![梁新剛-2013-火積新理論基礎(chǔ)及進展_第1頁](http://file4.renrendoc.com/view11/M03/20/0E/wKhkGWV3G-GAeE-gAADsHwun-BA692.jpg)
![梁新剛-2013-火積新理論基礎(chǔ)及進展_第2頁](http://file4.renrendoc.com/view11/M03/20/0E/wKhkGWV3G-GAeE-gAADsHwun-BA6922.jpg)
![梁新剛-2013-火積新理論基礎(chǔ)及進展_第3頁](http://file4.renrendoc.com/view11/M03/20/0E/wKhkGWV3G-GAeE-gAADsHwun-BA6923.jpg)
![梁新剛-2013-火積新理論基礎(chǔ)及進展_第4頁](http://file4.renrendoc.com/view11/M03/20/0E/wKhkGWV3G-GAeE-gAADsHwun-BA6924.jpg)
![梁新剛-2013-火積新理論基礎(chǔ)及進展_第5頁](http://file4.renrendoc.com/view11/M03/20/0E/wKhkGWV3G-GAeE-gAADsHwun-BA6925.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Entransy[
]:
ItsApplicationinHeatTransfer
and
ThermodynamicSystemXin-gangLiangSchoolofAerospace,TsinghuaUniversity1ContentPart1:
Whatisentransy?Part2:OptimizationofheatconductionPart3:ThedifferencebetweenentransyoptimizationandentropyoptimizationPart4:Applicationto
heatexchanger(HX)optimizationPart5:ApplicationtothermodynamicsystemPart6:Anattempt:entransyanalysisofthermodynamiccycle--entransylossPart7Arguments2Part1:
Whatisentransy?
[火積]?3Definition-entransyInternalenergySpecificheattemperatureBodymassZYGuoetal,Entransy–Aphysicalquantitydescribingheattransferability,Int.J.HeatMassTransfer,2007,50:2545–2556.4Physicalmeaning“Potentialenergy”ofheatinanobject;Theabilitytoreleaseheatfromanobject;Thelargestentransythatabodycouldreleaseis?UT.PotentialenergyofwaterinatankentransyHA56HotstonepotforcookingTemperatureHeatcapacityBothfactorsareimportant,notsingleone.PhysicalmeaningAnalogybetweenelectrical&heatconduction7Electricalcond.HeatconductionPotentialUe
[V]Uh=T
[K]FlowI
[C/s]Qh
[J/s]Flux
[C/m2s]
[J/m2s]Resistance
Re[
]Rh
[sK/J]Law
Uh=TElectricalCharge/storedheatQveQvh
=
McvTCapacity
Ce
=
Qve
/
Ue
Ch
=
Qvh
/
UhPotentialenergyEe=
QveUe
/2Potentialenergyofheat?PhysicalmeaningPotentialenergyofcharge8“Potentialenergy”ofheatinabodyatatemperaturePotentialenergyofchargeinacapacitance
ZYGuoetal,Entransy–Aphysicalquantitydescribingheattransferability,Int.J.HeatMassTransfer,2007,50:2545–2556.entransyInternalenergy
massPhysicalmeaningEe=QveUe
/2
Whyisthequantity,G, calledentransy?Clausiushadcoineden-tropy(熵)forS=
Q/Tbecauseitpossesboththenatureofenergyandtransformationability.en
---prefixofenergy;tropy---rootoftransformationEn-transyforwascoinedforGh=UT/2becauseitpossesboththenatureofenergyandtransferability.en
---prefixofenergy;transy--rootoftransportGh=UT/2
wascalledheattransportpotentialcapacity9Whathappenstoentransyifheatistransferred?ItcanbeprovedInitialstatesAfterequilibrium10EntransydissipationThetotalentransyisreducedwhenheatistransferredThechangeinentransyduetoheattransferiscalledentransydissipation
11EntransydissipationWhathappensifheatistransferred?Itcanbeproved:anyspontaneousheattransferwillresultinentransydecreaseforisolatedsystem.Hence,entransydissipationcouldbe
anthermeasureoftheirreversibilityforheattransport12孤立系統(tǒng)熵增原理Entransyflow13Qf:heatexchangeatconstanttemperatureTWhenQfistransferredfromTH
toTL,
