新高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題3.5指數(shù)與指數(shù)函數(shù)(練)解析版_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題3.5指數(shù)與指數(shù)函數(shù)(練)解析版_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題3.5指數(shù)與指數(shù)函數(shù)(練)解析版_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題3.5指數(shù)與指數(shù)函數(shù)(練)解析版_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講練測專題3.5指數(shù)與指數(shù)函數(shù)(練)解析版_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

專題3.5指數(shù)與指數(shù)函數(shù)練基礎(chǔ)練基礎(chǔ)1.(2021·山東)設(shè)全集SKIPIF1<0,集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】利用指數(shù)函數(shù)的性質(zhì)求解集合B,再求集合的補(bǔ)集,交集即可.【詳解】由題知SKIPIF1<0,SKIPIF1<0又SKIPIF1<0,則SKIPIF1<0,故選:B.2.(2019·貴州省織金縣第二中學(xué)高一期中)函數(shù)且過定點()A. B. C. D.【答案】D【解析】令,所以函數(shù)且過定點.3.(2021·江西高三二模(文))下列函數(shù)中,在SKIPIF1<0上單調(diào)遞增的是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】利用二次函數(shù)的性質(zhì)判定A;利用分段函數(shù)的圖象可以判定B;根據(jù)冪函數(shù)和對數(shù)函數(shù)的性質(zhì)判定C,D.【詳解】A中,SKIPIF1<0的圖象關(guān)于SKIPIF1<0軸對稱,開口向下的拋物線,在SKIPIF1<0上單調(diào)遞減,故A不對;B中,SKIPIF1<0的圖像關(guān)于直線SKIPIF1<0對稱,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,故排除B;C中,由冪函數(shù)的性質(zhì)可知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故C正確;D中,根據(jù)指數(shù)函數(shù)的性質(zhì)可得SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故排除D;故選:C.4.(2020·浙江高三月考)當(dāng)SKIPIF1<0時,“函數(shù)SKIPIF1<0的值恒小于1”的一個充分不必要條件是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】由指數(shù)函數(shù)的圖象與性質(zhì)可得原命題等價于SKIPIF1<0,再由充分不必要條件的概念即可得解.【詳解】若當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0的值恒小于1,則SKIPIF1<0即SKIPIF1<0,所以當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0的值恒小于1的一個充分不必要條件是SKIPIF1<0.故選:D.5.(2019·浙江高三專題練習(xí))已知函數(shù)SKIPIF1<0(其中SKIPIF1<0的圖象如圖所示,則函數(shù)SKIPIF1<0的圖象是()A. B.C. D.【答案】C【解析】由二次函數(shù)的圖象確定SKIPIF1<0的取值范圍,然后可確定SKIPIF1<0的圖象.【詳解】由函數(shù)的圖象可知,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0為增函數(shù),SKIPIF1<0,SKIPIF1<0過定點SKIPIF1<0,故選:SKIPIF1<0.6.(2021·浙江高三專題練習(xí))不等式SKIPIF1<0的解集是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】根據(jù)題意得SKIPIF1<0,再解絕對值不等式即可得答案.【詳解】解:由指數(shù)函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,所以SKIPIF1<0,進(jìn)而得SKIPIF1<0,即SKIPIF1<0.故選:A.7.(2021·浙江高三專題練習(xí))已知函數(shù)SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)的圖象恒過定點SKIPIF1<0,若點SKIPIF1<0在冪函數(shù)SKIPIF1<0的圖象上,則冪函數(shù)SKIPIF1<0的圖象大致是()A. B.C. D.【答案】B【解析】由指數(shù)函數(shù)性質(zhì)求得定點坐標(biāo),由定點求得冪函數(shù)解析式,確定圖象.【詳解】由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,即定點為SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,圖象為B.故選:B.8.(2021·山東高三三模)已知SKIPIF1<0,則SKIPIF1<0的大小關(guān)系正確的為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】根據(jù)指數(shù)函數(shù)與冪函數(shù)的單調(diào)性即可求解.【詳解】解:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0指數(shù)函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,即SKIPIF1<0,又冪函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,故選:B.9.【多選題】(2021·全國高三專題練習(xí))函數(shù)SKIPIF1<0的圖象可能為()A.B.

