2024屆山東省德州市中考試題猜想數(shù)學(xué)試卷含解析_第1頁
2024屆山東省德州市中考試題猜想數(shù)學(xué)試卷含解析_第2頁
2024屆山東省德州市中考試題猜想數(shù)學(xué)試卷含解析_第3頁
2024屆山東省德州市中考試題猜想數(shù)學(xué)試卷含解析_第4頁
2024屆山東省德州市中考試題猜想數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆山東省德州市中考試題猜想數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.為了解某校初三學(xué)生的體重情況,從中隨機(jī)抽取了80名初三學(xué)生的體重進(jìn)行統(tǒng)計(jì)分析,在此問題中,樣本是指()A.80 B.被抽取的80名初三學(xué)生C.被抽取的80名初三學(xué)生的體重 D.該校初三學(xué)生的體重2.鄭州地鐵Ⅰ號線火車站站口分布如圖所示,有A,B,C,D,E五個(gè)進(jìn)出口,小明要從這里乘坐地鐵去新鄭機(jī)場,回來后仍從這里出站,則他恰好選擇從同一個(gè)口進(jìn)出的概率是()A. B. C. D.3.下列各數(shù)中比﹣1小的數(shù)是()A.﹣2 B.﹣1 C.0 D.14.已知,代數(shù)式的值為()A.-11 B.-1 C.1 D.115.一元二次方程x2+kx﹣3=0的一個(gè)根是x=1,則另一個(gè)根是()A.3 B.﹣1 C.﹣3 D.﹣26.如圖,淇淇一家駕車從A地出發(fā),沿著北偏東60°的方向行駛,到達(dá)B地后沿著南偏東50°的方向行駛來到C地,C地恰好位于A地正東方向上,則()①B地在C地的北偏西50°方向上;②A地在B地的北偏西30°方向上;③cos∠BAC=;④∠ACB=50°.其中錯(cuò)誤的是()A.①② B.②④ C.①③ D.③④7.已知拋物線y=ax2+bx+c的圖象如圖所示,頂點(diǎn)為(4,6),則下列說法錯(cuò)誤的是()A.b2>4ac B.a(chǎn)x2+bx+c≤6C.若點(diǎn)(2,m)(5,n)在拋物線上,則m>n D.8a+b=08.如圖,平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別落在x、y軸上,點(diǎn)B坐標(biāo)為(6,4),反比例函數(shù)的圖象與AB邊交于點(diǎn)D,與BC邊交于點(diǎn)E,連結(jié)DE,將△BDE沿DE翻折至△B'DE處,點(diǎn)B'恰好落在正比例函數(shù)y=kx圖象上,則k的值是()A. B. C. D.9.某小組5名同學(xué)在一周內(nèi)參加家務(wù)勞動(dòng)的時(shí)間如表所示,關(guān)于“勞動(dòng)時(shí)間”的這組數(shù)據(jù),以下說法正確的是()動(dòng)時(shí)間(小時(shí))33.544.5人數(shù)1121A.中位數(shù)是4,平均數(shù)是3.75 B.眾數(shù)是4,平均數(shù)是3.75C.中位數(shù)是4,平均數(shù)是3.8 D.眾數(shù)是2,平均數(shù)是3.810.下列運(yùn)算正確的是()A.5ab﹣ab=4 B.a(chǎn)6÷a2=a4C. D.(a2b)3=a5b3二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點(diǎn),將△ABP沿BP翻折至△EBP,PE與CD相交于點(diǎn)O,BE與CD相交于點(diǎn)G,且OE=OD,則AP的長為__________.12.如圖,在邊長為1正方形ABCD中,點(diǎn)P是邊AD上的動(dòng)點(diǎn),將△PAB沿直線BP翻折,點(diǎn)A的對應(yīng)點(diǎn)為點(diǎn)Q,連接BQ、DQ.則當(dāng)BQ+DQ的值最小時(shí),tan∠ABP=_____.13.如果等腰三角形的兩內(nèi)角度數(shù)相差45°,那么它的頂角度數(shù)為_____.14.