2024屆貴州省百校大聯(lián)考高三上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁(yè)
2024屆貴州省百校大聯(lián)考高三上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁(yè)
2024屆貴州省百校大聯(lián)考高三上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁(yè)
2024屆貴州省百校大聯(lián)考高三上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁(yè)
2024屆貴州省百校大聯(lián)考高三上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆貴州省百校大聯(lián)考高三上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.命題:的否定為A. B.C. D.2.如圖,矩形ABCD中,,,E是AD的中點(diǎn),將沿BE折起至,記二面角的平面角為,直線與平面BCDE所成的角為,與BC所成的角為,有如下兩個(gè)命題:①對(duì)滿足題意的任意的的位置,;②對(duì)滿足題意的任意的的位置,,則()A.命題①和命題②都成立 B.命題①和命題②都不成立C.命題①成立,命題②不成立 D.命題①不成立,命題②成立3.《易·系辭上》有“河出圖,洛出書”之說(shuō),河圖、洛書是中華文化,陰陽(yáng)術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如圖,白圈為陽(yáng)數(shù),黑點(diǎn)為陰數(shù).若從這10個(gè)數(shù)中任取3個(gè)數(shù),則這3個(gè)數(shù)中至少有2個(gè)陽(yáng)數(shù)且能構(gòu)成等差數(shù)列的概率為()A. B. C. D.4.在的展開式中,含的項(xiàng)的系數(shù)是()A.74 B.121 C. D.5.阿基米德(公元前287年—公元前212年)是古希臘偉大的哲學(xué)家、數(shù)學(xué)家和物理學(xué)家,他和高斯、牛頓并列被稱為世界三大數(shù)學(xué)家.據(jù)說(shuō),他自己覺(jué)得最為滿意的一個(gè)數(shù)學(xué)發(fā)現(xiàn)就是“圓柱內(nèi)切球體的體積是圓柱體積的三分之二,并且球的表面積也是圓柱表面積的三分之二”.他特別喜歡這個(gè)結(jié)論,要求后人在他的墓碑上刻著一個(gè)圓柱容器里放了一個(gè)球,如圖,該球頂天立地,四周碰邊,表面積為的圓柱的底面直徑與高都等于球的直徑,則該球的體積為()A. B. C. D.6.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.7.的展開式中,含項(xiàng)的系數(shù)為()A. B. C. D.8.古希臘數(shù)學(xué)家畢達(dá)哥拉斯在公元前六世紀(jì)發(fā)現(xiàn)了第一、二個(gè)“完全數(shù)”6和28,進(jìn)一步研究發(fā)現(xiàn)后續(xù)三個(gè)“完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則6和28恰好在同一組的概率為A. B. C. D.9.已知是偶函數(shù),在上單調(diào)遞減,,則的解集是A. B.C. D.10.若為虛數(shù)單位,則復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.從集合中隨機(jī)選取一個(gè)數(shù)記為,從集合中隨機(jī)選取一個(gè)數(shù)記為,則在方程表示雙曲線的條件下,方程表示焦點(diǎn)在軸上的雙曲線的概率為()A. B. C. D.12.若雙曲線的漸近線與圓相切,則雙曲線的離心率為()A.2 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),(其中e為自然對(duì)數(shù)的底數(shù)),若關(guān)于x的方程恰有5個(gè)相異的實(shí)根,則實(shí)數(shù)a的取值范圍為________.14.在中,角A,B,C的對(duì)邊分別為a,b,c,且,則________.15.設(shè)復(fù)數(shù)滿足,則_________.16.隨著國(guó)力的發(fā)展,人們的生活水平越來(lái)越好,我國(guó)的人均身高較新中國(guó)成立初期有大幅提高.為了掌握學(xué)生的體質(zhì)與健康現(xiàn)狀,合理制定學(xué)校體育衛(wèi)生工作發(fā)展規(guī)劃,某市進(jìn)行了一次全市高中男生身高統(tǒng)計(jì)調(diào)查,數(shù)據(jù)顯示全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,那么該市身高高于的高中男生人數(shù)大約為__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),不等式的解集為.(1)求實(shí)數(shù),的值;(2)若,,,求證:.18.(12分)如圖,已知四棱錐的底面是等腰梯形,,,,,為等邊三角形,且點(diǎn)P在底面上的射影為的中點(diǎn)G,點(diǎn)E在線段上,且.(1)求證:平面.(2)求二面角的余弦值.19.(12分)若數(shù)列滿足:對(duì)于任意,均為數(shù)列中的項(xiàng),則稱數(shù)列為“數(shù)列”.(1)若數(shù)列的前項(xiàng)和,,試判斷數(shù)列是否為“數(shù)列”?說(shuō)明理由;(2)若公差為的等差數(shù)列為“數(shù)列”,求的取值范圍;(3)若數(shù)列為“數(shù)列”,,且對(duì)于任意,均有,求數(shù)列的通項(xiàng)公式.20.(12分)如圖,在直角中,,,,點(diǎn)在線段上.(1)若,求的長(zhǎng);(2)點(diǎn)是線段上一點(diǎn),,且,求的值.21.(12分)己知,,.(1)求證:;(2)若,求證:.22.(10分)如圖,已知橢圓的右焦點(diǎn)為,,為橢圓上的兩個(gè)動(dòng)點(diǎn),周長(zhǎng)的最大值為8.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)直線經(jīng)過(guò),交橢圓于點(diǎn),,直線與直線的傾斜角互補(bǔ),且交橢圓于點(diǎn),,,求證:直線與直線的交點(diǎn)在定直線上.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