C. D.【答案】ABD【解析】根據(jù)函數(shù)解析式的形式,以及圖象的特征,合理給SKIPIF1<0賦值,判斷選項.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,圖象A滿足;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,此時函數(shù)是偶函數(shù),關(guān)于SKIPIF1<0軸對稱,圖象B滿足;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,此時函數(shù)是奇函數(shù),關(guān)于原點對稱,圖象D滿足;圖象C過點SKIPIF1<0,此時SKIPIF1<0,故C不成立.故選:ABD10.【多選題】(2021·全國高三專題練習(xí))已知SKIPIF1<0(k為常數(shù)),那么函數(shù)SKIPIF1<0的圖象不可能是()A. B.C. D.【答案】AD【解析】根據(jù)選項,四個圖象可知備選函數(shù)都具有奇偶性.當(dāng)SKIPIF1<0時,SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0為奇函數(shù),再根據(jù)單調(diào)性進(jìn)行分析得出答案.【詳解】由選項的四個圖象可知,備選函數(shù)都具有奇偶性.當(dāng)SKIPIF1<0時,SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0且單調(diào)遞增,而SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故選項C正確,D錯誤;當(dāng)SKIPIF1<0時,SKIPIF1<0為奇函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0且單調(diào)遞增,而SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故選項B正確,A錯誤.故選:AD.練提升TIDHNEG練提升TIDHNEG1.(2021·浙江金華市·高三其他模擬)已知函數(shù)SKIPIF1<0,若對于任意一個正數(shù)SKIPIF1<0,不等式SKIPIF1<0在SKIPIF1<0上都有解,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】由不等式可知,SKIPIF1<0或SKIPIF1<0,結(jié)合圖象,分析可得SKIPIF1<0的取值范圍.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,不能滿足SKIPIF1<0都有解;當(dāng)SKIPIF1<0時,SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,如圖,當(dāng)SKIPIF1<0或SKIPIF1<0時,只需滿足SKIPIF1<0或SKIPIF1<0,滿足條件.所以SKIPIF1<0,SKIPIF1<0時,滿足條件.故選:A2.(2021·安徽蕪湖市·高三二模(理))函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),且當(dāng)SKIPIF1<0時,SKIPIF1<0.若對任意的SKIPIF1<0,均有SKIPIF1<0,則實數(shù)SKIPIF1<0的最大值是()A.SKIPIF1<0 B.SKIPIF1<0 C.0 D.SKIPIF1<0【答案】A【解析】首先根據(jù)函數(shù)是偶函數(shù),求出函數(shù)的解析式,結(jié)合不等式的關(guān)系進(jìn)行轉(zhuǎn)化,利用單調(diào)性轉(zhuǎn)化為不等式恒成立問題即可求解.【詳解】∵SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),且當(dāng)SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0時為增函數(shù),∴SKIPIF1<0,則SKIPIF1<0等價于SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0對任意SKIPIF1<0恒成立,設(shè)SKIPIF1<0,則有SKIPIF1<0,解得SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0.故選:A.3.(2021·遼寧沈陽市·高三三模)已知SKIPIF1<0,則SKIPIF1<0的大小關(guān)系為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】根據(jù)指數(shù)函數(shù)的單調(diào)性,將問題轉(zhuǎn)化為比較當(dāng)SKIPIF1<0時SKIPIF1<0的大小,利用特值法即可求得結(jié)果.【詳解】因為SKIPIF1<0,函數(shù)SKIPIF1<0是單調(diào)增函數(shù),所以比較a,b,c的大小,只需比較當(dāng)SKIPIF1<0時SKIPIF1<0的大小即可.