湖南永州市祁陽縣2024屆中考數(shù)學(xué)考前最后一卷含解析_第1頁
湖南永州市祁陽縣2024屆中考數(shù)學(xué)考前最后一卷含解析_第2頁
湖南永州市祁陽縣2024屆中考數(shù)學(xué)考前最后一卷含解析_第3頁
湖南永州市祁陽縣2024屆中考數(shù)學(xué)考前最后一卷含解析_第4頁
湖南永州市祁陽縣2024屆中考數(shù)學(xué)考前最后一卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

湖南永州市祁陽縣2024年中考數(shù)學(xué)考前最后一卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.某小組5名同學(xué)在一周內(nèi)參加家務(wù)勞動的時間如表所示,關(guān)于“勞動時間”的這組數(shù)據(jù),以下說法正確的是()動時間(小時)33.544.5人數(shù)1121A.中位數(shù)是4,平均數(shù)是3.75 B.眾數(shù)是4,平均數(shù)是3.75C.中位數(shù)是4,平均數(shù)是3.8 D.眾數(shù)是2,平均數(shù)是3.82.有一種球狀細(xì)菌的直徑用科學(xué)記數(shù)法表示為2.16×10﹣3米,則這個直徑是()A.216000米 B.0.00216米C.0.000216米 D.0.0000216米3.已知O為圓錐的頂點,M為圓錐底面上一點,點P在OM上.一只蝸牛從P點出發(fā),繞圓錐側(cè)面爬行,回到P點時所爬過的最短路線的痕跡如圖所示.若沿OM將圓錐側(cè)面剪開并展開,所得側(cè)面展開圖是()A. B.C. D.4.如圖,把長方形紙片ABCD折疊,使頂點A與頂點C重合在一起,EF為折痕.若AB=9,BC=3,試求以折痕EF為邊長的正方形面積()A.11 B.10 C.9 D.165.下列事件中是必然事件的是()A.早晨的太陽一定從東方升起B(yǎng).中秋節(jié)的晚上一定能看到月亮C.打開電視機,正在播少兒節(jié)目D.小紅今年14歲,她一定是初中學(xué)生6.如圖,矩形ABCD內(nèi)接于⊙O,點P是上一點,連接PB、PC,若AD=2AB,則cos∠BPC的值為()A. B. C. D.7.從標(biāo)號分別為1,2,3,4,5的5張卡片中隨機抽取1張,下列事件中不可能事件是()A.標(biāo)號是2 B.標(biāo)號小于6 C.標(biāo)號為6 D.標(biāo)號為偶數(shù)8.某圓錐的主視圖是一個邊長為3cm的等邊三角形,那么這個圓錐的側(cè)面積是()A.4.5πcm2 B.3cm2 C.4πcm2 D.3πcm29.已知反比例函數(shù)下列結(jié)論正確的是()A.圖像經(jīng)過點(-1,1) B.圖像在第一、三象限C.y隨著x的增大而減小 D.當(dāng)x>1時,y<110.一個幾何體的三視圖如圖所示,該幾何體是A.直三棱柱 B.長方體 C.圓錐 D.立方體二、填空題(共7小題,每小題3分,滿分21分)11.已知函數(shù)是關(guān)于的二次函數(shù),則__________.12.如圖,△ABC中,AD是中線,BC=8,∠B=∠DAC,則線段的長為________.13.2的平方根是_________.14.已知平面直角坐標(biāo)系中的點A(2,﹣4)與點B關(guān)于原點中心對稱,則點B的坐標(biāo)為_____15.為增強學(xué)生身體素質(zhì),提高學(xué)生足球運動競技水平,我市開展“市長杯”足球比賽,賽制為單循環(huán)形式(每兩隊之間賽一場).現(xiàn)計劃安排21場比賽,應(yīng)邀請多少個球隊參賽?設(shè)邀請x個球隊參賽,根據(jù)題意,可列方程為_____.16.設(shè)△ABC的面積為1,如圖①,將邊BC、AC分別2等分,BE1、AD1相交于點O,△AOB的面積記為S1;如圖②將邊BC、AC分別3等分,BE1、AD1相交于點O,△AOB的面積記為S2;…,依此類推,則Sn可表示為________.(用含n的代數(shù)式表示,其中n為正整數(shù))17.某商品原價100元,連續(xù)兩次漲價后,售價為144元.若平均每次增長率為x,則x=__________.三、解答題(共7小題,滿分69分)18.(10分)如果a2+2a-1=0,求代數(shù)式的值.19.(5分)對于平面直角坐標(biāo)系中的點,將它的縱坐標(biāo)與橫坐標(biāo)的比稱為點的“理想值”,記作.如的“理想值”.(1)①若點在直線上,則點的“理想值”等于_______;②如圖,,的半徑為1.若點在上,則點的“理想值”的取值范圍是_______.(2)點在直線上,的半徑為1,點在上運動時都有,求點的橫坐標(biāo)的取值范圍;(3),是以為半徑的上任意一點,當(dāng)時,畫出滿足條件的最大圓,并直接寫出相應(yīng)的半徑的值.(要求畫圖位置準(zhǔn)確,但不必尺規(guī)作圖)20.(8分)為落實“垃圾分類”,環(huán)衛(wèi)部門要求垃圾要按A,B,C三類分別裝袋,投放,其中A類指廢電池,過期藥品等有毒垃圾,B類指剩余食品等廚余垃圾,C類指塑料,廢紙等可回收垃圾.甲投放了一袋垃圾,乙投放了兩袋垃圾,這兩袋垃圾不同類.直接寫出甲投放的垃圾恰好是A類的概率;求乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率.21.(10分)“校園安全”受到全社會的廣泛關(guān)注,某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:接受問卷調(diào)查的學(xué)生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為度;請補全條形統(tǒng)計圖;若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學(xué)學(xué)生中對校園安全知識達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù).22.(10分)如圖,△ABD是⊙O的內(nèi)接三角形,E是弦BD的中點,點C是⊙O外一點且∠DBC=∠A,連接OE延長與圓相交于點F,與BC相交于點C.求證:BC是⊙O的切線;若⊙O的半徑為6,BC=8,求弦BD的長.23.(12分)如圖,拋物線交X軸于A、B兩點,交Y軸于點C,.(1)求拋物線的解析式;(2)平面內(nèi)是否存在一點P,使以A,B,C,P為頂點的四邊形為平行四邊形,若存在直接寫出P的坐標(biāo),若不存在請說明理由。24.(14分)如圖,在電線桿CD上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角∠CED=60°,在離電線桿6米的B處安置高為1.5米的測角儀AB,在A處測得電線桿上C處的仰角為30°,求拉線CE的長(結(jié)果保留小數(shù)點后一位,參考數(shù)據(jù):).

