版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省眉山市青神中學2023-2024學年數(shù)學高二上期末學業(yè)質量監(jiān)測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖給出的是一道典型的數(shù)學無字證明問題:各矩形塊中填寫的數(shù)字構成一個無窮數(shù)列,所有數(shù)字之和等于1.按照圖示規(guī)律,有同學提出了以下結論,其中正確的是()A.由大到小的第八個矩形塊中應填寫的數(shù)字為B.前七個矩形塊中所填寫的數(shù)字之和等于C.矩形塊中所填數(shù)字構成的是以1為首項,為公比的等比數(shù)列D.按照這個規(guī)律繼續(xù)下去,第n-1個矩形塊中所填數(shù)字是2.已知直線交圓于A,B兩點,若點滿足,則直線l被圓C截得線段的長是()A.3 B.2C. D.43.若橢圓的短軸為,一個焦點為,且為等邊三角形的橢圓的離心率是A. B.C. D.4.邊長為的正方形沿對角線折成直二面角,、分別為、的中點,是正方形的中心,則的大小為()A. B.C. D.5.,,,,設,則下列判斷中正確的是()A. B.C. D.6.設,是雙曲線()的左、右焦點,是坐標原點.過作的一條漸近線的垂線,垂足為.若,則的離心率為A. B.C. D.7.若則()A.?2 B.?1C.1 D.28.如圖,面積為的正方形中有一個不規(guī)則的圖形,可按下面方法估計的面積:在正方形中隨機投擲個點,若個點中有個點落入中,則的面積的估計值為,假設正方形的邊長為,的面積為,并向正方形中隨機投擲個點,用以上方法估計的面積時,的面積的估計值與實際值之差在區(qū)間內的概率為附表:A. B.C. D.9.若命題為“,”,則為()A., B.,C., D.,10.定義在區(qū)間上的函數(shù)滿足:對恒成立,其中為的導函數(shù),則A.B.C.D.11.已知命題p:,,則命題p的否定為()A, B.,C., D.,12.若:,:,則為q的()A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分又不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.直線與圓交于A、B兩點,當弦AB的長度最短時,則三角形ABC的面積為________14.如圖所示,高爾頓釘板是一個關于概率的模型,每一黑點表示釘在板上的一顆釘子,它們彼此的距離均相等,上一層的每一顆的水平位置恰好位于下一層的兩顆正中間.小球每次下落時,將隨機的向兩邊等概率的落下.當有大量的小球都落下時,最終在釘板下面不同位置收集到小球.現(xiàn)有5個小球從正上方落下,則恰有3個小球落到2號位置的概率是______15.某校組織了一場演講比賽,五位評委對某位參賽選手的評分分別為9,x,8,y,9.已知這組數(shù)據(jù)的平均數(shù)為8.6,方差為0.24,則______16.函數(shù),其導函數(shù)為函數(shù),則__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)在處的切線垂直于直線.(1)求(2)求的單調區(qū)間18.(12分)設函數(shù),且存在兩個極值點、,其中.(1)求實數(shù)的取值范圍;(2)若恒成立,求最小值.19.(12分)已知點,點B為直線上的動點,過B作直線的垂線,線段AB的中垂線與交于點P(1)求點P的軌跡C的方程;(2)若過點的直線l與曲線C交于M,N兩點,求面積的最小值.(O為坐標原點)20.(12分)已知直線l經(jīng)過直線,的交點M(1)若直線l與直線平行,求直線l的方程;(2)若直線l與x軸,y軸分別交于A,兩點,且M為線段AB的中點,求的面積(其中O為坐標原點)21.(12分)已知:,橢圓,雙曲線.(1)若的離心率為,求的離心率;(2)當時,過點的直線與的另一個交點為,與的另一個交點為,若恰好是的中點,求直線的方程.22.(10分)如圖,分別是橢圓C:的左,右焦點,點P在橢圓C上,軸,點A是橢圓與x軸正半軸的交點,點B是橢圓與y軸正半軸的交點,且,.(1)求橢圓C的方程;(2)已知M,N是橢圓C上的兩點,若點,,試探究點M,,N是否一定共線?說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)題意可得矩形塊中的數(shù)字從大到小形成等比數(shù)列,根據(jù)等比數(shù)列的通項公式可求.