對于實(shí)數(shù)x,我們規(guī)定[x]表示不大于x的最大整數(shù),例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[]=5,則x的取值范圍是_____.15.如圖,在四邊形ABCD中,AD∥BC,AB=CD且AB與CD不平行,AD=2,∠BCD=60°,對角線CA平分∠BCD,E,F(xiàn)分別是底邊AD,BC的中點(diǎn),連接EF,點(diǎn)P是EF上的任意一點(diǎn),連接PA,PB,則PA+PB的最小值為__.16.已知,如圖,△ABC中,DE∥FG∥BC,AD∶DF∶FB=1∶2∶3,若EG=3,則AC=.三、解答題(共8題,共72分)17.(8分)如圖,△ABC中,∠A=90°,AB=AC=4,D是BC邊上一點(diǎn),將點(diǎn)D繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到點(diǎn)E,連接CE.(1)當(dāng)點(diǎn)E在BC邊上時(shí),畫出圖形并求出∠BAD的度數(shù);(2)當(dāng)△CDE為等腰三角形時(shí),求∠BAD的度數(shù);(3)在點(diǎn)D的運(yùn)動(dòng)過程中,求CE的最小值.(參考數(shù)值:sin75°=,cos75°=,tan75°=)18.(8分)如圖所示,在△ABC中,AB=CB,以BC為直徑的⊙O交AC于點(diǎn)E,過點(diǎn)E作⊙O的切線交AB于點(diǎn)F.(1)求證:EF⊥AB;(2)若AC=16,⊙O的半徑是5,求EF的長.19.(8分)已知關(guān)于x的一元二次方程x2+(2m+3)x+m2=1有兩根α,β求m的取值范圍;若α+β+αβ=1.求m的值.20.(8分)如圖,已知一次函數(shù)y=x+m的圖象與x軸交于點(diǎn)A(﹣4,0),與二次函數(shù)y=ax1+bx+c的圖象交于y軸上一點(diǎn)B,該二次函數(shù)的頂點(diǎn)C在x軸上,且OC=1.(1)求點(diǎn)B坐標(biāo);(1)求二次函數(shù)y=ax1+bx+c的解析式;(3)設(shè)一次函數(shù)y=x+m的圖象與二次函數(shù)y=ax1+bx+c的圖象的另一交點(diǎn)為D,已知P為x軸上的一個(gè)動(dòng)點(diǎn),且△PBD是以BD為直角邊的直角三角形,求點(diǎn)P的坐標(biāo).21.(8分)問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點(diǎn)D,則D為BC的中點(diǎn),∠BAD=∠BAC=60°,于是==遷移應(yīng)用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點(diǎn)在同一條直線上,連接BD.(1)求證:△ADB≌△AEC;(2)若AD=2,BD=3,請計(jì)算線段CD的長;拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點(diǎn)C關(guān)于BM的對稱點(diǎn)E,連接AE并延長交BM于點(diǎn)F,連接CE,CF.(3)證明:△CEF是等邊三角形;(4)若AE=4,CE=1,求BF的長.22.(10分)如圖,在平面直角坐標(biāo)系中,拋物線的圖象經(jīng)過和兩點(diǎn),且與軸交于,直線是拋物線的對稱軸,過點(diǎn)的直線與直線相交于點(diǎn),且點(diǎn)在第一象限.(1)求該拋物線的解析式;(2)若直線和直線、軸圍成的三角形面積為6,求此直線的解析式;(3)點(diǎn)在拋物線的對稱軸上,與直線和軸都相切,求點(diǎn)的坐標(biāo).23.(12分)如圖,要修一個(gè)育苗棚,棚的橫截面是,棚高,長,棚頂與地面的夾角為.求覆蓋在頂上的塑料薄膜需多少平方米(結(jié)果保留小數(shù)點(diǎn)后一位).(參考數(shù)據(jù):,,)24.如圖所示是一幢住房的主視圖,已知:,房子前后坡度相等,米,米,設(shè)后房檐到地面的高度為米,前房檐到地面的高度米,求的值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】

