版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
專題2.3二次函數(shù)與一元二次方程、不等式練基礎(chǔ)練基礎(chǔ)1.(浙江高考真題)已知a,b,c∈R,函數(shù)f(x)=ax2+bx+c.若f(0)=f(4)>f(1),則()A.a(chǎn)>0,4a+b=0 B.a(chǎn)<0,4a+b=0C.a(chǎn)>0,2a+b=0 D.a(chǎn)<0,2a+b=0【答案】A【解析】由已知得f(x)的圖象的對稱軸為x=2且f(x)先減后增,可得選項.【詳解】由f(0)=f(4),得f(x)=ax2+bx+c圖象的對稱軸為x=-SKIPIF1<0=2,∴4a+b=0,又f(0)>f(1),f(4)>f(1),∴f(x)先減后增,于是a>0,故選:A.2.(2021·全國高三專題練習(xí)(文))已知函數(shù)SKIPIF1<0,則錯誤的是()A.SKIPIF1<0的圖象關(guān)于SKIPIF1<0軸對稱 B.方程SKIPIF1<0的解的個數(shù)為2C.SKIPIF1<0在SKIPIF1<0上單調(diào)遞增 D.SKIPIF1<0的最小值為SKIPIF1<0【答案】B【解析】結(jié)合函數(shù)的奇偶性求出函數(shù)的對稱軸,判斷SKIPIF1<0,令SKIPIF1<0,求出方程的解的個數(shù),判斷B,令SKIPIF1<0,SKIPIF1<0,從而判斷C,D即可.【詳解】SKIPIF1<0定義域為SKIPIF1<0,顯然關(guān)于原點對稱,又SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0是偶函數(shù),關(guān)于SKIPIF1<0軸對稱,故選項A正確.令SKIPIF1<0即SKIPIF1<0,解得:SKIPIF1<0,1,SKIPIF1<0,函數(shù)SKIPIF1<0有3個零點,故B錯誤;令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時,函數(shù)SKIPIF1<0,SKIPIF1<0都為遞增函數(shù),故SKIPIF1<0在SKIPIF1<0遞增,故C正確;由SKIPIF1<0時,SKIPIF1<0取得最小值SKIPIF1<0,故SKIPIF1<0的最小值是SKIPIF1<0,故D正確.故選:B.3.(2021·北京高三其他模擬)設(shè)SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件【答案】A【解析】分別解出兩個不等式的解集,比較集合的關(guān)系,從而得到兩命題的邏輯關(guān)系.【詳解】SKIPIF1<0SKIPIF1<0;SKIPIF1<0SKIPIF1<0;易知集合SKIPIF1<0是SKIPIF1<0的真子集,故是充分不必要條件.故選:A.4.(2021·全國高三月考)已知函數(shù)SKIPIF1<0,則“SKIPIF1<0”是“方程SKIPIF1<0有兩個不同實數(shù)解且方程SKIPIF1<0恰有兩個不同實數(shù)解”的()A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件【答案】C【解析】根據(jù)二次函數(shù)的圖象與性質(zhì),求得SKIPIF1<0,反之若SKIPIF1<0有兩個正根SKIPIF1<0,當(dāng)SKIPIF1<0,得到方程SKIPIF1<0恰有四個不同實數(shù)解,結(jié)合充分條件、必要條件的判定方法,即可求解.【詳解】由SKIPIF1<0表示開口向下的拋物線,對稱軸的方程為SKIPIF1<0,要使得方程SKIPIF1<0有兩個不同實數(shù),只需SKIPIF1<0,要使得方程SKIPIF1<0恰有兩個不同實數(shù)解,設(shè)兩解分別為SKIPIF1<0,且SKIPIF1<0,則滿足SKIPIF1<0,因為SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,所以必要性成立;反之,設(shè)SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0有兩個正根,且滿足SKIPIF1<0,若SKIPIF1<0,此時方程SKIPIF1<0恰有四個不同實數(shù)解,所以充分性不成立.所以“SKIPIF1<0”是“方程SKIPIF1<0有兩個不同實數(shù)解且方程SKIPIF1<0恰有兩個不同實數(shù)解”的必要不充分條件.故選:C.5.(2021·全國高三專題練習(xí))若當(dāng)x∈(1,2)時,函數(shù)y=(x-1)2的圖象始終在函數(shù)y=logax的圖象的下方,則實數(shù)a的取值范圍是___________.