用特殊值法,取SKIPIF1<0,容易知SKIPIF1<0,再對其均平方得SKIPIF1<0,顯然SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0故選:B.4.(2021·江蘇蘇州市·高三其他模擬)生物體死亡后,它機(jī)體內(nèi)原有的碳14含量P會按確定的比率衰減(稱為衰減率),P與死亡年數(shù)t之間的函數(shù)關(guān)系式為SKIPIF1<0(其中a為常數(shù)),大約每經(jīng)過5730年衰減為原來的一半,這個時間稱為“半衰期”.若2021年某遺址文物出土?xí)r碳14的殘余量約占原始含量的79%,則可推斷該文物屬于()參考數(shù)據(jù):SKIPIF1<0.參考時間軸:A.戰(zhàn)國 B.漢 C.唐 D.宋【答案】B【解析】根據(jù)“半衰期”得SKIPIF1<0,進(jìn)而解方程SKIPIF1<0得SKIPIF1<0,進(jìn)而可推算其所處朝代.【詳解】由題可知,當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以當(dāng)SKIPIF1<0時,解方程SKIPIF1<0,兩邊取以SKIPIF1<0為底的對數(shù)得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,所以可推斷該文物屬于漢朝.故選:B5.(2021·河南高三月考(理))設(shè)實數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0的大小關(guān)系為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.無法比較【答案】A【解析】從選項A或C出發(fā),分析其對立面,推理導(dǎo)出矛盾結(jié)果或成立的結(jié)果即可得解.【詳解】假設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,因函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0;由SKIPIF1<0得SKIPIF1<0,因函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0;即有SKIPIF1<0與假設(shè)SKIPIF1<0矛盾,所以SKIPIF1<0,故選:A6.【多選題】(2021·全國高三專題練習(xí))若函數(shù)SKIPIF1<0,則下述正確的有()A.SKIPIF1<0在R上單調(diào)遞增 B.SKIPIF1<0的值域為SKIPIF1<0C.SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱 D.SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱【答案】AC【解析】A.由SKIPIF1<0和SKIPIF1<0的單調(diào)性判斷;B.取SKIPIF1<0判斷;C.D.判斷SKIPIF1<0是否等于零即可.【詳解】因為SKIPIF1<0是定義在R上的增函數(shù),SKIPIF1<0是定義在R上的減函數(shù),所以SKIPIF1<0在R上單調(diào)遞增,故A正確;因為SKIPIF1<0,故B錯誤;因為SKIPIF1<0,所以SKIPIF1<0的圖象關(guān)于點SKIPIF1<0對稱,故C正確,D錯誤.故選:AC.7.【多選題】(2020·山東省青島第十六中學(xué)高三月考)已知函數(shù)SKIPIF1<0,則下列正確的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0的值域為SKIPIF1<0【答案】BD【解析】對選項A,根據(jù)計算SKIPIF1<0,即可判斷A錯誤,對選項B,根據(jù)計算SKIPIF1<0,即可判斷B正確;對選項C,根據(jù)計算SKIPIF1<0,即可判斷C錯誤,對選項D,分別求SKIPIF1<0和SKIPIF1<0的值域即可得到答案.【詳解】對選項A,SKIPIF1<0,SKIPIF1<0,故A錯誤;對選項B,SKIPIF1<0,SKIPIF1<0,故B正確.對選項C,因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故C錯誤;對選項D,當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0的值域為SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0的值域為SKIPIF1<0,又因為SKIPIF1<0時,SKIPIF1<0,是周期為SKIPIF1<0的函數(shù),所以當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0的值域為SKIPIF1<0,綜上,函數(shù)SKIPIF1<0的值域為SKIPIF1<0,故D正確.故選:BD8.