版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第十五講:平面向量【考點(diǎn)梳理】平面向量的兩個(gè)定理(1)向量共線定理:如果SKIPIF1<0,則SKIPIF1<0;反之,如果SKIPIF1<0且SKIPIF1<0,則一定存在唯一的實(shí)數(shù)SKIPIF1<0,使SKIPIF1<0.(口訣:數(shù)乘即得平行,平行必有數(shù)乘).(2)平面向量基本定理:如果SKIPIF1<0和SKIPIF1<0是同一個(gè)平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于該平面內(nèi)的任一向量SKIPIF1<0,都存在唯一的一對(duì)實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0,我們把不共線向量SKIPIF1<0,SKIPIF1<0叫做表示這一平面內(nèi)所有向量的一組基底,記為SKIPIF1<0,SKIPIF1<0叫做向量SKIPIF1<0關(guān)于基底SKIPIF1<0的分解式.2.平面向量的坐標(biāo)運(yùn)算①已知點(diǎn)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0②已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0.SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<03.平面向量線性運(yùn)算的常用結(jié)論(1)已知O為平面上任意一點(diǎn),則A,B,C三點(diǎn)共線的充要條件是存在s,t,使得SKIPIF1<0,且SKIPIF1<0.(2)在SKIPIF1<0中,AD是BC邊上的中線,則SKIPIF1<0【典型題型講解】考點(diǎn)一:平面向量的線性運(yùn)算和數(shù)量積運(yùn)算【典例例題】例1.(2022·廣東珠?!じ呷谀┰赟KIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0邊上的高;O為SKIPIF1<0上靠近點(diǎn)A的三等分點(diǎn),且SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】在SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故選:C.例2.(2022·廣東中山·高三期末)已知向量SKIPIF1<0,SKIPIF1<0的夾角為60°,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.2B.SKIPIF1<0C.SKIPIF1<0 D.12【答案】C【詳解】SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.故選:C.【方法技巧與總結(jié)】應(yīng)用平面向量基本定理表示向量的實(shí)質(zhì)是利用平行四邊形法則或三角形法則進(jìn)行向量的加法、減法或數(shù)乘運(yùn)算,基本方法有兩種:(1)運(yùn)用向量的線性運(yùn)算法則對(duì)待求向量不斷進(jìn)行化簡(jiǎn),直至用基底表示為止.(2)將向量用含參數(shù)的基底表示,然后列方程或方程組,利用基底表示向量的唯一性求解.(3)三點(diǎn)共線定理:A,B,P三點(diǎn)共線的充要條件是:存在實(shí)數(shù)SKIPIF1<0,使SKIPIF1<0,其中SKIPIF1<0,O為AB外一點(diǎn).【變式訓(xùn)練】1.(2022·廣東潮州·高三期末)在SKIPIF1<0的等腰直角SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】以SKIPIF1<0為原點(diǎn)建立直角坐標(biāo)系,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:A2.(2022·廣東汕尾·高三期末)對(duì)于非零向量SKIPIF1<0,“SKIPIF1<0”是“SKIPIF1<0”的(
)A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件【答案】A【詳解】對(duì)于非零向量SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,充分性成立,但SKIPIF1<0,此時(shí)SKIPIF1<0的方向不定,不能推出SKIPIF1<0,必要性不成立,故選:A.3.(2022·廣東清遠(yuǎn)·高三期末)已知P是邊長(zhǎng)為4的正三角形SKIPIF1<0所在平面內(nèi)一點(diǎn),且SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.16 B.12 C.5 D.4【答案】C【詳解】如圖,延長(zhǎng)SKIPIF1<0到D,使得SKIPIF1<0.因?yàn)镾KIPIF1<0,所以點(diǎn)P在直線SKIPIF1<0上.取線段SKIPIF1<0的中點(diǎn)O,連接SKIPIF1<0,則SKIPIF1<0.顯然當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值,因?yàn)镾KIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:C.4.(多選)(2022·廣東深圳·高三期末)已知點(diǎn)O是邊長(zhǎng)為1的正方形ABCD的中心,則下列結(jié)論正確的為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】AD【詳解】通過(guò)向量加法的平行四邊形法則可知SKIPIF1<0,SKIPIF1<0,選項(xiàng)A正確;SKIPIF1<0,選項(xiàng)B錯(cuò)誤;SKIPIF1<0與SKIPIF1<0方向不同,選項(xiàng)C錯(cuò)誤;延長(zhǎng)SKIPIF1<0到SKIPIF1<0,使SKIPIF1<0,通過(guò)向量減法的三角形法則可知SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,選項(xiàng)D正確.故選:AD.5.(多選)(2021·廣東汕頭·高三期末)如圖,平行四邊形ABCD中,AB=2,AD=4,SKIPIF1<0,E為CD的中點(diǎn),AE與DB交于F,則(