【答案】1<a≤2.【解析】在同一個坐標(biāo)系中畫出兩個函數(shù)的圖象,結(jié)合圖形,列出不等式組,求得結(jié)果.【詳解】如圖,在同一平面直角坐標(biāo)系中畫出函數(shù)y=(x-1)2和y=logax的圖象.由于當(dāng)x∈(1,2)時,函數(shù)y=(x-1)2的圖象恒在函數(shù)y=logax的圖象的下方,則SKIPIF1<0,解得1<a≤2.故答案為:1<a≤2.6.(2020·山東省微山縣第一中學(xué)高一月考)若不等式SKIPIF1<0對任意SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍是_________.【答案】SKIPIF1<0【解析】∵不等式SKIPIF1<0對任意SKIPIF1<0恒成立,∴函數(shù)SKIPIF1<0的圖象始終在SKIPIF1<0軸下方,∴SKIPIF1<0,解得SKIPIF1<0,故答案為:SKIPIF1<0.7.(2021·全國高三專題練習(xí))已知當(dāng)SKIPIF1<0時,不等式9x-m·3x+m+1>0恒成立,則實數(shù)m的取值范圍是________.【答案】SKIPIF1<0【解析】先換元3x=t,SKIPIF1<0,使f(t)=t2-mt+m+1>0在SKIPIF1<0上恒成立,再利用二次函數(shù)圖象特征列限定條件,計算求得結(jié)果即可.【詳解】令3x=t,當(dāng)SKIPIF1<0時,SKIPIF1<0,則f(t)=t2-mt+m+1>0在SKIPIF1<0上恒成立,即函數(shù)在SKIPIF1<0的圖象在x軸的上方,而判別式SKIPIF1<0,故SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.8.(2021·浙江高一期末)已知函數(shù)SKIPIF1<0,若任意SKIPIF1<0、SKIPIF1<0且SKIPIF1<0,都有SKIPIF1<0,則實數(shù)a的取值范圍是___________.【答案】SKIPIF1<0【解析】本題首先可令SKIPIF1<0,將SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0,然后令SKIPIF1<0,通過函數(shù)單調(diào)性的定義得出函數(shù)SKIPIF1<0在SKIPIF1<0上是增函數(shù),最后分為SKIPIF1<0、SKIPIF1<0兩種情況進行討論,結(jié)合二次函數(shù)性質(zhì)即可得出結(jié)果.【詳解】因為任意SKIPIF1<0、SKIPIF1<0且SKIPIF1<0,都有SKIPIF1<0,所以令SKIPIF1<0,SKIPIF1<0即SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上是增函數(shù),若SKIPIF1<0,則SKIPIF1<0,顯然不成立;若SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,綜合所述,實數(shù)a的取值范圍是SKIPIF1<0,故答案為:SKIPIF1<0.9.(2021·四川成都市·高三三模(理))已知函數(shù)SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最大值為________.【答案】SKIPIF1<0【解析】由SKIPIF1<0得,SKIPIF1<0,把SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0,利用二次函數(shù)求最值.【詳解】SKIPIF1<0的圖像如圖示:不妨令SKIPIF1<0,由圖像可知,SKIPIF1<0,SKIPIF1<0由SKIPIF1<0,由SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0.故答案為:SKIPIF1<0.10.(2021·浙江高一期末)已知函數(shù)SKIPIF1<0.(Ⅰ)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,求實數(shù)SKIPIF1<0的取值范圍;(Ⅱ)SKIPIF1<0,SKIPIF1<0恒成立,求實數(shù)SKIPIF1<0的取值范圍.【答案】(Ⅰ)SKIPIF1<0;(Ⅱ)SKIPIF1<0【解析】(Ⅰ)由題意討論SKIPIF1<0,SKIPIF1<0與SKIPIF1<0三種情況,求出函數(shù)的對稱軸,結(jié)合區(qū)間,列不等式求解;(Ⅱ)利用參變分離法得SKIPIF1<0在SKIPIF1<0上恒成立,令SKIPIF1<0,根據(jù)單調(diào)性,求解出最值,即可得SKIPIF1<0的取值范圍.