總體是指考查的對象的全體,個(gè)體是總體中的每一個(gè)考查的對象,樣本是總體中所抽取的一部分個(gè)體,而樣本容量則是指樣本中個(gè)體的數(shù)目.我們在區(qū)分總體、個(gè)體、樣本、樣本容量,這四個(gè)概念時(shí),首先找出考查的對象.從而找出總體、個(gè)體.再根據(jù)被收集數(shù)據(jù)的這一部分對象找出樣本,最后再根據(jù)樣本確定出樣本容量.【題目詳解】樣本是被抽取的80名初三學(xué)生的體重,

故選C.【題目點(diǎn)撥】此題考查了總體、個(gè)體、樣本、樣本容量,解題要分清具體問題中的總體、個(gè)體與樣本,關(guān)鍵是明確考查的對象.總體、個(gè)體與樣本的考查對象是相同的,所不同的是范圍的大小.樣本容量是樣本中包含的個(gè)體的數(shù)目,不能帶單位.2、C【解題分析】

列表得出進(jìn)出的所有情況,再從中確定出恰好選擇從同一個(gè)口進(jìn)出的結(jié)果數(shù),繼而根據(jù)概率公式計(jì)算可得.【題目詳解】解:列表得:ABCDEAAABACADAEABABBBCBDBEBCACBCCCDCECDADBDCDDDEDEAEBECEDEEE∴一共有25種等可能的情況,恰好選擇從同一個(gè)口進(jìn)出的有5種情況,∴恰好選擇從同一個(gè)口進(jìn)出的概率為=,故選C.【題目點(diǎn)撥】此題主要考查了列表法求概率,列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時(shí)還要注意是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.3、A【解題分析】

根據(jù)兩個(gè)負(fù)數(shù)比較大小,絕對值大的負(fù)數(shù)反而小,可得答案.【題目詳解】解:A、﹣2<﹣1,故A正確;B、﹣1=﹣1,故B錯(cuò)誤;C、0>﹣1,故C錯(cuò)誤;D、1>﹣1,故D錯(cuò)誤;故選:A.【題目點(diǎn)撥】本題考查了有理數(shù)大小比較,利用了正數(shù)大于0,0大于負(fù)數(shù),注意兩個(gè)負(fù)數(shù)比較大小,絕對值大的負(fù)數(shù)反而?。?、D【解題分析】

根據(jù)整式的運(yùn)算法則,先利用已知求出a的值,再將a的值帶入所要求解的代數(shù)式中即可得到此題答案.【題目詳解】解:由題意可知:,原式故選:D.【題目點(diǎn)撥】此題考查整式的混合運(yùn)算,解題的關(guān)鍵在于利用整式的運(yùn)算法則進(jìn)行化簡求得代數(shù)式的值5、C【解題分析】試題分析:根據(jù)根與系數(shù)的關(guān)系可得出兩根的積,即可求得方程的另一根.設(shè)m、n是方程x2+kx﹣3=0的兩個(gè)實(shí)數(shù)根,且m=x=1;則有:mn=﹣3,即n=﹣3;故選C.【考點(diǎn)】根與系數(shù)的關(guān)系;一元二次方程的解.6、B【解題分析】

先根據(jù)題意畫出圖形,再根據(jù)平行線的性質(zhì)及方向角的描述方法解答即可.【題目詳解】如圖所示,由題意可知,∠1=60°,∠4=50°,∴∠5=∠4=50°,即B在C處的北偏西50°,故①正確;∵∠2=60°,∴∠3+∠7=180°﹣60°=120°,即A在B處的北偏西120°,故②錯(cuò)誤;∵∠1=∠2=60°,∴∠BAC=30°,∴cos∠BAC=,故③正確;∵∠6=90°﹣∠5=40°,即公路AC和BC的夾角是40°,故④錯(cuò)誤.故選B.【題目點(diǎn)撥】本題考查的是方向角,平行線的性質(zhì),特殊角的三角函數(shù)值,解答此類題需要從運(yùn)動(dòng)的角度,正確畫出方位角,再結(jié)合平行線的性質(zhì)求解.7、C【解題分析】觀察可得,拋物線與x軸有兩個(gè)交點(diǎn),可得,即,選項(xiàng)A正確;拋物線開口向下且頂點(diǎn)為(4,6)可得拋物線的最大值為6,即,選項(xiàng)B正確;由題意可知拋物線的對稱軸為x=4,因?yàn)?-2=2,5-4=1,且1<2,所以可得m<n,選項(xiàng)C錯(cuò)誤;因?qū)ΨQ軸,即可得8a+b=0,選項(xiàng)D正確,故選C.點(diǎn)睛:本題主要考查了二次函數(shù)y=ax2+bx+c圖象與系數(shù)的關(guān)系,解決本題的關(guān)鍵是從圖象中獲取信息,利用數(shù)形結(jié)合思想解決問題,本題難度適中.8、B【解題分析】