theentransydissipationisEntransyflow:Whyentransy?Anyadvantage?Anyapplicationofconvenience?14Whyentransy?Enhancement(強化)Increasingheattransferratewithinputinpower,materials,etc.Optimization(優(yōu)化)BestheattransferperformanceunderfixedinputAnyprinciple?Howtooptimize?15Whyentransy?16Constructaltheory:ABejanGivingprescribedconstructandthenoptimizingaspectratio.Minimizingthelargesttemperaturedifference.Onedimensionconductionassumptionintheconstruct.Effectiveforsymmetricstructure.OptimizationmethodsHowtodoiftherearemorethantwooutlettemperaturesorifthedomainiscomplex?Whyentransy?17Entropygeneration(EG)MinimizationBelief:Lessentropygeneration,betterheattransfer;TheNewtoncoolinglawQ=AhTforfixedQ,Tbecomesmallerunderimprovement,thenlessentropygenerationManysuccessfulapplicationsOptimizationmethodsDifferentopinionson
entropygenerationminimizationoptimization18entropygenerationlossinheat-workconversion,orexergy[火用];focusonirreversibilityfromtheviewpointofheat-workconversion.Heatistransportednotfordoingworkinmanyapplications.However,thereareConflictson
entropygenerationminimizationoptimization19TheNewtoncoolinglawQ=
AhT:ifTfixed,enhancementoroptimizationwillmakeheatexchangeincreasedQ;EGwillincreaseeitherLargerEGcorrespondslargerheattransferrate?HoweverConflictson
Minimumentropygeneration(EG)optimization20TheparadoxinHeatexchangeroptimizationBejan:effectivenessdoesnotalwaysincreaseswithdecreasingEGmonotonicallyShah:18typesofHXs,notmonotonicrelationbetweenEGandeffectiveness.HoweverConflictson
Minimumentropygeneration(EG)optimization21TheparadoxinheatexchangeroptimizationHoweverEffectivenessisnotamonotonicfunctionofEGCounterflowHXEntransycouldbeahelpondealingwithheattransferoptimization?22Part2
Optimizationofheatconduction
23EntransybalanceequationEnergyeq.HeatsourceHeatfluxMultipleTintegrateoverthewholevolume24EntransybalanceequationForconstantcvEntransyperunitvolumeFromtheGausstheorem25EntransybalanceequationEntransyvariationwithtime-EntransydissipationEntransyvariationduetoboundaryheatexchange
Entransyproductionduetoheatsource
26Entransybalanceequationentransyvariationwithtime=netentransyflowintovolumethroughboundary+netentransyduetoheatsource+entransydissipation27Entransybalanceequation28Atsteadystate,withoutheatsource00orEntransydissipationrate=entransyflowintothevolumethroughboundary
-entransyflowoutofthevolumethroughboundaryGin-Gout=
GRelationbetweenheattransfer&entransydissipationNetheatexchangethoughboundaryisrelatedtotheentransydissipationinthevolume!EntransydissipationNetentransyflowintoVthoughboundary2930Steadystatewithoutheatsourcewhereboundaryflux-weightedtemperaturedifferenceQ0:totalnetheattransportbetweenthesourceandsinkboundaryForgivenboundaryflowRelationbetweenheattransfer&entransydissipationqin:heatfluxintoboundaryareaSqin
qout:heatfluxoutofboundaryareaSqout
31SteadystatewithoutheatsourceMinimumentransydissipation
smallesttemperaturedifferenceForgivenboundaryflowRelationbetweenheattransfer&entransydissipation32SteadystatewithoutheatsourceForgivenboundarytemperatureRelationbetweenheattransfer&entransydissipationMaximumentransydissipation
largestheatexchange33MaximumentransydissipationprincipleforgiventemperatureMinimumentransydissipationprincipleforgivenheatfluxEntransydissipationextremumprinciplesforheatconductionRelationbetweenheattransfer&entransydissipationOptimizationapplicationHowtodistributegoodconductingmaterialstoobtainlowestaveragetemperature?Volumetopointheatconduction,steadysateUniformheatsourceThereisonlyoneoutletattemperatureT0Limitedgoodconductivity34OptimizationapplicationEntransybalanceeq.VolumetopointheatconductionQisthetotalheatgeneratedinV,whichisgiven35OptimizationapplicationEntransybalanceeq.VolumetopointheatconductionEntransydissipationinVNetentransyflowintoVSmallerentransydissipation,loweraveragetemperature.Howtofindtheoptimaltemperaturedistributionwithlimitationongoodconductingmaterials?36MinimumConstraintPurpose:findtheminimumentransydissipationundertheconstraint37OptimizationapplicationVolumetopointheatconductionRequirementsPurpose:findtheminimumentransydissipationundertheconstraint38OptimizationapplicationVolumetopointheatconductionConstituteaLagrangefunctionwiththeconstraintoflimitinggoodconductingmaterialsPursuingacalculusofvariation,takingconductivitykasafunction.39OptimizationapplicationVolumetopointheatconductionWehaveThisistherule/principletodistributegoodconductingHowtousethisrule?40OptimizationapplicationVolumetopointheatconductionHowtousetherule(4)Returntostep(2)untilallthegoodconductingmaterialsareusedup.(1)Fillinthedomainwithbasematerials,lowconductivity;(2)Solvetheenergyequationtoobtainthetemperaturefieldandheatfluxfield;(3)Putagoodconductingmaterialsattheplacewherethetemperaturegradientislargest;Thereareotherimprovedmethodsofputtinggoodconductingmaterials41OptimizationapplicationVolumetopointheatconductionThestructuredependsontheconductivityratio,fractionofgoodconductingmaterialsnon-uniformheatsourceQQ12.5%oftotalVolumeOptimizationapplicationVolumetopointheatconduction42Thestructuredependsontheconductivityratio,fractionofgoodconductingmaterialsYoucanusedifferentprocedurebasedontheruleandcouldobtaindifferentstructuresOptimizationapplicationVolumetopointheatconduction43Entransydissipation-basedthermalresistanceTheentransydissipationextremumprinciplesdivideintotwocases,complex.MaximumentransydissipationprincipleforgiventemperatureMinimumentransydissipationprincipleforgivenheatfluxEntransydissipationextremumprinciplesforheatconductionCouldwemakeanimprovementandexpressthemmoresimply?44ThermalresistanceConventionaldefinitionofthermalResistance:
R=
T/Q
Withentransydissipation,wecandefinedeffectiveresistanceforx-DsystemT1T2adiabaticT3?Itcanonlybedefinedfor1-Dsystem
Ifmanytemperatures?45Resistancewasdefinedbasedonentransydissipationandthetotalnetheatexchange.WeightedTdifferenceEntransyDissipationNetheatexchangebetweensource&sinkboundariesEntransy-dissipation-basedthermalresistanceEntransydissipation-basedthermalresistance46Entransybalanceeq.atsteadystateForfixedT,largerentransydissipation,largerheatexchange,smallerthermalresistance.ForfixedQ,smallerentransydissipation,smallertemperaturedifference,smallerthermalresistance.47Entransydissipation-basedthermalresistanceMinimumresistanceprincipleMaximumentransydissipationprinciple(forgiventemperature)Minimumentransydissipationprinciple(forgivenheatflux)Heatalwaysconductsviaminimumthermalresistance!48Part3
Thedifferencebetweenentransyoptimizationandentropyoptimization