【詳解】(Ⅰ)當(dāng)SKIPIF1<0時,SKIPIF1<0,在區(qū)間SKIPIF1<0上單調(diào)遞減,符合題意;當(dāng)SKIPIF1<0時,對稱軸為SKIPIF1<0,因為SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0;當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,符合題意,綜上,SKIPIF1<0的取值范圍為SKIPIF1<0.(Ⅱ)SKIPIF1<0,SKIPIF1<0恒成立,即SKIPIF1<0,SKIPIF1<0恒成立,令SKIPIF1<0,可知函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0的取值范圍為SKIPIF1<0練提升TIDHNEG練提升TIDHNEG1.(2020·山東省高三二模)已知函數(shù)SKIPIF1<0,若SKIPIF1<0恒成立,則實數(shù)m的范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】SKIPIF1<0,(1)SKIPIF1<0,SKIPIF1<0恒成立等價于SKIPIF1<0或SKIPIF1<0恒成立,即SKIPIF1<0或SKIPIF1<0(不合題意,舍去)恒成立;即SKIPIF1<0,解得SKIPIF1<0,(2)SKIPIF1<0恒成立,符合題意;(3)SKIPIF1<0,SKIPIF1<0恒成立等價于SKIPIF1<0(不合題意,舍去)或SKIPIF1<0恒成立,等價于SKIPIF1<0,解得SKIPIF1<0.綜上所述,SKIPIF1<0,故選:A.2.(2021·浙江高三二模)已知SKIPIF1<0,對任意的SKIPIF1<0,SKIPIF1<0.方程SKIPIF1<0在SKIPIF1<0上有解,則SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】對任意的SKIPIF1<0,SKIPIF1<0.方程SKIPIF1<0在SKIPIF1<0上有解,不妨取取SKIPIF1<0,SKIPIF1<0,方程有解SKIPIF1<0只能取4,則排除其他答案.【詳解】SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.要對任意的SKIPIF1<0,SKIPIF1<0.方程SKIPIF1<0在SKIPIF1<0上都有解,取SKIPIF1<0,SKIPIF1<0,此時,任意SKIPIF1<0,都有SKIPIF1<0,其他SKIPIF1<0的取值,方程均無解,則SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D.3.(2020·浙江省高三二模)已知函數(shù)SKIPIF1<0的圖象經(jīng)過三個象限,則實數(shù)a的取值范圍是________.【答案】SKIPIF1<0或SKIPIF1<0.【解析】當(dāng)SKIPIF1<0時,SKIPIF1<0,此時函數(shù)圖象經(jīng)過第三象限,當(dāng)SKIPIF1<0時,SKIPIF1<0,此時函數(shù)圖象恒經(jīng)過第一象限,當(dāng)SKIPIF1<0且SKIPIF1<0,即SKIPIF1<0時,函數(shù)圖像經(jīng)過第一、四象限,當(dāng)SKIPIF1<0時,SKIPIF1<0,此時函數(shù)圖象恒經(jīng)過第一象限,當(dāng)SKIPIF1<0,即SKIPIF1<0時,函數(shù)圖像經(jīng)過第一、四象限,綜上所述:SKIPIF1<0或SKIPIF1<0.4.(2020·陜西省西安中學(xué)高三其他(理))記SKIPIF1<0函數(shù)SKIPIF1<0有且只有一個零點,則實數(shù)SKIPIF1<0的取值范圍是_________.【答案】SKIPIF1<0【解析】令SKIPIF1<0,因為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即1是函數(shù)SKIPIF1<0的零點,因為函數(shù)SKIPIF1<0的對稱軸為SKIPIF1<0,所以根據(jù)題意,若函數(shù)SKIPIF1<0有且只有一個零點,則二次函數(shù)SKIPIF1<0沒有零點,SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<05.(2021·浙江高三專題練習(xí))已知函數(shù)SKIPIF1<0,若SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0的最大值是___________.