根據(jù)矩形的性質(zhì)得到,CB∥x軸,AB∥y軸,于是得到D、E坐標(biāo),根據(jù)勾股定理得到ED,連接BB′,交ED于F,過B′作B′G⊥BC于G,根據(jù)軸對稱的性質(zhì)得到BF=B′F,BB′⊥ED求得BB′,設(shè)EG=x,根據(jù)勾股定理即可得到結(jié)論.【題目詳解】解:∵矩形OABC,∴CB∥x軸,AB∥y軸.∵點(diǎn)B坐標(biāo)為(6,1),∴D的橫坐標(biāo)為6,E的縱坐標(biāo)為1.∵D,E在反比例函數(shù)的圖象上,∴D(6,1),E(,1),∴BE=6﹣=,BD=1﹣1=3,∴ED==.連接BB′,交ED于F,過B′作B′G⊥BC于G.∵B,B′關(guān)于ED對稱,∴BF=B′F,BB′⊥ED,∴BF?ED=BE?BD,即BF=3×,∴BF=,∴BB′=.設(shè)EG=x,則BG=﹣x.∵BB′2﹣BG2=B′G2=EB′2﹣GE2,∴,∴x=,∴EG=,∴CG=,∴B′G=,∴B′(,﹣),∴k=.故選B.【題目點(diǎn)撥】本題考查了翻折變換(折疊問題),矩形的性質(zhì),勾股定理,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.9、C【解題分析】試題解析:這組數(shù)據(jù)中4出現(xiàn)的次數(shù)最多,眾數(shù)為4,∵共有5個(gè)人,∴第3個(gè)人的勞動(dòng)時(shí)間為中位數(shù),故中位數(shù)為:4,平均數(shù)為:=3.1.故選C.10、B【解題分析】

由整數(shù)指數(shù)冪和分式的運(yùn)算的法則計(jì)算可得答案.【題目詳解】A項(xiàng),根據(jù)單項(xiàng)式的減法法則可得:5ab-ab=4ab,故A項(xiàng)錯(cuò)誤;B項(xiàng),根據(jù)“同底數(shù)冪相除,底數(shù)不變,指數(shù)相減”可得:a6÷a2=a4,故B項(xiàng)正確;C項(xiàng),根據(jù)分式的加法法則可得:,故C項(xiàng)錯(cuò)誤;D項(xiàng),根據(jù)“積的乘方等于乘方的積”可得:,故D項(xiàng)錯(cuò)誤;故本題正確答案為B.【題目點(diǎn)撥】冪的運(yùn)算法則:(1)同底數(shù)冪的乘法:(m、n都是正整數(shù))(2)冪的乘方:(m、n都是正整數(shù))(3)積的乘方:(n是正整數(shù))(4)同底數(shù)冪的除法:(a≠0,m、n都是正整數(shù),且m>n)(5)零次冪:(a≠0)(6)負(fù)整數(shù)次冪:(a≠0,p是正整數(shù)).二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、4.1【解題分析】解:如圖所示:∵四邊形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1,根據(jù)題意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=1,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,設(shè)AP=EP=x,則PD=GE=6﹣x,DG=x,∴CG=1﹣x,BG=1﹣(6﹣x)=2+x,根據(jù)勾股定理得:BC2+CG2=BG2,即62+(1﹣x)2=(x+2)2,解得:x=4.1,∴AP=4.1;故答案為4.1.12、﹣1【解題分析】

連接DB,若Q點(diǎn)落在BD上,此時(shí)和最短,且為,設(shè)AP=x,則PD=1﹣x,PQ=x.解直角三角形得到AP=﹣1,根據(jù)三角函數(shù)的定義即可得到結(jié)論.【題目詳解】如圖:連接DB,若Q點(diǎn)落在BD上,此時(shí)和最短,且為,設(shè)AP=x,則PD=1﹣x,PQ=x.∵∠PDQ=45°,∴PD=PQ,即1﹣x=,∴x=﹣1,∴AP=﹣1,∴tan∠ABP==﹣1,故答案為:﹣1.【題目點(diǎn)撥】本題考查了翻折變換(折疊問題),正方形的性質(zhì),軸對稱﹣?zhàn)疃搪肪€問題,正確的理解題意是解題的關(guān)鍵.13、90°或30°.【解題分析】