49EntropyForanyreversiblecycleentropyEntropychangeforanyprocessfromstate1tostate2Entropygeneration50Entropybalanceeq.forheattransferEntropychangerateInternalentropygenerationEntropyflowthoughboundaryandheatsourceAtsteadystateWithoutheatsource51Entropybalanceeq.forheattransferForheatconductionthenEntropychangerateentropygenerationEntropyflowthoughboundaryEntropyduetoheatsource52Entropygenerationandheattransfer53qistheheatfluxthoughboundaryqisthatinnormaldirectionFromentropybalanceeq.QnetisthenetheatflowbetweenheatsourceandsinkboundaryEntropygenerationandheattransfer54EntropyoptimizationEntransyoptimizationForprescribedheatflowSmallerentropygeneration,SmallerentransydissipationSmallerSmallerEntropygenerationandheattransfer55EntropyoptimizationEntransyoptimizationForprescribedboundarytemperaturelargerentropygeneration,largerentransydissipationLargerQnet
LargerQnetEntropygenerationoptimizationForgivenboundaryheatflowminimizingentropygenerationistoreduce(1/T)(objective),notT;minimizingentransydissipationistoreduce
T(objective).Forgivenboundarytemperaturesmaximizing(notminimizing)entropygenerationistoincreaseheattransferrate,notT;minimizingentransydissipationistoreduceT.56Heattransferprocesscanbedividedintotwocategoriesaccordingtotheir
purposes:ClassificationofheattransferprocessOneisforheat-workconversionanditsirreversibilityismeasuredbytheentropygenerationrate.Anotherisforheatingorcoolingobjects
anditsirreversibilityismeasuredbytheentransydissipationrate57Correspondingtotwopurposesofheattransfer,therearetwokindsofoptimizationprinciplesforheattransferTheprincipleofminimumentropygenerationforoptimizationofheattransferforheat-workconversion.Theprinciple
ofminimumentransydissipation-basedthermalresistanceforoptimizationofheattransferforobjectheating.5859EntropyoptimizationFormaLagrangefunctionwiththeconstraintoflimitinggoodconductingmaterialsVariationwithrespecttoTRulestoarrangegoodconductingmaterialsResultcomparisonVariationwithrespecttokEntransyoptimizationResultcomparison<
averageT:150.8K
AverageT:
51.6
K
Min.entropygeneration:increaseT,reduce
(1/T);Min.entransydissipation:reduce
T.Entropyoptimization60TemperaturedistributionReduceentropygenerationreducetheabilitylossindoingworkResultcomparisonEntransyopt.Entropyopt.<averageT:150.8K
AverageT:
51.6
K
61優(yōu)化結(jié)果比較
resultΦh
/(W?K)Sgen/(W/K)Tm/KTmax/K/(1/K)Entransydissipationopt5.5×104100.751.683.02.2×10-2Entropymini.Opt.1.58×10581.7150.8194.97.1×10-3TheoptimizationobjectivesaredifferentforentransydissipationoptimizationandentropygenerationoptimizationResultcomparison62purposeheat-workconv.heating/coolingirreversibilityentropygenerationentransydissipationopt.objectiveconver.Efficiency
(1/T)transferperformance
Topt.principleminimumentropygenerationrateminimumthermalresistanceprocesstendency
dS>0
dG<0criterionofequi.
dS=0
dG=0HeattransferentropyentransyComparison:entropyandentransy63Whatdoyouthinkifentropyflowandgenerationiswroteinthisway?EntropygenerationEntropyflowEntransyflowEntransydissipation64Part4
Applicationto
heatexchanger(HX)optimization
65SomeconceptsforheatexchangerParallelflowheatexchangerCounterflowheatexchangerΔtmaxΔtmin0AtΔtmaxΔtmin0At66SomeconceptsforheatexchangerCrossflowheatexchanger67SomeconceptsforheatexchangerTheLog-MeanTemperatureDifferenceMethodΔtmaxΔtmin0AtΔtmaxΔtmin0AtHeatexchangedbetweenhotandcoldstreams(counter/parallel)K
isheattransfercoefficient,Aisareabetweenhotandcoldstream68Someconceptsforheatexchanger(HX)EffectivenessHeatexchangedxMaxpossibleheatexchange
NTU:NumberofTransferUnitsC=mc,Heatcapacityflowrateforhotandcoldstreams;mismassflowrate,cisspecificheat,h—hotstream,c—coldone.69ConventionalmethodsforthedesignofheatexchangersParallelandcounter-flowheatexchangersConvient!ConventionalHXdesigningmethodLog-MeanTemperatureDifferenceMethod(LMTD)Cross-flowandmultipassheatexchangersCorrectionfactor