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解題分析】試題解析:這組數(shù)據(jù)中4出現(xiàn)的次數(shù)最多,眾數(shù)為4,∵共有5個人,∴第3個人的勞動時間為中位數(shù),故中位數(shù)為:4,平均數(shù)為:=3.1.故選C.2、B【解題分析】

絕對值小于1的負(fù)數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【題目詳解】2.16×10﹣3米=0.00216米.故選B.【題目點撥】考查了用科學(xué)記數(shù)法表示較小的數(shù),一般形式為a×10﹣n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.3、D【解題分析】

此題運用圓錐的性質(zhì),同時此題為數(shù)學(xué)知識的應(yīng)用,由題意蝸牛從P點出發(fā),繞圓錐側(cè)面爬行,回到P點時所爬過的最短,就用到兩點間線段最短定理.【題目詳解】解:蝸牛繞圓錐側(cè)面爬行的最短路線應(yīng)該是一條線段,因此選項A和B錯誤,又因為蝸牛從p點出發(fā),繞圓錐側(cè)面爬行后,又回到起始點P處,那么如果將選項C、D的圓錐側(cè)面展開圖還原成圓錐后,位于母線OM上的點P應(yīng)該能夠與母線OM′上的點(P′)重合,而選項C還原后兩個點不能夠重合.故選D.點評:本題考核立意相對較新,考核了學(xué)生的空間想象能力.4、B【解題分析】