【詳解】設每個矩形塊中的數(shù)字從大到小形成數(shù)列,則可得是首項為,公比為的等比數(shù)列,,所以由大到小的第八個矩形塊中應填寫的數(shù)字為,故A錯誤;前七個矩形塊中所填寫的數(shù)字之和等于,故B正確;矩形塊中所填數(shù)字構成的是以為首項,為公比的等比數(shù)列,故C錯誤;按照這個規(guī)律繼續(xù)下去,第個矩形塊中所填數(shù)字是,故D錯誤.故選:B.2、B【解析】由題設知為圓的圓心且A、B在圓上,根據(jù)已知及向量數(shù)量積的定義求的大小,進而判斷△的形狀,即可得直線l被圓C截得線段的長.【詳解】∵點為圓的圓心且A、B在圓上,又,∴,∴,又,∴,故△為等邊三角形,∴直線l被圓C截得線段的長是2故選:B3、B【解析】因為為等邊三角形,所以.考點:橢圓的幾何性質.點評:橢圓圖形當中有一個特征三角形,它的三邊分別為a,b,c.因而可據(jù)此求出離心率.4、B【解析】建立空間直角坐標系,以向量法去求的大小即可解決.【詳解】由題意可得平面,,則兩兩垂直以O為原點,分別以OB、OA、OC所在直線為x、y、z軸建立空間直角坐標系則,,,,又,則故選:B5、D【解析】通過湊配構造的方式,構造出新式子,且可以化簡為整數(shù),然后利用放縮思想得到S的范圍.【詳解】解:,,,,,;,.故選:D6、B【解析】分析:由雙曲線性質得到,然后在和在中利用余弦定理可得詳解:由題可知在中,在中,故選B.點睛:本題主要考查雙曲線的相關知識,考查了雙曲線的離心率和余弦定理的應用,屬于中檔題7、B【解析】分子分母同除以,化弦為切,代入即得結果.【詳解】由題意,分子分母同除以,可得.故選:B.8、D【解析】每個點落入中的概率為,設落入中的點的數(shù)目為,題意所求概率為故選D9、B【解析】特稱命題的否定是全稱命題,把存在改為任意,把結論否定.【詳解】“,”的否命題為“,”,故選:B10、D【解析】分別構造函數(shù),,,,利用導數(shù)研究其單調性即可得出【詳解】令,,,,恒成立,,,,函數(shù)在上單調遞增,,令,,,,恒成立,,函數(shù)在上單調遞減,,.綜上可得:,故選:D【點睛】函數(shù)的性質是高考的重點內容,本題考查的是利用函數(shù)的單調性比較大小的問題,通過題目中給定的不等式,分別構造兩個不同的函數(shù)求導判出單調性從而比較函數(shù)值得大小關系.在討論函數(shù)的性質時,必須堅持定義域優(yōu)先的原則.對于函數(shù)實際應用問題,注意挖掘隱含在實際中的條件,避免忽略實際意義對定義域的影響11、A【解析】根據(jù)特稱命題的否定是全稱命題,結合已知條件,即可求得結果.【詳解】因為命題p:,,故命題p的否定為:,.故選:A.12、D【解析】根據(jù)充分條件和必要條件的定義即可得出答案.【詳解】解:因為:,:,所以,所以為q的既不充分又不必要條件.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由于直線過定點,所以當時,弦AB的長度最短,然后先求出的長,再利用勾股定理可求出的長,從而可求出三角形ABC的面積【詳解】因為直線恒過定點,圓的圓心,半徑為,所以當時,弦AB的長度最短,因為,所以,所以三角形ABC的面積為,故答案為:14、【解析】先研究一個小球從正上方落下的情況,從而可求出一個小球從正上方落下落到2號位置的概率,進而可求出5個小球從正上方落下,則恰有3個小球落到2號位置的概率【詳解】如圖所示,先研究一個小球從正上方落下的情況,11,12,13,14指小球第2層到第3層的線路圖,以此類推,小球所有的路線情況如下:01-11-21-31,01-11-21-32,01-11-22-33,01-11-22-34,01-12-23-33,01-12-23-34,01-12-24-35,01-12-24-36,02-14-26-38,02-14-26-37,02-14-25-35,02-14-25-36,02-13-24-36,02-13-24-35,02-13-23-34,02-13-23-33,共16種情況,其中落入2號位置的有4種,所以每個球落入2號位置的概率為,所以5個小球從正上方落下,則恰有3個小球落到2號位置的概率為,故答案為:15、1【解析】根據(jù)平均數(shù)和方差的計算公式,求得,則問題得解.【詳解】由題可知:整理得:;,整理得:,聯(lián)立方程組得,解得或,對應或,故.