命題為全稱命題,它的否定為特稱命題,將全稱量詞改為存在量詞,并將結(jié)論否定,可知命題的否定為,故選C.2、A【解析】

作出二面角的補(bǔ)角、線面角、線線角的補(bǔ)角,由此判斷出兩個(gè)命題的正確性.【詳解】①如圖所示,過(guò)作平面,垂足為,連接,作,連接.由圖可知,,所以,所以①正確.②由于,所以與所成角,所以,所以②正確.綜上所述,①②都正確.故選:A【點(diǎn)睛】本題考查了折疊問(wèn)題、空間角、數(shù)形結(jié)合方法,考查了推理能力與計(jì)算能力,屬于中檔題.3、C【解析】

先根據(jù)組合數(shù)計(jì)算出所有的情況數(shù),再根據(jù)“3個(gè)數(shù)中至少有2個(gè)陽(yáng)數(shù)且能構(gòu)成等差數(shù)列”列舉得到滿足條件的情況,由此可求解出對(duì)應(yīng)的概率.【詳解】所有的情況數(shù)有:種,3個(gè)數(shù)中至少有2個(gè)陽(yáng)數(shù)且能構(gòu)成等差數(shù)列的情況有:,共種,所以目標(biāo)事件的概率.故選:C.【點(diǎn)睛】本題考查概率與等差數(shù)列的綜合,涉及到背景文化知識(shí),難度一般.求解該類問(wèn)題可通過(guò)古典概型的概率求解方法進(jìn)行分析;當(dāng)情況數(shù)較多時(shí),可考慮用排列數(shù)、組合數(shù)去計(jì)算.4、D【解析】

根據(jù),利用通項(xiàng)公式得到含的項(xiàng)為:,進(jìn)而得到其系數(shù),【詳解】因?yàn)樵?,所以含的?xiàng)為:,所以含的項(xiàng)的系數(shù)是的系數(shù)是,,故選:D【點(diǎn)睛】本題主要考查二項(xiàng)展開式及通項(xiàng)公式和項(xiàng)的系數(shù),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題,5、C【解析】

設(shè)球的半徑為R,根據(jù)組合體的關(guān)系,圓柱的表面積為,解得球的半徑,再代入球的體積公式求解.【詳解】設(shè)球的半徑為R,根據(jù)題意圓柱的表面積為,解得,所以該球的體積為.故選:C【點(diǎn)睛】本題主要考查組合體的表面積和體積,還考查了對(duì)數(shù)學(xué)史了解,屬于基礎(chǔ)題.6、D【解析】

結(jié)合三視圖可知,該幾何體的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長(zhǎng)為4,高為4的正三棱柱,分別求出體積即可.【詳解】由三視圖可知該幾何體的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長(zhǎng)為4,高為4的正三棱柱,則上半部分的半個(gè)圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【點(diǎn)睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運(yùn)算求解能力,屬于中檔題.7、B【解析】