【答案】SKIPIF1<0【解析】根據(jù)函數(shù)SKIPIF1<0,分SKIPIF1<0,SKIPIF1<0和SKIPIF1<0三種情況討論,分別求得其最大值,即可求解.【詳解】由題意,函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,因為SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,因為SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,由SKIPIF1<0知,SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,綜上可得,SKIPIF1<0的最大值是SKIPIF1<0.故答案為:SKIPIF1<06.(2021·浙江高三期末)已知函數(shù)SKIPIF1<0,若對于任意SKIPIF1<0,均有SKIPIF1<0,則SKIPIF1<0的最大值是___________.【答案】SKIPIF1<0【解析】首先討論SKIPIF1<0、SKIPIF1<0時SKIPIF1<0的最值情況,由不等式恒成立求SKIPIF1<0的范圍,再討論SKIPIF1<0并結(jié)合SKIPIF1<0的單調(diào)情況求SKIPIF1<0的范圍,最后取它們的并集即可知SKIPIF1<0的最大值.【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0∴當(dāng)SKIPIF1<0時,SKIPIF1<0有SKIPIF1<0;SKIPIF1<0有SKIPIF1<0;由SKIPIF1<0有SKIPIF1<0,有SKIPIF1<0,故SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0有SKIPIF1<0;SKIPIF1<0有SKIPIF1<0;由SKIPIF1<0有SKIPIF1<0,有SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0:SKIPIF1<0在SKIPIF1<0上遞減,SKIPIF1<0上遞減,SKIPIF1<0上遞增;SKIPIF1<0:SKIPIF1<0在SKIPIF1<0上遞減,SKIPIF1<0上遞增;SKIPIF1<0:SKIPIF1<0在SKIPIF1<0上遞減,SKIPIF1<0上遞增,SKIPIF1<0上遞增;∴綜上,SKIPIF1<0在SKIPIF1<0上先減后增,則SKIPIF1<0,可得SKIPIF1<0∴SKIPIF1<0恒成立,即SKIPIF1<0的最大值是-1.故答案為:SKIPIF1<0.7.(2020·武漢外國語學(xué)校(武漢實驗外國語學(xué)校)高一期中)已知函數(shù)SKIPIF1<0,且SKIPIF1<0的解集為SKIPIF1<0.(1)求SKIPIF1<0的解析式;(2)設(shè)SKIPIF1<0,在定義域范圍內(nèi)若對于任意的SKIPIF1<0,使得SKIPIF1<0恒成立,求M的最小值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)代入方程的根,求得參數(shù)值.
(2)使不等式恒成立,根據(jù)函數(shù)單調(diào)性求得函數(shù)的最值,從而求得參數(shù)的值.【詳解】解:(1)由題意SKIPIF1<0
解得SKIPIF1<0SKIPIF1<0(2)由題意SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0當(dāng)SKIPIF1<0令SKIPIF1<0,當(dāng)SKIPIF1<0,當(dāng)SKIPIF1<0取等號,當(dāng)SKIPIF1<0當(dāng)SKIPIF1<0取等號,SKIPIF1<0SKIPIF1<0綜上,SKIPIF1<0SKIPIF1<0SKIPIF1<08.(2021·浙江高一期末)設(shè)函數(shù)SKIPIF1<0.(1)若SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值為SKIPIF1<0,求SKIPIF1<0的取值范圍;(2)若SKIPIF1<0在區(qū)間SKIPIF1<0上有零點,求SKIPIF1<0的最小值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)對實數(shù)SKIPIF1<0的取值進行分類討論,分析函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的單調(diào)性,求得SKIPIF1<0,再由SKIPIF1<0可求得實數(shù)SKIPIF1<0的取值范圍;(2)設(shè)函數(shù)SKIPIF1<0的兩個零點為SKIPIF1<0、SKIPIF1<0,由韋達(dá)定理化簡SKIPIF1<0,設(shè)SKIPIF1<0,由SKIPIF1<0結(jié)合不等式的基本性質(zhì)求出SKIPIF1<0的最小值,即為所求.