根據(jù)矩形和折疊性質(zhì)可得△EHC≌△FBC,從而可得BF=HE=DE,設(shè)BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,據(jù)此得出GF=1,由EF2=EG2+GF2可得答案.【題目詳解】如圖,∵四邊形ABCD是矩形,∴AD=BC,∠D=∠B=90°,根據(jù)折疊的性質(zhì),有HC=AD,∠H=∠D,HE=DE,∴HC=BC,∠H=∠B,又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,∴∠HCE=∠BCF,在△EHC和△FBC中,∵,∴△EHC≌△FBC,∴BF=HE,∴BF=HE=DE,設(shè)BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,解得:x=4,即DE=EH=BF=4,則AG=DE=EH=BF=4,∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,∴EF2=EG2+GF2=32+12=10,故選B.【題目點撥】本題考查了折疊的性質(zhì)、矩形的性質(zhì)、三角形全等的判定與性質(zhì)、勾股定理等,綜合性較強,熟練掌握各相關(guān)的性質(zhì)定理與判定定理是解題的關(guān)鍵.5、A【解題分析】

必然事件就是一定發(fā)生的事件,即發(fā)生的概率是1的事件,依據(jù)定義即可求解.【題目詳解】解:B、C、D選項為不確定事件,即隨機事件.故錯誤;

一定發(fā)生的事件只有第一個答案,早晨的太陽一定從東方升起.故選A.【題目點撥】該題考查的是對必然事件的概念的理解;必然事件就是一定發(fā)生的事件.6、A【解題分析】

連接BD,根據(jù)圓周角定理可得cos∠BDC=cos∠BPC,又BD為直徑,則∠BCD=90°,設(shè)DC為x,則BC為2x,根據(jù)勾股定理可得BD=x,再根據(jù)cos∠BDC===,即可得出結(jié)論.【題目詳解】連接BD,∵四邊形ABCD為矩形,∴BD過圓心O,∵∠BDC=∠BPC(圓周角定理)∴cos∠BDC=cos∠BPC∵BD為直徑,∴∠BCD=90°,∵=,∴設(shè)DC為x,則BC為2x,∴BD===x,∴cos∠BDC===,∵cos∠BDC=cos∠BPC,∴cos∠BPC=.故答案選A.【題目點撥】本題考查了圓周角定理與勾股定理,解題的關(guān)鍵是熟練的掌握圓周角定理與勾股定理的應(yīng)用.7、C【解題分析】

利用隨機事件以及必然事件和不可能事件的定義依次分析即可解答.【題目詳解】選項A、標(biāo)號是2是隨機事件;選項B、該卡標(biāo)號小于6是必然事件;選項C、標(biāo)號為6是不可能事件;選項D、該卡標(biāo)號是偶數(shù)是隨機事件;故選C.【題目點撥】本題考查了隨機事件以及必然事件和不可能事件的定義,正確把握相關(guān)定義是解題關(guān)鍵.8、A【解題分析】

根據(jù)已知得出圓錐的底面半徑及母線長,那么利用圓錐的側(cè)面積=底面周長×母線長÷2求出即可.【題目詳解】∵圓錐的軸截面是一個邊長為3cm的等邊三角形,∴底面半徑=1.5cm,底面周長=3πcm,∴圓錐的側(cè)面積=12×3π×3=4.5πcm2故選A.【題目點撥】此題主要考查了圓錐的有關(guān)計算,關(guān)鍵是利用圓錐的側(cè)面積=底面周長×母線長÷2得出.9、B【解題分析】分析:直接利用反比例函數(shù)的性質(zhì)進而分析得出答案.詳解:A.反比例函數(shù)y=,圖象經(jīng)過點(﹣1,﹣1),故此選項錯誤;B.反比例函數(shù)y=,圖象在第一、三象限,故此選項正確;C.反比例函數(shù)y=,每個象限內(nèi),y隨著x的增大而減小,故此選項錯誤;D.反比例函數(shù)y=,當(dāng)x>1時,0<y<1,故此選項錯誤.故選B.點睛:本題主要考查了反比例函數(shù)的性質(zhì),正確掌握反比例函數(shù)的性質(zhì)是解題的關(guān)鍵.10、A【解題分析】