分兩種情況討論求解:頂角比底角大45°;頂角比底角小45°.【題目詳解】設(shè)頂角為x度,則當(dāng)?shù)捉菫閤°﹣45°時(shí),2(x°﹣45°)+x°=180°,解得x=90°,當(dāng)?shù)捉菫閤°+45°時(shí),2(x°+45°)+x°=180°,解得x=30°,∴頂角度數(shù)為90°或30°.故答案為:90°或30°.【題目點(diǎn)撥】本題考查了等腰三角形的兩個(gè)底角相等即分類討論的數(shù)學(xué)思想,解答本題的關(guān)鍵是分頂角比底角大45°或頂角比底角小45°兩種情況進(jìn)行計(jì)算.14、11≤x<1【解題分析】

根據(jù)對于實(shí)數(shù)x我們規(guī)定[x]不大于x最大整數(shù),可得答案.【題目詳解】由[]=5,得:,解得11≤x<1,故答案是:11≤x<1.【題目點(diǎn)撥】考查了解一元一次不等式組,利用[x]不大于x最大整數(shù)得出不等式組是解題關(guān)鍵.15、2【解題分析】

將PA+PB轉(zhuǎn)化為PA+PC的值即可求出最小值.【題目詳解】解:E,F分別是底邊AD,BC的中點(diǎn),四邊形ABCD是等腰梯形,B點(diǎn)關(guān)于EF的對稱點(diǎn)C點(diǎn),AC即為PA+PB的最小值,∠BCD=,對角線AC平分∠BCD,∠ABC=,ZBCA=,∠BAC=,AD=2,PA+PB的最小值=.故答案為:.【題目點(diǎn)撥】求PA+PB的最小值,PA+PB不能直接求,可考慮轉(zhuǎn)化PA+PC的值,從而找出其最小值求解.16、1【解題分析】試題分析:根據(jù)DE∥FG∥BC可得△ADE∽△AFG∽ABC,根據(jù)題意可得EG:AC=DF:AB=2:6=1:3,根據(jù)EG=3,則AC=1.考點(diǎn):三角形相似的應(yīng)用.三、解答題(共8題,共72分)17、(1)∠BAD=15°;(2)∠BAC=45°或∠BAD=60°;(3)CE=.【解題分析】

(1)如圖1中,當(dāng)點(diǎn)E在BC上時(shí).只要證明△BAD≌△CAE,即可推出∠BAD=∠CAE=(90°-60°)=15°;(2)分兩種情形求解①如圖2中,當(dāng)BD=DC時(shí),易知AD=CD=DE,此時(shí)△DEC是等腰三角形.②如圖3中,當(dāng)CD=CE時(shí),△DEC是等腰三角形;(3)如圖4中,當(dāng)E在BC上時(shí),E記為E′,D記為D′,連接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.首先確定點(diǎn)E的運(yùn)動(dòng)軌跡是直線EE′(過點(diǎn)E與BC成60°角的直線上),可得EC的最小值即為線段CM的長(垂線段最短).【題目詳解】解:(1)如圖1中,當(dāng)點(diǎn)E在BC上時(shí).

∵AD=AE,∠DAE=60°,∴△ADE是等邊三角形,∴∠ADE=∠AED=60°,∴∠ADB=∠AEC=120°,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,在△ABD和△ACE中,∠B=∠C,∠ADB=∠AEC,AB=AC,∴△BAD≌△CAE,∴∠BAD=∠CAE=(90°-60°)=15°.(2)①如圖2中,當(dāng)BD=DC時(shí),易知AD=CD=DE,此時(shí)△DEC是等腰三角形,∠BAD=∠BAC=45°.

②如圖3中,當(dāng)CD=CE時(shí),△DEC是等腰三角形.∵AD=AE,∴AC垂直平分線段DE,∴∠ACD=∠ACE=45°,∴∠DCE=90°,∴∠EDC=∠CED=45°,∵∠B=45°,∴∠EDC=∠B,∴DE∥AB,∴∠BAD=∠ADE=60°.