isunavoidable!70ConventionalmethodsforthedesignofheatexchangersConventionalHXdesigningmethodTheEffectiveness---NTUmethodComplexexpressionsofNTUParallel:Counter-flow:71Couldwedosomethingwiththeconceptofentransy?72EntransyDissipationinheatexchangersEntransydissipationinaheatexchangerEntransydissipationestimatestheirreversibilityofheattransferinHXs.Local/totalentransydissipationrateforheattransferEntransydissipationforHX73TemperaturevariationsindifferentheatexchangersParallelflowHXCounterflowHXΔtmaxΔtmin0AtΔtmaxΔtmin0AtNonlineartemperaturedistributionalongtheheattransfersurface.TemperaturedistributioninHXHotstreamHotstreamcoldstreamcoldstream74ΔtmaxΔtmin0Qt0LineartemperaturevariationversusthetotalheattransferrateΔtmaxΔtminQtT-QdiagramandthermalresistancetemperaturevariationsvstotalheattransferrateParallelflowHXCounterflowHXEntransyDissipationEntransyDissipationThermalresistancehighlightedarea75TheinfluencefactorsonHXefficiency76
UnbalancedflowdifferentheatcapacityrateIfthesame
Non-optimalflowarrangementNon-counterflowForparallelflow,thereisalimitifonlyincreasearea.Counterflow:largerTalongflowdirection,lessarea
FiniteNTU(KA/Cmin)IncreasingareaanotherlimitTThTcQTThTcQTheentransydissipation(areasurroundedbyTcurves)becomeslesswithimprovingheatexchangeforgiveinletparameters77Applicationindatacentercoolinganalysis10121416182022242628-0.2500.250.50.7511.251.5Temperature/CHeatq/WTh,inQ0.5QTh,outTc,inTc,outTm,hTm,cToreducepowerconsumption,heatpipecanbeusedtoreplacetheinterloopcirculationIndoorairoutdoorairwaterHowtouseheatpipe?OneheatpipeTQTwoheatpipesatdifferenttemperature?Bettermatchinflowarrangement,betterperformanceorlessarea.78FlowarrangementisnotsatisfactoryIndoorairoutdoorairHeatpipeOutdoorairIndoorairHeatpipecondenserevaporatorDividetheindoor&outdoorHXsintotwoparts,usingtwoheatpipesworkingatdifferenttemperaturedatacentercoolinganalysis79Howtofindthekeypointofoptimizationforathermalsystemiftheinputheatisfixed?FindthedissipationdistributionbyT-QplotornumericalsimulationDeterminewheretheentransydissipationisdominantandtrytoreduceit:Betterarrangement,avoidingmixing,etc.80Aninstance:Xian-Yangairport81ConventionalairsupplyNo!Aninstance:Xian-Yangairport82Floorcooling:sunradiationisdirectlyremoved,avoidingmixingwithair;departurehall:coolairissuppliedatgroundlevel,hotairgoesoutatroofEntransydissipationbasedthermalresistance(EDTR)fordifferentHXParallelHXCounter-flowHXTEMAE-typeheatexchanger83TheinfluencefactorsofheatexchangerefficiencyInfluencefactorsRelatedquantitiesTypeofHeatexchangerThermalconductanceofheatexchangersHeatcapacitiesofhotandcoldfluidAllthefactorsarecontainedintheexpressionofEDTR!84AdvantagesofEDTRmethodEDTRdirectlyconnectsgeometricalstructuresandboundaryconditionstoentransydissipation.Differenttypesofheatexchangersshareageneralformulaformostheatexchangers.EDTRisconvenientfortheoptimizationofheatexchanger(networks).85Relation:resistance~effectivenessSmallerresistance,largereffectivenessifheatcapacityflowratesaregiven.or86Example1:areadistribution
ofHXsHotstreamColdstreamHX1HX2Inlettemperatureandheatcapacityflowratearegivenisknown,thesumofareaofHXs:A1+A2=constObjective:thesumofheatexchangedislargestHowtodistributeA1/A?K87Resistance
