版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆湖北省鄂州市部分高中聯(lián)考協(xié)作體高一數(shù)學第一學期期末監(jiān)測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12小題,共60分)1.已知直線與圓交于A,兩點,則()A.1 B.C. D.2.若一元二次不等式的解集為,則的值為()A. B.0C. D.23.已知函數(shù)的零點,(),則()A. B.C. D.4.北京2022年冬奧會新增了女子單人雪車、短道速滑混合團體接力、跳臺滑雪混合團體、男子自由式滑雪大跳臺、女子自由式滑雪大跳臺、自由式滑雪空中技巧混合團體和單板滑雪障礙追逐混合團體等7個比賽小項,現(xiàn)有甲、乙兩名志愿者分別從7個比賽小項中各任選一項參加志愿服務(wù)工作,且甲、乙兩人的選擇互不影響,那么甲、乙兩名志愿者選擇同一個比賽小項進行志愿服務(wù)工作的概率是()A.249 B.C.17 D.5.若函數(shù)f(x)=2x+3x+a在區(qū)間(0,1)A.(-∞,-5)C.(0,5) D.(1,+6.圓:與圓:的位置關(guān)系為()A.相交 B.相離C.外切 D.內(nèi)切7.土地沙漠化的治理,對中國乃至世界來說都是一個難題,我國創(chuàng)造了治沙成功案例——毛烏素沙漠.某沙漠經(jīng)過一段時間的治理,已有1000公頃植被,假設(shè)每年植被面積以20%的增長率呈指數(shù)增長,按這種規(guī)律發(fā)展下去,則植被面積達到4000公頃至少需要經(jīng)過的年數(shù)為()(參考數(shù)據(jù):取)A.6 B.7C.8 D.98.函數(shù)f(x)=,的圖象大致是()A. B.C. D.9.命題“?x∈R,都有x2-x+3>0A.?x∈R,使得x2-x+3≤0 B.?x∈RC.?x∈R,都有x2-x+3≤0 D.?x?R10.已知定義在R上的函數(shù)滿足:對任意,則A. B.0C.1 D.311.設(shè)a是方程的解,則a在下列哪個區(qū)間內(nèi)()A.(0,1) B.(3,4)C.(2,3) D.(1,2)12.已知函數(shù)的定義域為,若是奇函數(shù),則A. B.C. D.二、填空題(本大題共4小題,共20分)13.已知a∈R,不等式的解集為P,且-1∈P,則a的取值范圍是____________.14.不等式的解集是________.15.過正方體的頂點作直線,使與棱、、所成的角都相等,這樣的直線可以作_________條.16.的定義域為_________;若,則_____三、解答題(本大題共6小題,共70分)17.已知函數(shù)與.(1)判斷的奇偶性;(2)若函數(shù)有且只有一個零點,求實數(shù)a的取值范圍.18.對于函數(shù),若在其定義域內(nèi)存在實數(shù),,使得成立,則稱是“躍點”函數(shù),并稱是函數(shù)的1個“躍點”(1)求證:函數(shù)在上是“1躍點”函數(shù);(2)若函數(shù)在上存在2個“1躍點”,求實數(shù)的取值范圍;(3)是否同時存在實數(shù)和正整數(shù)使得函數(shù)在上有2022個“躍點”?若存在,請求出和滿足的條件;若不存在,請說明理由19.某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖(1)求直方圖中的值;(2)求月平均用電量的眾數(shù)和中位數(shù);(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?20.已知函數(shù),其中.(1)若是周期為的偶函數(shù),求及的值.(2)若在上是增函數(shù),求的最大值.(3)當時,將函數(shù)的圖象向右平移個單位,再向上平移1個單位,得到函數(shù)的圖象,若在上至少含有10個零點,求b的最小值.21.