(3)如圖4中,當(dāng)E在BC上時(shí),E記為E′,D記為D′,連接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.

∵∠AOE=∠DOE′,∠AE′D=∠AEO,∴△AOE∽△DOE′,∴AO:OD=EO:OE',∴AO:EO=OD:OE',∵∠AOD=∠EOE′,∴△AOD∽△EOE′,∴∠EE′O=∠ADO=60°,∴點(diǎn)E的運(yùn)動(dòng)軌跡是直線EE′(過點(diǎn)E與BC成60°角的直線上),∴EC的最小值即為線段CM的長(垂線段最短),設(shè)E′N=CN=a,則AN=4-a,在Rt△ANE′中,tan75°=AN:NE',∴2+=,∴a=2-,∴CE′=CN=2-.在Rt△CE′M中,CM=CE′?cos30°=,∴CE的最小值為.【題目點(diǎn)撥】本題考查幾何變換綜合題、等腰直角三角形的性質(zhì)、等邊三角形的性質(zhì)、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)、軌跡等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,學(xué)會(huì)用分類討論的思想思考問題,學(xué)會(huì)利用垂線段最短解決最值問題,屬于中考壓軸題.18、(1)證明見解析;(2)4.8.【解題分析】

(1)連結(jié)OE,根據(jù)等腰三角形的性質(zhì)可得∠OEC=∠OCA、∠A=∠OCA,即可得∠A=∠OEC,由同位角相等,兩直線平行即可判定OE∥AB,又因EF是⊙O的切線,根據(jù)切線的性質(zhì)可得EF⊥OE,由此即可證得EF⊥AB;(2)連結(jié)BE,根據(jù)直徑所對的圓周角為直角可得,∠BEC=90°,再由等腰三角形三線合一的性質(zhì)求得AE=EC=8,在Rt△BEC中,根據(jù)勾股定理求的BE=6,再由△ABE的面積=△BEC的面積,根據(jù)直角三角形面積的兩種表示法可得8×6=10×EF,由此即可求得EF=4.8.【題目詳解】(1)證明:連結(jié)OE.∵OE=OC,∴∠OEC=∠OCA,∵AB=CB,∴∠A=∠OCA,∴∠A=∠OEC,∴OE∥AB,∵EF是⊙O的切線,∴EF⊥OE,∴EF⊥AB.(2)連結(jié)BE.∵BC是⊙O的直徑,∴∠BEC=90°,又AB=CB,AC=16,∴AE=EC=AC=8,∵AB=CB=2BO=10,∴BE=,又△ABE的面積=△BEC的面積,即8×6=10×EF,∴EF=4.8.【題目點(diǎn)撥】本題考查了切線的性質(zhì)定理、圓周角定理、等腰三角形的性質(zhì)與判定、勾股定理及直角三角形的兩種面積求法等知識點(diǎn),熟練運(yùn)算這些知識是解決問題的關(guān)鍵.19、(1)m≥﹣34;(2)m【解題分析】

(1)根據(jù)方程有兩個(gè)相等的實(shí)數(shù)根可知△>1,求出m的取值范圍即可;(2)根據(jù)根與系數(shù)的關(guān)系得出α+β與αβ的值,代入代數(shù)式進(jìn)行計(jì)算即可.【題目詳解】(1)由題意知,(2m+2)2﹣4×1×m2≥1,解得:m≥﹣34(2)由根與系數(shù)的關(guān)系得:α+β=﹣(2m+2),αβ=m2,∵α+β+αβ=1,∴﹣(2m+2)+m2=1,解得:m1=﹣1,m1=2,由(1)知m≥﹣34所以m1=﹣1應(yīng)舍去,m的值為2.【題目點(diǎn)撥】本題考查的是根與系數(shù)的關(guān)系,熟知x1,x2是一元二次方程ax2+bx+c=1(a≠1)的兩根時(shí),x1+x2=﹣ba,x1x2=c20、(1)B(0,1);(1)y=0.5x1﹣1x+1;(3)P1(1,0)和P1(7.15,0);【解題分析】