)A.SKIPIF1<0在SKIPIF1<0方向上的投影為0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】AB【詳解】平行四邊形SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0方向上的投影為0,所以A正確;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0.所以B正確;SKIPIF1<0,所以C不正確;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以D不正確.故選:AB6.(2022·廣東·金山中學(xué)高三期末)已知向量SKIPIF1<0與SKIPIF1<0的夾角是SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0_______.【答案】SKIPIF1<0【詳解】試題分析:由題意SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0考點(diǎn):本題考查向量垂直的充要條件,向量的數(shù)量積的運(yùn)算點(diǎn)評(píng):解決本題的關(guān)鍵是掌握向量垂直的充要條件7.(2022·廣東汕尾·高三期末)已知非零向量SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的夾角為_(kāi)_____.【答案】SKIPIF1<0【詳解】非零向量SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0.故答案為:SKIPIF1<0.8.(2022·廣東廣州·一模)已知菱形ABCD的邊長(zhǎng)為2,SKIPIF1<0,點(diǎn)P在BC邊上(包括端點(diǎn)),則SKIPIF1<0的取值范圍是___________.【答案】SKIPIF1<0【詳解】如圖示,以C為原點(diǎn),SKIPIF1<0為x軸正方向,過(guò)C垂直向上方向?yàn)閥軸建立平面直角坐標(biāo)系.因?yàn)榱庑蜛BCD的邊長(zhǎng)為2,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.因?yàn)辄c(diǎn)P在BC邊上(包括端點(diǎn)),所以SKIPIF1<0,其中SKIPIF1<0.所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0【典型題型講解】考點(diǎn)二:平面向量的坐標(biāo)運(yùn)算【典例例題】例1.(2022·廣東深圳·二模)已知點(diǎn)SKIPIF1<0,向量SKIPIF1<0,則向量SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】設(shè)SKIPIF1<0,所以SKIPIF1<0,整理得:SKIPIF1<0,所以SKIPIF1<0.故選:D.例2.(2022·廣東韶關(guān)·一模)已知向量SKIPIF1<0,則下列說(shuō)法正確的是(
)A.若SKIPIF1<0,則向量SKIPIF1<0可以表示平面內(nèi)任一向量B.若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0D.若SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的夾角是銳角【答案】BC【詳解】當(dāng)SKIPIF1<0與SKIPIF1<0不共線,SKIPIF1<0可以表示平面內(nèi)任一向量,所以SKIPIF1<0,解得:SKIPIF1<0且SKIPIF1<0A錯(cuò)誤;若SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,得:SKIPIF1<0,B正確;若SKIPIF1<0,有SKIPIF1<0,解得:SKIPIF1<0,C正確;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0平行,夾角不是銳角,SKIPIF1<0錯(cuò)誤.故選:SKIPIF1<0.例3.在正方形ABCD中,M是BC的中點(diǎn).若SKIPIF1<0,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】B【詳解】在正方形ABCD中,以點(diǎn)A為原點(diǎn),直線AB,AD分別為x,y軸建立平面直角坐標(biāo)系,如圖,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因SKIPIF1<0,于是得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0的值為SKIPIF1<0.故選:B【方法技巧與總結(jié)】熟記平面向量的坐標(biāo)運(yùn)算公式,學(xué)會(huì)建立直角坐標(biāo)系.【變式訓(xùn)練】1.(2021·廣東佛山·一模)已知向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則實(shí)數(shù)k的值為_(kāi)_____.【答案】-4【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,又因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0故答案為:SKIPIF1<02.(2022·廣東湛江·一模)已知向量SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0________.【答案】SKIPIF1<0【詳解】由題意SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<03.