=sumofentransydissipationinHX1andHX2dividedbythesumoftotalheatexchangeThetotalentropygenerationduetoheatexchangeTheoutlettemperaturecanbeobtainedbyenergybalanceequations88Example1:ResultMinresistance
~
MaxheatexchangeMinentropygeneration
~?Heatexchange89Example2:two-streamHXs(networks)90EntransydissipationEntransydissipationnumberEDTR91
EntropygenerationnumberRevisedentropygenerationnumberEntropygeneration92Example2:two-streamHXsCase1:heatcapacityflowratesandtheinlettemperaturesareprescribedCh=5W/K,Cc=8W/K,Tin-h=360K,andTin-c=300KWithincreasing
R,NRS,NG
Sg,NS,dis:notmonotonic93Example2:two-streamHXsCase2:
theprescribedparametersaretheinlettemperatures,theratioQ/ChandtheratioQ/CcinsteadoftheheatcapacityflowratesWithincreasing
R
Sg,dis
NRS,NG,NS~
constant94Example2:two-streamHXsCase3:
theheattransferrateisprescribed.AllsixconceptsaresuitableforoptimizingTHsdesignswithaprescribedheattransferrate(theentropygeneration,entropygenerationnumber,revisedentropygenerationnumber,entransydissipation,entransydissipationnumberandEDBthermalresistance).95Example3:One-dimensionalheattransferTheoptimizationobjectiveoftheheattransferprocessisthemaximumheattransferrate96Example3:one-dimensionalheattransferSmallerresistanceRlargerQ,Sg,
dis;
NRS,NG
:constant97CasesCasedescriptionCaseIHXswithprescribedstreaminlettemperaturesandheatcapacityflowCaseIIHXswithprescribedstreaminlettemperaturesandprescribedratiosoftheheattransferratetotheheatcapacityflowratesCaseIIIHXswithprescribedheattransferrateCaseIVOnedimensionalheattransferCaseVVolume-to-PointproblemConceptCaseICaseIICaseIIICaseIVCaseVOpt.objectiveSgnon-monotonicmonotonicmonotonicnon-monotonicmonotonicmin
(1/T)NSnon-monotonicconstantmonotonic------------NRSmonotonicconstantmonotonicconstantmonotonicmin
(1/T)
disnon-monotonicmonotonicmonotonicnon-monotonicmonotonicmin
(T)ormax(Q)NGmonotonicconstantmonotonicconstant--------Rmonotonicmonotonicmonotonicmonotonicmonotonicmin
(T)ormax(Q)98GlobalOptimizationofGasRefrigerationSystemsPart5
ApplicationtoathermodynamicsystemAglobaloptimizationofgasrefrigerationsystems99GasrefrigerationsystemThefluidflowsintotheHXlandheatsthegas:T4
→
T1.Theheatedgasentersthecompressor:p1→p2,T1→
T2.ThegasiscooledintheHXh:T2
→T3.Thecooledgasenterstheexpander:p2
→p1,T3
→T4.C:compressorE:expanderHXh:hot-endheatexchangerHXl:cold-endheatexchanger100OptimizationofagasrefrigerationcycleDesignRequirementsTemperaturesatthehotandcoldends:Th,TlPerformanceofcompressorandexpander.Coolingcapacityofthecycle:QlMassflowrateoftheworkingmedia:ma,mh,mlDesignParametersThermalconductanceofheatHXs:(KA)h,(KA)l101OptimizationobjectivesMinimizethecost,e.g.theheattransferarea,ofexchanger,
whenthenetpowerconsumptionisgiven:Minimizethe
netpowerconsumption,whenthecostofexchangerisgiven:102thelackofamathematicalrelationbetweengivenquantitiesanddesignparameters;individualparameteranalysiswiththeotherparametersfixedinoptimization,i.e.,“try-anderror”method.Systemoptimization?Establishthemathematicalrelationbetweenthedesignrequirementsanddesignparameters.Thekeypointoftheoptimizationproblem:103TheoreticalanalysisCompressionincompressorExpansioninexpanderHeattransferinHXlHeattransferinHXh104T-qdiagramforheatexchangers
Theshadowarea