根據(jù)三視圖的形狀可判斷幾何體的形狀.【題目詳解】觀察三視圖可知,該幾何體是直三棱柱.故選A.本題考查了幾何體的三視圖和結(jié)構(gòu)特征,根據(jù)三視圖的形狀可判斷幾何體的形狀是關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1【解題分析】

根據(jù)一元二次方程的定義可得:,且,求解即可得出m的值.【題目詳解】解:由題意得:,且,解得:,且,∴故答案為:1.【題目點撥】此題主要考查了一元二次方程的定義,關(guān)鍵是掌握“未知數(shù)的最高次數(shù)是1”且“二次項的系數(shù)不等于0”.12、【解題分析】已知BC=8,AD是中線,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根據(jù)相似三角形的性質(zhì)可得,即可得AC2=CD?BC=4×8=32,解得AC=4.13、【解題分析】

直接根據(jù)平方根的定義求解即可(需注意一個正數(shù)有兩個平方根).【題目詳解】解:2的平方根是故答案為.【題目點撥】本題考查了平方根的定義.注意一個正數(shù)有兩個平方根,它們互為相反數(shù);0的平方根是0;負(fù)數(shù)沒有平方根.14、(﹣2,4)【解題分析】

根據(jù)點P(x,y)關(guān)于原點對稱的點為(-x,-y)即可得解.【題目詳解】解:∵點A(2,-4)與點B關(guān)于原點中心對稱,

∴點B的坐標(biāo)為:(-2,4).

故答案為:(-2,4).【題目點撥】此題主要考查了關(guān)于原點對稱點的性質(zhì),正確掌握橫縱坐標(biāo)的關(guān)系是解題關(guān)鍵.15、x(x﹣1)=1【解題分析】【分析】賽制為單循環(huán)形式(每兩隊之間都賽一場),x個球隊比賽總場數(shù)為x(x﹣1),即可列方程.【題目詳解】有x個隊,每個隊都要賽(x﹣1)場,但兩隊之間只有一場比賽,由題意得:x(x﹣1)=1,故答案為x(x﹣1)=1.【題目點撥】本題考查了一元二次方程的應(yīng)用,弄清題意,找準(zhǔn)等量關(guān)系列出方程是解題的關(guān)鍵.16、【解題分析】試題解析:如圖,連接D1E1,設(shè)AD1、BE1交于點M,∵AE1:AC=1:(n+1),∴S△ABE1:S△ABC=1:(n+1),∴S△ABE1=,∵,∴,∴S△ABM:S△ABE1=(n+1):(2n+1),∴S△ABM:=(n+1):(2n+1),∴Sn=.故答案為.17、20%.【解題分析】試題分析:根據(jù)原價為100元,連續(xù)兩次漲價x后,現(xiàn)價為144元,根據(jù)增長率的求解方法,列方程求x.試題解析:依題意,有:100(1+x)2=144,1+x=±1.2,解得:x=20%或-2.2(舍去).考點:一元二次方程的應(yīng)用.三、解答題(共7小題,滿分69分)18、1【解題分析】==1.故答案為1.19、(1)①﹣3;②;(2);(3)【解題分析】