某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,A產(chǎn)品的利潤y與投資x成正比,其關(guān)系如圖(1)所示;B產(chǎn)品的利潤y與投資x的算術(shù)平方根成正比,其關(guān)系如圖(2)所示(注:利潤y與投資x的單位均為萬元)(1)分別求A,B兩種產(chǎn)品的利潤y關(guān)于投資x的函數(shù)解析式;(2)已知該企業(yè)已籌集到200萬元資金,并將全部投入A,B兩種產(chǎn)品的生產(chǎn)①若將200萬元資金平均投入兩種產(chǎn)品的生產(chǎn),可獲得總利潤多少萬元?②如果你是廠長,怎樣分配這200萬元資金,可使該企業(yè)獲得總利潤最大?其最大利潤為多少萬元?22.某種樹木栽種時高度為A米為常數(shù),記栽種x年后的高度為,經(jīng)研究發(fā)現(xiàn),近似地滿足,其中,a,b為常數(shù),,已知,栽種三年后該樹木的高度為栽種時高度的3倍(Ⅰ)求a,b的值;(Ⅱ)求栽種多少年后,該樹木的高度將不低于栽種時的5倍參考數(shù)據(jù):,
參考答案一、選擇題(本大題共12小題,共60分)1、C【解析】用點到直線距離公式求出圓心到直線的距離,進而利用垂徑定理求出弦長.【詳解】圓的圓心到直線距離,所以.故選:C2、C【解析】由不等式與方程的關(guān)系轉(zhuǎn)化為,從而解得【詳解】解:∵不等式kx2﹣2x+k<0的解集為{x|x≠m},∴,解得,k=﹣1,m=﹣1,故m+k=﹣2,故選:C3、D【解析】將函數(shù)化為,根據(jù)二次函數(shù)的性質(zhì)函數(shù)的單調(diào)性,利用零點的存在性定理求出兩個零點的分布,進而得出零點的取值范圍,依次判斷選項即可.【詳解】由題意知,,則函數(shù)圖象的對稱軸為,所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,又,,,,所以,因為,,所以,所以,故A錯誤;,故B錯誤;,故C錯誤;,故D正確.故選:D4、C【解析】根據(jù)古典概型概率的計算公式直接計算.【詳解】由題意可知甲、乙兩名志愿者分別從7個比賽小項中各任選一項參加志愿服務(wù)工作共有7×7=49種情況,其中甲、乙兩名志愿者選擇同一個比賽小項進行志愿服務(wù)工作共7種,所以甲、乙兩名志愿者選擇同一個比賽小項進行志愿服務(wù)工作的概率是749故選:C.5、B【解析】利用零點存在性定理知f(0)?f(1)<0,代入解不等式即可得解.【詳解】函數(shù)f(x)=2x+3x+a由零點存在性定理知f(0)?f(1)<0,即1+a5+a<0所以實數(shù)a的取值范圍是(-5,-1)故選:B6、A【解析】根據(jù)圓心距以及圓的半徑確定正確選項.【詳解】圓:的圓心為,半徑為.圓:的圓心為,半徑為.,,所以兩圓相交.故選:A7、C【解析】根據(jù)題意列出不等式,利用對數(shù)換底公式,計算出結(jié)果.【詳解】經(jīng)過年后,植被面積為公頃,由,得.因為,所以,又因為,故植被面積達到4000公頃至少需要經(jīng)過的年數(shù)為8.故選:C8、A【解析】判斷函數(shù)的奇偶性,以及函數(shù)在上的符號,利用排除法進行判斷即可【詳解】∵f(x)=,∴,,∴函數(shù)是奇函數(shù),排除D,當時,,則,排除B,C.故選:A9、A【解析】根據(jù)全稱命題的否定表示方法選出答案即可.【詳解】命題“?x∈R,都有x2“?x∈R,使得x2故選:A.10、B【解析】,且,又,,由此可得,,是周期為的函數(shù),,,故選B.考點:函數(shù)的奇偶性,周期性,對稱性,是對函數(shù)的基本性質(zhì)的考察.【易錯點晴】函數(shù)滿足則函數(shù)關(guān)于中心對稱,,則函數(shù)關(guān)于軸對稱,常用結(jié)論:若在上的函數(shù)滿足,則函數(shù)以為周期.本題中,利用此結(jié)論可得周期為,進而,需要回到本題利用題干條件賦值即可.11、C【解析】設(shè),再分析得到即得解.【詳解】由題得設(shè),由零點定理得a∈(2,3).故答案為C【點睛】本題主要考查函數(shù)的零點和零點定理,意在考查學生對這些知識的掌握水平和分析推理能力.12、D【解析】由為奇函數(shù),可得,求得,代入計算可得所求值【詳解】是奇函數(shù),可得,且時,,可得,則,可得,則,故選D【點睛】本題考查函數(shù)的奇偶性的判斷和運用,考查定義法和運算能力,屬于基礎(chǔ)題二、填空題(本大題共4小題,共20分)13、【解析】把代入不等式即可求解.