分別求出的解,即可得出結(jié)論;(2)由(1)得出有兩解時(shí)的范圍,以及關(guān)系,將,等價(jià)轉(zhuǎn)化為證明,不妨設(shè),令,則,即證,構(gòu)造函數(shù),只要證明對(duì)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- BIM工程師-全國(guó)《BIM應(yīng)用技能資格》模擬試卷4
- 人教版新課標(biāo)高中英語(yǔ)必修2全套教案
- 高一化學(xué)教案:專(zhuān)題第三單元第一課時(shí)同素異形現(xiàn)象、同分異構(gòu)現(xiàn)象
- 2024屆重慶某中學(xué)高考化學(xué)三模試卷含解析
- 2024高中化學(xué)第二章烴和鹵代烴1-1烷烴和烯烴課時(shí)作業(yè)含解析新人教版選修5
- 2024高中物理章末質(zhì)量評(píng)估四含解析粵教版選修1-1
- 2024高中生物第五章生態(tài)系統(tǒng)及其穩(wěn)定性第4節(jié)生態(tài)系統(tǒng)的信息傳遞精練含解析新人教版必修3
- 2024高中語(yǔ)文第二課千言萬(wàn)語(yǔ)總關(guān)“音”第2節(jié)耳聽(tīng)為虛-同音字和同音詞訓(xùn)練含解析新人教版選修語(yǔ)言文字應(yīng)用
- 2024高考化學(xué)一輪復(fù)習(xí)第四章第3課時(shí)碳硅及其化合物教案魯科版
- 2024高考?xì)v史一輪復(fù)習(xí)方案專(zhuān)題八中國(guó)社會(huì)主義建設(shè)道路的探索專(zhuān)題綜合測(cè)驗(yàn)含解析人民版
- 2025年湖北武漢工程大學(xué)招聘6人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2024-2025學(xué)年北京房山區(qū)初三(上)期末英語(yǔ)試卷
- 2024年三年級(jí)英語(yǔ)教學(xué)工作總結(jié)(修改)
- 【數(shù) 學(xué)】2024-2025學(xué)年北師大版數(shù)學(xué)七年級(jí)上冊(cè)期末能力提升卷
- GB/T 26846-2024電動(dòng)自行車(chē)用電動(dòng)機(jī)和控制器的引出線(xiàn)及接插件
- 遼寧省沈陽(yáng)市皇姑區(qū)2024-2025學(xué)年九年級(jí)上學(xué)期期末考試語(yǔ)文試題(含答案)
- 妊娠咳嗽的臨床特征
- 泰山產(chǎn)業(yè)領(lǐng)軍人才申報(bào)書(shū)
- 封條模板A4直接打印版
- 教練技術(shù)CP理論P(yáng)PT課件
- 水運(yùn)工程質(zhì)量檢驗(yàn)標(biāo)準(zhǔn)(JTS_257-2008)附表格
評(píng)論
0/150
提交評(píng)論