【詳解】(1)二次函數(shù)SKIPIF1<0的圖象開口向上,對稱軸為直線SKIPIF1<0.①當(dāng)SKIPIF1<0時,即當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0;②當(dāng)SKIPIF1<0時,即當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0;③當(dāng)SKIPIF1<0時,即當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0.綜上所述,SKIPIF1<0.所以,當(dāng)SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值為SKIPIF1<0,實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0;(2)設(shè)函數(shù)SKIPIF1<0的兩個零點為SKIPIF1<0、SKIPIF1<0,由韋達(dá)定理可得SKIPIF1<0,所以,SKIPIF1<0SKIPIF1<0,設(shè)SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,所以,SKIPIF1<0.此時,SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0.所以,當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0取最小值SKIPIF1<0.9.(2020·全國高一單元測試)已知函數(shù)f(x)=9x﹣aSKIPIF1<03x+1+a2(x∈[0,1],a∈R),記f(x)的最大值為g(a).(Ⅰ)求g(a)解析式;(Ⅱ)若對于任意t∈[﹣2,2],任意a∈R,不等式g(a)≥﹣m2+tm恒成立,求實數(shù)m的范圍.【答案】(Ⅰ)g(a)=SKIPIF1<0;(Ⅱ)m≤﹣SKIPIF1<0或m≥SKIPIF1<0.【解析】(Ⅰ)令u=3x∈[1,3],得到f(x)=h(u)=u2﹣3au+a2,分類討論即可求出,(Ⅱ)先求出g(a)min=g(SKIPIF1<0)=﹣SKIPIF1<0,再根據(jù)題意可得﹣m2+tm≤﹣SKIPIF1<0,利用函數(shù)的單調(diào)性即可求出.【詳解】解:(Ⅰ)令u=3x∈[1,3],則f(x)=h(u)=u2﹣3au+a2.當(dāng)SKIPIF1<0≤2,即a≤SKIPIF1<0時,g(a)=h(u)min=h(3)=a2﹣9a+9;當(dāng)SKIPIF1<0,即a>SKIPIF1<0時,g(a)=h(u)min=h(1)=a2﹣3a+1;故g(a)=SKIPIF1<0;(Ⅱ)當(dāng)a≤SKIPIF1<0時,g(a)=a2﹣9a+9,g(a)min=g(SKIPIF1<0)=﹣SKIPIF1<0;當(dāng)aSKIPIF1<0時,g(a)=a2﹣3a+1,g(a)min=g(SKIPIF1<0)=﹣SKIPIF1<0;因此g(a)min=g(SKIPIF1<0)=﹣SKIPIF1<0;對于任意任意a∈R,不等式g(a)≥﹣m2+tm恒成立等價于﹣m2+tm≤﹣SKIPIF1<0.令h(t)=mt﹣m2,由于h(t)是關(guān)于t的一次函數(shù),故對于任意t∈[﹣2,2]都有h(t)≤﹣SKIPIF1<0等價于SKIPIF1<0,即SKIPIF1<0,解得m≤﹣SKIPIF1<0或m≥SKIPIF1<0.10.(2021·全國高一課時練習(xí))已知函數(shù)SKIPIF1<0,在區(qū)間SKIPIF1<0上有最大值16,最小值SKIPIF1<0.設(shè)SKIPIF1<0.(1)求SKIPIF1<0的解析式;(2)若不等式SKIPIF1<0在SKIPIF1<0上恒成立,求實數(shù)k的取值范圍;【答案】(1)SKIPIF1<0SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)由二次函數(shù)的性質(zhì)知SKIPIF1<0在SKIPIF1<0上為減函數(shù),在SKIPIF1<0上為增函數(shù),結(jié)合其區(qū)間的最值,列方程組求SKIPIF1<0,即可寫出SKIPIF1<0解析式;(2)由題設(shè)得SKIPIF1<0在SKIPIF1<0上恒成立,即k只需小于等于右邊函數(shù)式的最小值即可.