【詳解】因為,故,解得:,所以a的取值范圍是.故答案為:14、【解析】由題意,,根據(jù)一元二次不等式的解法即可求出結(jié)果.【詳解】由題意,或,故不等式的解集為.故答案為:.【點睛】本題主要考查了一元二次不等式的解法,屬于基礎(chǔ)題.15、【解析】將小正方體擴展成4個小正方體,根據(jù)直線夾角的定義即可判斷出符合條件的條數(shù)【詳解】解:設(shè)ABCD﹣A1B1C1D1邊長為1第一條:AC1是滿足條件的直線;第二條:延長C1D1到C1且D1C2=1,AC2是滿足條件的直線;第三條:延長C1B1到C3且B1C3=1,AC3是滿足條件的直線;第四條:延長C1A1到C4且C4A1,AC4是滿足條件的直線故答案為4【點睛】本題考查滿足條件的直線條數(shù)的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查空間想象能力,考查分類與整合思想,是基礎(chǔ)題16、①.;②.3.【解析】空一:根據(jù)正切型函數(shù)的定義域進行求解即可;空二:根據(jù)兩角和的正切公式進行求解即可.【詳解】空一:由函數(shù)解析式可知:,所以該函數(shù)的定義域為:;空二:因為,所以.故答案為:;三、解答題(本大題共6小題,共70分)17、(1)偶函數(shù)(2)【解析】(1)根據(jù)奇偶性定義判斷;(2)函數(shù)只有一個零點,轉(zhuǎn)化為方程只有一個根,用換元法轉(zhuǎn)化為二次方程只有一個正根(或兩個相等正根),再根據(jù)二次方程根分布分類討論可得小問1詳解】∵的定義域為R,∴,∴為偶函數(shù).【小問2詳解】函數(shù)只有一個零點即即方程有且只有一個實根.令,則方程有且只有一個正根.①當時,,不合題意;②當時,若方程有兩相等正根,則,且,解得;滿足題意③若方程有一個正根和一個負根,則,即時,滿足題意.∴實數(shù)a的取值范圍為.18、(1)證明見詳解(2)(3)存在,或或【解析】(1)將要證明問題轉(zhuǎn)化為方程在上有解,構(gòu)造函數(shù)轉(zhuǎn)化為函數(shù)零點問題,結(jié)合零點存在性定理可證;(2)原問題等價于方程在由兩個根,然后構(gòu)造二次函數(shù),轉(zhuǎn)化為零點分布問題可解;(3)將問題轉(zhuǎn)化為方程在上有2022個實數(shù)根,再轉(zhuǎn)化為兩個函數(shù)交點個數(shù)問題,然后可解.【小問1詳解】因為整理得,令,因為,所以在區(qū)間有零點,即存在,使得,即存在,使得,所以,函數(shù)在上是“1躍點”函數(shù)【小問2詳解】函數(shù)在上存在2個“1躍點”方程在上有兩個實數(shù)根,即在上有兩個實數(shù)根,令,則解得或,所以的取值范圍是【小問3詳解】由,得,即因為函數(shù)在上有2022個“躍點”,所以方程在上有2022個解,即函數(shù)與的圖象有2022個交點.所以或或即或或19、(1);(2),;(3)【解析】(1)由直方圖的性質(zhì)可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方圖中眾數(shù)為最高矩形上端的中點可得,可得中位數(shù)在[220,240)內(nèi),設(shè)中位數(shù)為a,解方程(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5可得;(3)可得各段的用戶分別為25,15,10,5,可得抽取比例,可得要抽取的戶數(shù)試題解析:(1)由直方圖的性質(zhì)可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1得:x=0.0075,所以直方圖中x的值是0.0075.-------------3分(2)月平均用電量的眾數(shù)是=230.