故答案為:1.16、【解析】根據(jù)解析式,可求得解析式,代入數(shù)據(jù),即可得答案.詳解】∵,∴,∴.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)在內單調遞減,在內單調遞增【解析】(1)由題意求導可得,代入可得(1),從而求,進而求切線方程;(2)的定義域為,,從而求單調性【詳解】解:(1)因為在處切線垂直于,所以(2)因為的定義域為當時,當時,在內單調遞減,在內單調遞增【點睛】本題考查導數(shù)的幾何意義,利用導數(shù)研究函數(shù)的單調性,屬于基礎題.18、(1)(2)【解析】(1)存在兩個極值點,等價于其導函數(shù)有兩個相異零點;(2)適當構造函數(shù),并注意與關系,轉化為函數(shù)求最大值問題,即可求得的范圍.【小問1詳解】(),,函數(shù)存在兩個極值點、,且,關于的方程,即在內有兩個不等實根,令,,即,,實數(shù)的取值范圍是.【小問2詳解】函數(shù)在上有兩個極值點,由(1)可得,由,得,則,,,,,,,,令,則且,令,,,再設,則,,,即在上是減函數(shù),(1),,在上是增函數(shù),(1),,恒成立,恒成立,,的最小值為.【點睛】關鍵點點睛:本題考查導函數(shù),函數(shù)的單調性,最值,不等式證明,考查學生分析解決問題的能力,解題的關鍵是將恒成立,轉化為恒成立,化簡,令,則化為,然后構造函數(shù),利用導數(shù)求出其最大值即可,屬于較難題19、(1)(2)【解析】(1)由已知可得,根據(jù)拋物線的定義可知點的軌跡是以為焦點,為準線的拋物線,即可得到軌跡方程;(2)設直線方程為,,,,,聯(lián)立直線與拋物線方程,消元、列出韋達定理,則,代入韋達定理,即可求出面積最小值;【小問1詳解】解:由已知可得,,即點到定點的距離等于到直線的距離,故點的軌跡是以為焦點,為準線的拋物線,所以點的軌跡方程為【小問2詳解】解:當直線的傾斜角為時,與曲線只有一個交點,不符合題意;當直線的傾斜角不為時,設直線方程為,,,,,由,可得,,所以,,,,所以當且僅當時取等號,即面積的最小值為;20、(1)(2)4【解析】(1)求出兩直線的交點M的坐標,設直線l的方程為代入點M的坐標可得答案;(2)設,,因為為線段AB的中點,可得,由的面積為可得答案.【小問1詳解】由,得,所以點M坐標為,因為,則設直線l的方程為,又l過點,代入得,故直線l方程為.【小問2詳解】設,,因為為線段AB的中點,則,所以,故,,則的面積為.21、(1)(2)或【解析】(1)有橢圓的離心率可以得到,的關系,在雙曲線中方程是非標準的方程,注意套公式時容易出錯.(2)聯(lián)立方程分別解得P,Q兩點的橫坐標,利用中點坐標公式即可解得斜率值.【小問1詳解】橢圓的離心率為,,在雙曲線中因為,.【小問2詳解】當時,橢圓,雙曲線.當過點的直線斜率不存在時,點P,Q恰好重合,坐標為,所以不符合條件;當斜率存在時,設直線方程為,,聯(lián)立方程得,利用韋達定理,所以;同理聯(lián)立方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025房產抵押合同書范文
- 2023-2028年中國工業(yè)廢水行業(yè)市場深度研究及投資戰(zhàn)略規(guī)劃建議報告
- 2025關于外包加工的合同范本
- 音頻校準帶項目可行性研究報告
- 2024年電視媒體行業(yè)市場深度調查評估及投資方向研究報告
- 貴州省某公司綠色有機蔬菜項目可行性研究報告
- 2024年新聞圖書出版行業(yè)市場全景監(jiān)測及投資前景展望報告
- 2025年覆膜鋁卷項目可行性研究報告
- 2025年中國制藥機械市場全景評估及投資規(guī)劃建議報告
- 2024-2030年中國銀行借記卡行業(yè)市場發(fā)展監(jiān)測及投資潛力預測報告
- 體育教師的個人工作總結
- 評語大全之學生英語學科評語
- 《職業(yè)輔導》自考學習筆記
- 產后出血預防與處理指南(2023)解讀
- 《姓氏歌》第一課時(課件)語文一年級下冊
- 2024風力發(fā)電機組 整機一階調諧質量阻尼器
- GB/T 43686-2024電化學儲能電站后評價導則
- 小學英語語法復習課件1
- (高清版)TDT 1037-2013 土地整治重大項目可行性研究報告編制規(guī)程
- 中國旅游集團2024年校園招聘筆試參考題庫附帶答案詳解
- 導管室進修匯報課件
評論
0/150
提交評論