【詳解】(1)∵SKIPIF1<0(SKIPIF1<0),即SKIPIF1<0在SKIPIF1<0上為減函數(shù),在SKIPIF1<0上為增函數(shù).又在SKIPIF1<0上有最大值16,最小值0,∴SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0;(2)∵SKIPIF1<0∴SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上為減函數(shù),當(dāng)SKIPIF1<0時,SKIPIF1<0最小值為1,∴SKIPIF1<0,即SKIPIF1<0.練真題TIDHNEG練真題TIDHNEG1.(浙江省高考真題)若函數(shù)SKIPIF1<0在區(qū)間[0,1]上的最大值是M,最小值是m,則SKIPIF1<0的值()A.與a有關(guān),且與b有關(guān) B.與a有關(guān),但與b無關(guān)C.與a無關(guān),且與b無關(guān) D.與a無關(guān),但與b有關(guān)【答案】B【解析】因為最值在SKIPIF1<0中取,所以最值之差一定與SKIPIF1<0無關(guān),選B.2.(2018·浙江高考真題)已知λ∈R,函數(shù)f(x)=x?4,x≥λx2?4x+3,x<λ,當(dāng)λ=2時,不等式f(x)<0的解集是___________.若函數(shù)f(x【答案】(1,4)(1,3]∪(4,+∞)【解析】由題意得x≥2x?4<0或x<2x2?4x+3<0,所以2≤x<4或1<x<2,即1<x<4,不等式f當(dāng)λ>4時,f(x)=x?4>0,此時f(x)=x2?4x+3=0,x=1,3,即在(?∞,λ)上有兩個零點;當(dāng)λ≤4時,f(x)=x?4=0,x=4,由f(x)=x2?4x+3在(?∞,λ)上只能有一個零點得3.(北京高考真題)已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的取值范圍是_____.【答案】SKIPIF1<0【解析】試題分析:SKIPIF1<0,所以當(dāng)SKIPIF1<0時,取最大值1;當(dāng)SKIPIF1<0時,取最小值SKIPIF1<0.因此SKIPIF1<0的取值范圍為SKIPIF1<0.4.(2018·天津高考真題(理))已知SKIPIF1<0,函數(shù)SKIPIF1<0若關(guān)于SKIPIF1<0的方程SKIPIF1<0恰有2個互異的實數(shù)解,則SKIPIF1<0的取值范圍是______________.【答案】SKIPIF1<0【解析】分析:由題意分類討論SKIPIF1<0和SKIPIF1<0兩種情況,然后繪制函數(shù)圖像,數(shù)形結(jié)合即可求得最終結(jié)果.詳解:分類討論:當(dāng)SKIPIF1<0時,方程SKIPIF1<0即SKIPIF1<0,整理可得:SKIPIF1<0,很明顯SKIPIF1<0不是方程的實數(shù)解,則SKIPIF1<0,當(dāng)SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024版商用建筑水電安裝工程協(xié)議版B版
- 廣告位租賃合同服務(wù)
- 景觀房買賣合同宜居宜投資
- 倉儲中心電梯井道安裝工程合同
- 2024版商用滅火器購銷協(xié)議版
- 專科醫(yī)療技術(shù)合作協(xié)議
- 2024版節(jié)電器銷售合同范本
- 華南農(nóng)業(yè)大學(xué)《輿情搜集與分析》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年度遠(yuǎn)程醫(yī)療服務(wù)系統(tǒng)建設(shè)與合作合同2篇
- 2024版電動車生產(chǎn)與銷售合同
- GA 1205-2014滅火毯
- 個人掃描的吳玉生楷書7000字
- 醫(yī)院污水處理工程施工組織設(shè)計
- 閘板防噴器使用手冊 精品
- 歡迎新同學(xué)幼兒園中小學(xué)開學(xué)第一課入學(xué)準(zhǔn)備ppt
- 金手指外觀檢驗重點標(biāo)準(zhǔn)
- 新教材人教版高中化學(xué)選擇性必修1全冊各章節(jié)知識點考點重點難點歸納總結(jié)匯總
- 2022年五年級英語下冊期末單詞聽寫表上海教育出版社
- 高級財務(wù)管理(第2版)-教學(xué)大綱
- 檔案保護技術(shù)概論期末復(fù)習(xí)資料教材
- 能源管理制度與能耗核算體系模板
評論
0/150
提交評論