-------------5分因為(0.002+0.0095+0.011)×20=0.45<0.5,所以月平均用電量的中位數(shù)在[220,240)內(nèi),設(shè)中位數(shù)為a,由(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5得:a=224,所以月平均用電量的中位數(shù)是224.------------8分(3)月平均用電量為[220,240)的用戶有0.0125×20×100=25戶,月平均用電量為[240,260)的用戶有0.0075×20×100=15戶,月平均用電量為[260,280)的用戶有0.005×20×100=10戶,月平均用電量為[280,300]的用戶有0.0025×20×100=5戶,-------------10分抽取比例==,所以月平均用電量在[220,240)的用戶中應(yīng)抽取25×=5戶.--12分考點:頻率分布直方圖及分層抽樣20、(1),,;(2);(3).【解析】(1)由題知,,進而求解即可得答案;(2)由題知函數(shù)在上是增函數(shù),故,進而解不等式即可得答案.(3)由題知,進而根據(jù)題意得方程在上至少含有10個零點,進而得,再解不等式即可得答案.【詳解】解:(1)由題知,因為是周期為的偶函數(shù),所以,,解得:,,所以,.(2)因為,所以,因為函數(shù)在上是增函數(shù),所以函數(shù)在上是增函數(shù),所以,解得,又因為,故.所以的最大值為.(3)當時,,所以,當時,,又因為函數(shù)在上至少含有10個零點,所以方程在上至少含有10個零點,所以,解得故b最小值為.【點睛】本題考查三角函數(shù)圖像平移變換,正弦型函數(shù)的性質(zhì),考查運算求解能力,化歸轉(zhuǎn)化思想,是中檔題.本題解題的關(guān)鍵件在于利用整體換元的思想,將為題轉(zhuǎn)化為利用函數(shù)的圖像性質(zhì)求解.21、(1)A產(chǎn)品的利潤y關(guān)于投資x的函數(shù)解析式為:;B產(chǎn)品的利潤y關(guān)于投資x的函數(shù)解析式為:.(2)①萬元;②當投入B產(chǎn)品的資金為萬元,投入A產(chǎn)品的資金為萬元,該企業(yè)獲得的總利潤最大,其最大利潤為萬元.【解析】(1)利用待定系數(shù)法,結(jié)合函數(shù)圖象上特殊點,運用代入法進行求解即可;(2)①:利用代入法進行求解即可;②利用換元法,結(jié)合二次函數(shù)的單調(diào)性進行求解即可.【小問1詳解】因為A產(chǎn)品的利潤y與投資x成正比,所以設(shè),由函數(shù)圖象可知,當時,,所以有,所以;因為B產(chǎn)品的利潤y與投資x的算術(shù)平方根成正比,所以設(shè),由函數(shù)圖象可知:當時,,所以有,所以;【小問2詳解】①:將200萬元資金平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二四年體育賽事贊助合同詳細條款與權(quán)益分配3篇
- 2025年度跨國公司美金貸款合同
- 二零二五年度水稻種植基地建設(shè)合同
- 2025版離婚協(xié)議書范本:房產(chǎn)買賣合同分割及處理細則4篇
- 2025年度脫硫石膏復(fù)合材料銷售協(xié)議3篇
- 2025年冰箱洗衣機節(jié)能補貼項目合作協(xié)議3篇
- 2025年度離婚協(xié)議書:陳飛與劉婷離婚財產(chǎn)分割及子女撫養(yǎng)費協(xié)議4篇
- 二零二五年度老舊小區(qū)消防隱患排查與整改承包合同2篇
- 二零二四云存儲服務(wù)與云原生應(yīng)用部署合同3篇
- 貨物運輸協(xié)議
- ICU常見藥物課件
- CNAS實驗室評審不符合項整改報告
- 農(nóng)民工考勤表(模板)
- 承臺混凝土施工技術(shù)交底
- 臥床患者更換床單-軸線翻身
- 計量基礎(chǔ)知識培訓教材201309
- 中考英語 短文填詞、選詞填空練習
- 一汽集團及各合資公司組織架構(gòu)
- 阿特拉斯基本擰緊技術(shù)ppt課件
- 初一至初三數(shù)學全部知識點
- 新課程理念下的班主任工作藝術(shù)
評論
0/150
提交評論