(1)根據(jù)y=0.5x+m交x軸于點(diǎn)A,進(jìn)而得出m的值,再利用與y軸交于點(diǎn)B,即可得出B點(diǎn)坐標(biāo);(1)二次函數(shù)y=ax1+bx+c的圖象與x軸只有唯一的交點(diǎn)C,且OC=1.得出可設(shè)二次函數(shù)y=ax1+bx+c=a(x﹣1)1,進(jìn)而求出即可;(3)根據(jù)當(dāng)B為直角頂點(diǎn),當(dāng)D為直角頂點(diǎn)時(shí),分別利用三角形相似對應(yīng)邊成比例求出即可.【題目詳解】(1)∵y=x+1交x軸于點(diǎn)A(﹣4,0),∴0=×(﹣4)+m,∴m=1,與y軸交于點(diǎn)B,∵x=0,∴y=1∴B點(diǎn)坐標(biāo)為:(0,1),(1)∵二次函數(shù)y=ax1+bx+c的圖象與x軸只有唯一的交點(diǎn)C,且OC=1∴可設(shè)二次函數(shù)y=a(x﹣1)1把B(0,1)代入得:a=0.5∴二次函數(shù)的解析式:y=0.5x1﹣1x+1;(3)(Ⅰ)當(dāng)B為直角頂點(diǎn)時(shí),過B作BP1⊥AD交x軸于P1點(diǎn)由Rt△AOB∽Rt△BOP1∴,∴,得:OP1=1,∴P1(1,0),(Ⅱ)作P1D⊥BD,連接BP1,將y=0.5x+1與y=0.5x1﹣1x+1聯(lián)立求出兩函數(shù)交點(diǎn)坐標(biāo):D點(diǎn)坐標(biāo)為:(5,4.5),則AD=,當(dāng)D為直角頂點(diǎn)時(shí)∵∠DAP1=∠BAO,∠BOA=∠ADP1,∴△ABO∽△AP1D,∴,,解得:AP1=11.15,則OP1=11.15﹣4=7.15,故P1點(diǎn)坐標(biāo)為(7.15,0);∴點(diǎn)P的坐標(biāo)為:P1(1,0)和P1(7.15,0).【題目點(diǎn)撥】此題主要考查了二次函數(shù)綜合應(yīng)用以及求函數(shù)與坐標(biāo)軸交點(diǎn)和相似三角形的與性質(zhì)等知識,根據(jù)已知進(jìn)行分類討論得出所有結(jié)果,注意不要漏解.21、(1)見解析;(2)CD=;(3)見解析;(4)【解題分析】試題分析:遷移應(yīng)用:(1)如圖2中,只要證明∠DAB=∠CAE,即可根據(jù)SAS解決問題;

(2)結(jié)論:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD?cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解決問題;

拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.由BC=BE=BD=BA,F(xiàn)E=FC,推出A、D、E、C四點(diǎn)共圓,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等邊三角形;

(4)由AE=4,EC=EF=1,推出AH=HE=2,F(xiàn)H=3,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解決問題.試題解析:遷移應(yīng)用:(1)證明:如圖2,

∵∠BAC=∠DAE=120°,

∴∠DAB=∠CAE,

在△DAE和△EAC中,

DA=EA,∠DAB=∠EAC,AB=AC,

∴△DAB≌△EAC,

(2)結(jié)論:CD=AD+BD.

理由:如圖2-1中,作AH⊥CD于H.

∵△DAB≌△EAC,

∴BD=CE,

在Rt△ADH中,DH=AD?cos30°=AD,

∵AD=AE,AH⊥DE,

∴DH=HE,

∵CD=DE+EC=2DH+BD=AD+BD=.

拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.

∵四邊形ABCD是菱形,∠ABC=120°,

∴△ABD,△BDC是等邊三角形,

∴BA=BD=BC,

∵E、C關(guān)于BM對稱,

∴BC=BE=BD=BA,F(xiàn)E=FC,

∴A、D、E、C四點(diǎn)共圓,

∴∠ADC=∠AEC=120°,

∴∠FEC=60°,

∴△EFC是等邊三角形,

(4)∵AE=4,EC=EF=1,

∴AH=HE=2,F(xiàn)H=3,

在Rt△BHF中,∵∠BFH=30°,

∴=cos30°,

∴BF=.22、(1);(2);(3)或.【解題分析】

(1)根據(jù)圖象經(jīng)過M(1,0)和N(3,0)兩點(diǎn),且與y軸交于D(0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論