在二項(xiàng)展開式的通項(xiàng)公式中,令的冪指數(shù)等于,求出的值,即可求得含項(xiàng)的系數(shù).【詳解】的展開式通項(xiàng)為,令,得,可得含項(xiàng)的系數(shù)為.故選:B.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.8、B【解析】

推導(dǎo)出基本事件總數(shù),6和28恰好在同一組包含的基本事件個(gè)數(shù),由此能求出6和28恰好在同一組的概率.【詳解】解:將五個(gè)“完全數(shù)”6,28,496,8128,33550336,隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),基本事件總數(shù),6和28恰好在同一組包含的基本事件個(gè)數(shù),∴6和28恰好在同一組的概率.故選:B.【點(diǎn)睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.9、D【解析】

先由是偶函數(shù),得到關(guān)于直線對(duì)稱;進(jìn)而得出單調(diào)性,再分別討論和,即可求出結(jié)果.【詳解】因?yàn)槭桥己瘮?shù),所以關(guān)于直線對(duì)稱;因此,由得;又在上單調(diào)遞減,則在上單調(diào)遞增;所以,當(dāng)即時(shí),由得,所以,解得;當(dāng)即時(shí),由得,所以,解得;因此,的解集是.【點(diǎn)睛】本題主要考查由函數(shù)的性質(zhì)解對(duì)應(yīng)不等式,熟記函數(shù)的奇偶性、對(duì)稱性、單調(diào)性等性質(zhì)即可,屬于??碱}型.10、B【解析】

由共軛復(fù)數(shù)的定義得到,通過(guò)三角函數(shù)值的正負(fù),以及復(fù)數(shù)的幾何意義即得解【詳解】由題意得,因?yàn)椋?,所以在?fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第二象限.故選:B【點(diǎn)睛】本題考查了共軛復(fù)數(shù)的概念及復(fù)數(shù)的幾何意義,考查了學(xué)生概念理解,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.11、A【解析】

設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線”,分別計(jì)算出,再利用公式計(jì)算即可.【詳解】設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線”,由題意,,,則所求的概率為.故選:A.【點(diǎn)睛】本題考查利用定義計(jì)算條件概率的問(wèn)題,涉及到雙曲線的定義,是一道容易題.12、C【解析】

利用圓心到漸近線的距離等于半徑即可建立間的關(guān)系.【詳解】由已知,雙曲線的漸近線方程為,故圓心到漸近線的距離等于1,即,所以,.故選:C.【點(diǎn)睛】本題考查雙曲線離心率的求法,求雙曲線離心率問(wèn)題,關(guān)鍵是建立三者間的方程或不等關(guān)系,本題是一道基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

作出圖象,求出方程的根,分類討論的正負(fù),數(shù)形結(jié)合即可.【詳解】當(dāng)時(shí),令,解得,所以當(dāng)時(shí),,則單調(diào)遞增,當(dāng)時(shí),,則單調(diào)遞減,當(dāng)時(shí),單調(diào)遞減,且,作出函數(shù)的圖象如圖:(1)當(dāng)時(shí),方程整理得,只有2個(gè)根,不滿足條件;(2)若,則當(dāng)時(shí),方程整理得,則,,此時(shí)各有1解,故當(dāng)時(shí),方程整理得,有1解同時(shí)有2解,即需,,因?yàn)椋?),故此時(shí)滿足題意;或有2解同時(shí)有1解,則需,由(1)可知不成立;或有3解同時(shí)有0解,根據(jù)圖象不存在此種情況,或有0解同時(shí)有3解,則,解得,故,(3)若,顯然當(dāng)時(shí),和均無(wú)解,當(dāng)時(shí),和無(wú)解,不符合題意.綜上:的范圍是,故答案為:,【點(diǎn)睛】本題主要考查了函數(shù)零點(diǎn)與函數(shù)圖象的關(guān)系,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力,屬于中檔題.14、【解析】

利用正弦定理將邊化角,即可容易求得結(jié)果.【詳解】由正弦定理可知,,即.故答案為:.【點(diǎn)睛】本題考查利用正弦定理實(shí)現(xiàn)邊角互化,屬基礎(chǔ)題.15、.【解析】

利用復(fù)數(shù)的運(yùn)算法則首先可得出,再根據(jù)共軛復(fù)數(shù)的概念可得結(jié)果.【詳解】∵復(fù)數(shù)滿足,∴,∴,故而可得,故答案為.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算法則,共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.16、3000【解析】