(2022·廣東廣東·一模)已知向量SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,則SKIPIF1<0________.【答案】SKIPIF1<0【詳解】由SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.故答案為:SKIPIF1<04.(2022·廣東·普寧市華僑中學(xué)二模)已知向量SKIPIF1<0,SKIPIF1<0,那么SKIPIF1<0等于(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.0【答案】A【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:A.5.(2022·廣東茂名·二模)已知向量SKIPIF1<0(t,2t),SKIPIF1<0=(﹣t,1),若(SKIPIF1<0﹣SKIPIF1<0)⊥(SKIPIF1<0+SKIPIF1<0),則t=_____.【答案】SKIPIF1<0【詳解】因?yàn)椋⊿KIPIF1<0﹣SKIPIF1<0)⊥(SKIPIF1<0+SKIPIF1<0),所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.6.已知正方形SKIPIF1<0的邊長(zhǎng)為SKIPIF1<0是SKIPIF1<0的中點(diǎn),點(diǎn)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0___________;SKIPIF1<0___________.【答案】
SKIPIF1<0
SKIPIF1<0【解析】【詳解】解:以A為原點(diǎn),SKIPIF1<0為SKIPIF1<0軸正方向建立平面直角坐標(biāo)系,所以SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0;10.【鞏固練習(xí)】一、單選題1.下列說(shuō)法錯(cuò)誤的是(
)A.零向量與任一向量都平行 B.方向相反的兩個(gè)向量一定共線C.單位向量長(zhǎng)度都相等 D.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0均為非零向量,若SKIPIF1<0,則SKIPIF1<0【答案】D【詳解】規(guī)定:零向量與任一向量都平行,故A正確;方向相反的兩個(gè)向量一定共線,故B正確;單位向量長(zhǎng)度都為1,故C正確;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0且SKIPIF1<0成立,但SKIPIF1<0不一定成立,故D錯(cuò)誤;故選:D.2.已知下列結(jié)論:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0⑤若SKIPIF1<0,則對(duì)任一非零向量SKIPIF1<0有SKIPIF1<0;⑥若SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0中至少有一個(gè)為SKIPIF1<0;⑦若SKIPIF1<0與SKIPIF1<0是兩個(gè)單位向量,則SKIPIF1<0.則以上結(jié)論正確的是(
)A.①②③⑥⑦ B.③④⑦ C.②⑦ D.②③④⑤【答案】C【詳解】(1)SKIPIF1<0,故錯(cuò)誤;(2)SKIPIF1<0根據(jù)數(shù)乘的定義,正確;(3)SKIPIF1<0是表達(dá)式錯(cuò)誤,0是數(shù)量,SKIPIF1<0是向量,這樣的表達(dá)式?jīng)]有意義,故錯(cuò)誤;(4)SKIPIF1<0,故錯(cuò)誤;(5)當(dāng)向量SKIPIF1<0與SKIPIF1<0的夾角是SKIPIF1<0時(shí),SKIPIF1<0,故錯(cuò)誤;(6)同(5),錯(cuò)誤;(7)SKIPIF1<0,故正確;故選:C.3.在邊長(zhǎng)為1的正方形ABCD中,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0等于(
)A.0 B.1 C.2 D.2SKIPIF1<0【答案】C【詳解】SKIPIF1<0.故選:C.4.下面四個(gè)命題哪些是平面向量SKIPIF1<0,SKIPIF1<0共線的充要條件(
)A.存在一個(gè)實(shí)數(shù)SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0兩向量中至少有一個(gè)為零向量C.SKIPIF1<0,SKIPIF1<0方向相同或相反 D.存在不全為零的實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0【答案】D【詳解】當(dāng)SKIPIF1<0為零向量,SKIPIF1<0為非零向量時(shí),SKIPIF1<0,則AC選項(xiàng)錯(cuò)誤.當(dāng)SKIPIF1<0為非零向量且SKIPIF1<0同向時(shí),SKIPIF1<0,則B選項(xiàng)錯(cuò)誤.根據(jù)共線向量基本定理的推論可知,D選項(xiàng)正確.故選:D5.已知向量SKIPIF1<0,SKIPIF1<0不共線,且向量SKIPIF1<0與SKIPIF1<0平行,則實(shí)數(shù)SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】SKIPIF1<0與SKIPIF1<0平行,SKIPIF1<0,SKIPIF1<0向量不共線,∴存在實(shí)數(shù)k,使得SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,故選:B.6.SKIPIF1<0中,若SKIPIF1<0,點(diǎn)E滿足SKIPIF1<0,直線CE與直線AB相交于點(diǎn)D,則CD的長(zhǎng)(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】在△ABC中,由余弦定理得:SKIPIF1<0設(shè)SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,因?yàn)锳、B、D三點(diǎn)共線,所以SKIPIF1<0,解得:SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0SKIPIF1<0因?yàn)锳B=5,所以AD=3,BD=2在三角形ACD中,由余弦定理得:SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0.