istheentransydissipationrateinaHX.105TheentransydissipationrateinHXsisalsothefunctionofthethermalconductanceofHX,(KA),andtheheatcapacityratesofhotandcoldfluids,Ch=mhcp,h
andCc
=mccp,cCombiningtwoequations:ApplythisrelationtothehotandcoldendHXs106ApplytotheHXatthehotendChThenCaisheatcapacityflowrateofgas107ApplytotheHXatthecoldend108ThermodynamicanalysisnC
:polytrophicindexCompresionprocessExpansionprocessTherelationsbetweentemperaturesareestablished109HeattransferanalysisThermodynamicanalysis110Combiningbothheattransferandthermodynamicrelations,wetheoreticallyestablishthemathematicalrelationbetweenallthedesignparametersandtherequirements.Thisrelationmakesthetheoreticalglobaloptimizationfortherefrigerationsystemspossible!111OptimizationmodelBasedontherelationabove,theoptimizationproblemisconvertedintoaconditionalextremumproblem:whereT1
andT2arefunctionsaboutdesignparameters112ConstructaLagrange
function:OptimizationEquations:Tofindoptimalparameters113OptimizationresultsGivenquantities:Th=303K,Tl=273K,Ch
=400W/K,Cl=250W/K,Ql=1000W,Wnet=500W,FC=50WParametersCaW/K(KA)hW/K(KA)lW/K∑(KA)W/KResults913.528.028.656.6Optimizationresults:114TheΣ(KA)reachesitsminimumwhendesignparametersequaltotheoptimizedvalues.(KA)h115Theoptimalthermalconductanceversusthenetpowerconsumptions116Thebasicideaintheaboveapplication?Applyentransydissipationrelationtosetuprelationbetweenparameters,andconstraint,sothatwecanmakeatheoreticalderivationtofindtheoptimalparameters.117Part6
Anattempt:entransyanalysisofthermodynamiccycle--entransyloss
118Work
WEnergybalance119Heat
QEntransybalance120
TheprocessentransyHeatentransy:entransychangedueheatexchangeWorkentransy:entransychangeduetoinput/outputworkBothcanaffectinternalenergyandthusentransyEntransystateHeatentransyprocessWorkentransyprocessTermnatureTheCarnotcycleACarnotengineworksbetweenheatreservoirswithtemperaturesTH,TL.ItreceiveheatQH–CfromTH,releaseheatQL–CtoTL,andoutputW.121EntransyflowfromTH:
EntransyflowintoTL:PartoftheentransyflowfromTHisdeliveredintoTL,andtherestisusedinoutputtingwork:122GWC,theworkentransy,isthelargestconversionalentransybecauseWCislargest(Carnotcyle).TheCarnotcycleTheCarnotcycleforidealgasFourprocesses1-2:isothermalexpansion,receivingheat2-3:adiabaticexpansion3-4:isothermalcompression,releasingheat4-1:adiabaticcompression123TheCarnotcycleforidealgas1-2:isothermalexpansion,receivingheat124Integratefrom1to2TheCarnotcycleforidealgas2-3:adiabaticexpansion125Integratefrom2to3TheCarnotcycleforidealgas3-4:isothermalcompression
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代商務(wù)場合下的著裝與舉止規(guī)范
- 居然之家國慶節(jié)活動方案
- 現(xiàn)代農(nóng)業(yè)旅游產(chǎn)業(yè)鏈構(gòu)建與農(nóng)業(yè)可持續(xù)發(fā)展
- 未來生態(tài)社區(qū)的規(guī)劃與水環(huán)境關(guān)系探討
- 災(zāi)害預(yù)防教育在學(xué)校的推廣與應(yīng)用
- 匯報邏輯清晰度職場的制勝法寶
- 6 飛向藍天的恐龍說課稿-2023-2024學(xué)年四年級下冊語文統(tǒng)編版
- 2023九年級物理上冊 第四章 探究電流4.3 導(dǎo)體對電流阻礙作用說課稿 (新版)教科版
- 2 送元二使安西(說課稿)- 2024-2025學(xué)年部編版語文六年級上冊
- 2024-2025學(xué)年高中數(shù)學(xué) 第一章 集合與常用邏輯用語 1.4.2 充要條件說課稿 新人教A版必修第一冊001
- 2024年公安機關(guān)理論考試題庫附答案【考試直接用】
- 課題申報參考:共同富裕進程中基本生活保障的內(nèi)涵及標準研究
- 2025年浙江嘉興桐鄉(xiāng)市水務(wù)集團限公司招聘10人高頻重點提升(共500題)附帶答案詳解
- 食品企業(yè)如何做好蟲鼠害防控集
- 2025中國聯(lián)通北京市分公司春季校園招聘高頻重點提升(共500題)附帶答案詳解
- 康復(fù)醫(yī)學(xué)科患者隱私保護制度
- 環(huán)保工程信息化施工方案
- 狂犬病暴露后預(yù)防處置
- 紅色中國風2025蛇年介紹
- 2024年安徽省高考地理試卷真題(含答案逐題解析)
- 高中學(xué)校開學(xué)典禮方案
評論
0/150
提交評論