【多選題】(2020·河北冀州中學(xué)(衡水市冀州區(qū)第一中學(xué))高三月考)高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號,他和阿基米德、牛頓并列為世界三大數(shù)學(xué)家,用其名字命名的“高斯函數(shù)”為:設(shè)SKIPIF1<0,用SKIPIF1<0表示不超過SKIPIF1<0的最大整數(shù),則SKIPIF1<0稱為高斯函數(shù),例如:SKIPIF1<0,SKIPIF1<0.已知函數(shù)SKIPIF1<0,則關(guān)于函數(shù)SKIPIF1<0的敘述中正確的是()A.SKIPIF1<0是偶函數(shù) B.SKIPIF1<0是奇函數(shù)C.SKIPIF1<0在SKIPIF1<0上是增函數(shù) D.SKIPIF1<0的值域是SKIPIF1<0【答案】BC【解析】由SKIPIF1<0判斷A;由奇函數(shù)的定義證明B;把SKIPIF1<0的解析式變形,由SKIPIF1<0的單調(diào)性結(jié)合復(fù)合函數(shù)的單調(diào)性判斷C正確;求出SKIPIF1<0的范圍,進(jìn)一步求得SKIPIF1<0的值域判斷D.【詳解】SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0不是偶函數(shù),故A錯誤;SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為奇函數(shù),故B正確;SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0上是增函數(shù),故C正確;SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0.SKIPIF1<0,故D錯誤.故選:BC.9.【多選題】(2020·重慶市第十一中學(xué)校高三月考)已知函數(shù)SKIPIF1<0(SKIPIF1<0為常數(shù)),函數(shù)SKIPIF1<0的最小值為SKIPIF1<0,則實數(shù)SKIPIF1<0的取值可以是()A.-1 B.2 C.1 D.0【答案】CD【解析】由已知求得當(dāng)SKIPIF1<0時,SKIPIF1<0的最小值為SKIPIF1<0,問題轉(zhuǎn)化為當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,對SKIPIF1<0分類討論求得SKIPIF1<0的范圍,結(jié)合選項得答案.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,且當(dāng)SKIPIF1<0時,函數(shù)取得最小值為SKIPIF1<0;要使原分段函數(shù)有最小值為SKIPIF1<0,則當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,當(dāng)SKIPIF1<0時,滿足;當(dāng)SKIPIF1<0時,需SKIPIF1<0,即SKIPIF1<0.綜上,實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.結(jié)合選項可得,實數(shù)SKIPIF1<0的取值可以是1,0.故選:CD.10.【多選題】(2021·南京市中華中學(xué)高三期末)“懸鏈線”進(jìn)入公眾視野,源于達(dá)芬奇的畫作《抱銀貂的女人》.這幅畫作中,女士脖頸上懸掛的黑色珍珠鏈與主人相互映襯,顯現(xiàn)出不一樣的美與光澤.而達(dá)芬奇卻心生好奇:“固定項鏈的兩端,使其在重力作用下自然下垂,那么項鏈所形成的曲線是什么?”隨著后人研究的深入,懸鏈線的廬山真面目被揭開.法國著名昆蟲學(xué)家、文學(xué)家法布爾,在《昆蟲記》里有這樣的記載:“每當(dāng)?shù)匦囊蛿_性同時發(fā)生作用時,懸鏈線就在現(xiàn)實中出現(xiàn)了.當(dāng)一條懸鏈彎曲成兩點不在同一垂直線(注:垂直于地面的直線)上的曲線時,人們便把這曲線稱為懸鏈線.這就是一條軟繩子兩端抓住而垂下來的形狀,這就是一張被風(fēng)鼓起來的船帆外形的那條線條.”建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,可以寫出懸鏈線的函數(shù)解析式:SKIPIF1<0,其中SKIPIF1<0為懸鏈線系數(shù).當(dāng)SKIPIF1<0時,SKIPIF1<0稱為雙曲余弦函數(shù),記為SKIPIF1<0.類似的雙曲正弦函數(shù)SKIPIF1<0.直線SKIPIF1<0與SKIPIF1<0和SKIPIF1<0的圖像分別交于點SKIPIF1<0、SKIPIF1<0.下列結(jié)論正確的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0隨SKIPIF1<0的增大而減小 D.SKIPIF1<0與SKIPIF1<0的圖像有完全相同的漸近線【答案】AC【解析】由函數(shù)的定義,代入化簡可得A正確,B不正確;由SKIPIF1<0可得C正確;由函數(shù)的圖象變化可得D不正確.【詳解】SKIPIF1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論