故選:A7.在SKIPIF1<0中,E,F(xiàn)分別為SKIPIF1<0的中點(diǎn),點(diǎn)D是線段SKIPIF1<0(不含端點(diǎn))內(nèi)的任意一點(diǎn),SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】因?yàn)辄c(diǎn)D是線段SKIPIF1<0(不含端點(diǎn))內(nèi)的任意一點(diǎn),所以可設(shè)SKIPIF1<0,因?yàn)镋,F(xiàn)分別為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以A,B,D錯(cuò)誤,C正確,故選:C.8.已知D,E為SKIPIF1<0所在平面內(nèi)的點(diǎn),且SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.-3 B.3 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】解:因?yàn)镾KIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.故選:A.二、多選題9.已知向量SKIPIF1<0不共線,且SKIPIF1<0,其中SKIPIF1<0,若SKIPIF1<0三點(diǎn)共線,則角SKIPIF1<0的值可以是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】CD【解析】【詳解】SKIPIF1<0三點(diǎn)共線,即SKIPIF1<0共線,所以存在實(shí)數(shù)SKIPIF1<0使得SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0不共線,所以SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0.故選:CD.10.如圖,直角三角形ABC中,D,E是邊AC上的兩個(gè)三等分點(diǎn),G是BE的中點(diǎn),直線AG分別與BD,BC交于點(diǎn)F,H設(shè)SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】ACD【詳解】以A為坐標(biāo)原點(diǎn),分別以SKIPIF1<0,SKIPIF1<0的方向?yàn)閤軸,y軸的正方向建立平面直角坐標(biāo)系,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.又F為SKIPIF1<0的重心,則SKIPIF1<0,直線AG的方程為SKIPIF1<0,直線BC的方程為SKIPIF1<0,聯(lián)立解得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:ACD.11.已知向量SKIPIF1<0,將向量SKIPIF1<0繞原點(diǎn)SKIPIF1<0逆時(shí)針旋轉(zhuǎn)90°得到向量SKIPIF1<0,將向量SKIPIF1<0繞原點(diǎn)SKIPIF1<0順時(shí)針旋轉(zhuǎn)135°得到向量SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BCD【詳解】解:由題意得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故A錯(cuò)誤;SKIPIF1<0,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年景德鎮(zhèn)貨運(yùn)上崗證考試題答案
- 七年級(jí) 下學(xué)期 地理 商務(wù)星球版《澳大利亞》優(yōu)教學(xué)案(第2課時(shí))
- 兒童友好的家庭餐飲菜單設(shè)計(jì)
- 創(chuàng)新思維的培育與產(chǎn)品設(shè)計(jì)實(shí)踐
- 從個(gè)人到社會(huì)看學(xué)生健康體能的價(jià)值挖掘與應(yīng)用
- 企業(yè)內(nèi)部知識(shí)產(chǎn)杈教育培訓(xùn)體系的構(gòu)建
- 從課堂到實(shí)踐學(xué)生自主學(xué)習(xí)能力培養(yǎng)全解析
- 企業(yè)內(nèi)部團(tuán)隊(duì)協(xié)作與客戶關(guān)系管理的關(guān)系
- 不同領(lǐng)域企業(yè)家的家庭火災(zāi)應(yīng)對(duì)指南
- 從功能到藝術(shù)-家居產(chǎn)品設(shè)計(jì)的發(fā)展方向
- 2024至2030年中國(guó)生物反應(yīng)器行業(yè)市場(chǎng)調(diào)查研究及投資潛力預(yù)測(cè)報(bào)告
- DL∕T 448-2016 電能計(jì)量裝置技術(shù)管理規(guī)程
- 幼兒園家長(zhǎng)助教日主題班會(huì)《保護(hù)眼睛》適用于幼兒園家長(zhǎng)助教模板
- 2024年六年級(jí)上冊(cè)《綜合實(shí)踐活動(dòng)》全冊(cè)教案
- 小學(xué)生預(yù)防早婚早育主題班會(huì)
- 上海市虹口區(qū)2023-2024學(xué)年八年級(jí)下學(xué)期期末考試語(yǔ)文試題
- 廢氣治理設(shè)施運(yùn)行管理規(guī)程
- W -S-T 433-2023 靜脈治療護(hù)理技術(shù)操作標(biāo)準(zhǔn)(正式版)
- JTS-131-2012水運(yùn)工程測(cè)量規(guī)范
- 【經(jīng)濟(jì)學(xué)基礎(chǔ)課程案例探析報(bào)告:“雙十一”的經(jīng)濟(jì)學(xué)探析5100字】
- 時(shí)尚流行文化解讀智慧樹(shù)知到期末考試答案章節(jié)答案2024年天津科技大學(xué)
評(píng)論
0/150
提交評(píng)論