(1)①把Q(1,a)代入y=x-4,可求出a值,根據(jù)理想值定義即可得答案;②由理想值越大,點與原點連線與軸夾角越大,可得直線與相切時理想值最大,與x中相切時,理想值最小,即可得答案;(2)根據(jù)題意,討論與軸及直線相切時,LQ取最小值和最大值,求出點橫坐標(biāo)即可;(3)根據(jù)題意將點轉(zhuǎn)化為直線,點理想值最大時點在上,分析圖形即可.【題目詳解】(1)①∵點在直線上,∴,∴點的“理想值”=-3,故答案為:﹣3.②當(dāng)點在與軸切點時,點的“理想值”最小為0.當(dāng)點縱坐標(biāo)與橫坐標(biāo)比值最大時,的“理想值”最大,此時直線與切于點,設(shè)點Q(x,y),與x軸切于A,與OQ切于Q,∵C(,1),∴tan∠COA==,∴∠COA=30°,∵OQ、OA是的切線,∴∠QOA=2∠COA=60°,∴=tan∠QOA=tan60°=,∴點的“理想值”為,故答案為:.(2)設(shè)直線與軸、軸的交點分別為點,點,當(dāng)x=0時,y=3,當(dāng)y=0時,x+3=0,解得:x=,∴,.∴,,∴tan∠OAB=,∴.∵,∴①如圖,作直線.當(dāng)與軸相切時,LQ=0,相應(yīng)的圓心滿足題意,其橫坐標(biāo)取到最大值.作軸于點,∴,∴.∵的半徑為1,∴.∴,∴.∴.②如圖當(dāng)與直線相切時,LQ=,相應(yīng)的圓心滿足題意,其橫坐標(biāo)取到最小值.作軸于點,則.設(shè)直線與直線的交點為.∵直線中,k=,∴,∴,點F與Q重合,則.∵的半徑為1,∴.∴.∴,∴.∴.由①②可得,的取值范圍是.(3)∵M(2,m),∴M點在直線x=2上,∵,∴LQ取最大值時,=,∴作直線y=x,與x=2交于點N,當(dāng)M與ON和x軸同時相切時,半徑r最大,根據(jù)題意作圖如下:M與ON相切于Q,與x軸相切于E,把x=2代入y=x得:y=4,∴NE=4,OE=2,ON==6,∴∠MQN=∠NEO=90°,又∵∠ONE=∠MNQ,∴,∴,即,解得:r=.∴最大半徑為.【題目點撥】本題是一次函數(shù)和圓的綜合題,主要考查了一次函數(shù)和圓的切線的性質(zhì),解答時要注意做好數(shù)形結(jié)合,根據(jù)圖形進行分類討論.20、(1)(2).【解題分析】

(1)根據(jù)總共三種,A只有一種可直接求概率;(2)列出其樹狀圖,然后求出能出現(xiàn)的所有可能,及符合條件的可能,根據(jù)概率公式求解即可.【題目詳解】解:(1)甲投放的垃圾恰好是A類的概率是.(2)列出樹狀圖如圖所示:由圖可知,共有18種等可能結(jié)果,其中乙投放的垃圾恰有一袋與甲投放的垃圾是同類的結(jié)果有12種.所以,(乙投放的垃圾恰有一袋與甲投放的垃圾是同類).即,乙投放的垃圾恰有一袋與甲投放的垃圾是同類的概率是.21、(1)60,90;(2)見解析;(3)300人【解題分析】

(1)由了解很少的有30人,占50%,可求得接受問卷調(diào)查的學(xué)生數(shù),繼而求得扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角;(2)由(1)可求得了解的人數(shù),繼而補全條形統(tǒng)計圖;(3)利用樣本估計總體的方法,即可求得答案.【題目詳解】解:(1)∵了解很少的有30人,占50%,∴接受問卷調(diào)查的學(xué)生共有:30÷50%=60(人);∴扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為:×360°=90°;故答案為60,90;(2)60﹣15﹣30﹣10=5;補全條形統(tǒng)計圖得:(3)根據(jù)題意得:900×=300(人),則估計該中學(xué)學(xué)生中對校園安全知識達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù)為300人.【題目點撥】本題考查了條形統(tǒng)計圖與扇形統(tǒng)計圖,解題的關(guān)鍵是熟練的掌握條形統(tǒng)計圖與扇形統(tǒng)計圖的相關(guān)知識點.22、(1)詳見解析;(2)BD=9.6.【解題分析】試題分析:(1)連接OB,由垂徑定理可得BE=DE,OE⊥BD,,再由圓周角定理可得,從而得到∠OBE+∠DBC=90°,即,命題得證.(2)由勾股定理求出OC,再由△OBC的面積求出BE,即可得出弦BD的長.試題解析:(1)證明:如下圖所示,連接OB.∵E是弦BD的中點,∴BE=DE,OE⊥BD,,∴∠BOE=∠A,∠OBE+∠BOE=90°.∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論