根據(jù)正態(tài)曲線的對(duì)稱性求出,進(jìn)而可求出身高高于的高中男生人數(shù).【詳解】解:全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,則,該市身高高于的高中男生人數(shù)大約為.故答案為:.【點(diǎn)睛】本題考查正態(tài)曲線的對(duì)稱性的應(yīng)用,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),.(2)見(jiàn)解析【解析】

(1)分三種情況討論即可(2)將,的值代入,然后利用均值定理即可.【詳解】解:(1)不等式可化為.即有或或.解得,或或.所以不等式的解集為,故,.(2)由(1)知,,即,由,得,,當(dāng)且僅當(dāng),即,時(shí)等號(hào)成立.故,即.【點(diǎn)睛】考查絕對(duì)值不等式的解法以及用均值定理證明不等式,中檔題.18、(1)證明見(jiàn)解析(2)【解析】

(1)由等腰梯形的性質(zhì)可證得,由射影可得平面,進(jìn)而求證;(2)取的中點(diǎn)F,連接,以G為原點(diǎn),所在直線為x軸,所在直線為y軸,所在直線為z軸,建立空間直角坐標(biāo)系,分別求得平面與平面的法向量,再利用數(shù)量積求解即可.【詳解】(1)在等腰梯形中,點(diǎn)E在線段上,且,點(diǎn)E為上靠近C點(diǎn)的四等分點(diǎn),,,,,點(diǎn)P在底面上的射影為的中點(diǎn)G,連接,平面,平面,.又,平面,平面,平面.(2)取的中點(diǎn)F,連接,以G為原點(diǎn),所在直線為x軸,所在直線為y軸,所在直線為z軸,建立空間直角坐標(biāo)系,如圖所示,由(1)易知,,,又,,,為等邊三角形,,則,,,,,,,,,設(shè)平面的法向量為,則,即,令,則,,,設(shè)平面的法向量為,則,即,令,則,,,設(shè)平面與平面的夾角為θ,則二面角的余弦值為.【點(diǎn)睛】本題考查線面垂直的證明,考查空間向量法求二面角,考查運(yùn)算能力與空間想象能力.19、(1)不是,見(jiàn)解析(2)(3)【解析】

(1)利用遞推關(guān)系求出數(shù)列的通項(xiàng)公式,進(jìn)一步驗(yàn)證時(shí),是否為數(shù)列中的項(xiàng),即可得答案;(2)由題意得,再對(duì)公差進(jìn)行分類討論,即可得答案;(3)由題意得數(shù)列為等差數(shù)列,設(shè)數(shù)列的公差為,再根據(jù)不等式得到公差的值,即可得答案;【詳解】(1)當(dāng)時(shí),又,所以.所以當(dāng)時(shí),,而,所以時(shí),不是數(shù)列中的項(xiàng),故數(shù)列不是為“數(shù)列”(2)因?yàn)閿?shù)列是公差為的等差數(shù)列,所以.因?yàn)閿?shù)列為“數(shù)列”所以任意,存在,使得,即有.①若,則只需,使得,從而得是數(shù)列中的項(xiàng).②若,則.此時(shí),當(dāng)時(shí),不為正整數(shù),所以不符合題意.綜上,.(3)由題意,所以,又因?yàn)?,且?shù)列為“數(shù)列”,所以,即,所以數(shù)列為等差數(shù)列.設(shè)數(shù)列的公差為,則有,由,得,整理得,①.②若,取正整數(shù),則當(dāng)時(shí),,與①式對(duì)應(yīng)任意恒成立相矛盾,因此.同樣根據(jù)②式可得,所以.又,所以.經(jīng)檢驗(yàn)當(dāng)時(shí),①②兩式對(duì)應(yīng)任意恒成立,所以數(shù)列的通項(xiàng)公式為.【點(diǎn)睛】本題考查數(shù)列新定義題、等差數(shù)列的通項(xiàng)公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想,考查邏輯推理能力、運(yùn)算求解能力,難度較大.20、(1)3;(2).【解析】

(1)在中,利用正弦定理即可得到答案;(2)由可得,在中,利用及余弦定理得,解方程組即可.【詳解】(1)在中,已知,,,由正弦定理,得

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論