中考數(shù)學(xué)壓軸題專題二次函數(shù)的經(jīng)典綜合題及詳細答案_第1頁
中考數(shù)學(xué)壓軸題專題二次函數(shù)的經(jīng)典綜合題及詳細答案_第2頁
中考數(shù)學(xué)壓軸題專題二次函數(shù)的經(jīng)典綜合題及詳細答案_第3頁
中考數(shù)學(xué)壓軸題專題二次函數(shù)的經(jīng)典綜合題及詳細答案_第4頁
中考數(shù)學(xué)壓軸題專題二次函數(shù)的經(jīng)典綜合題及詳細答案_第5頁
已閱讀5頁,還剩29頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

中考數(shù)學(xué)壓軸題專題二次函數(shù)的經(jīng)典綜合題及詳細答案一、二次函數(shù)1.在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,拋物線y=ax2+bx+c與x軸交于點A(﹣1,0),B(3,0),與y軸交于點C(0,3),頂點為G.(1)求拋物線和直線AC的解析式;(2)如圖,設(shè)E(m,0)為x軸上一動點,若△CGE和△CGO的面積滿足S△CGE=S△CGO,求點E的坐標(biāo);(3)如圖,設(shè)點P從點A出發(fā),以每秒1個單位長度的速度沿x軸向右運動,運動時間為ts,點M為射線AC上一動點,過點M作MN∥x軸交拋物線對稱軸右側(cè)部分于點N.試探究點P在運動過程中,是否存在以P,M,N為頂點的三角形為等腰直角三角形?若存在,求出t的值;若不存在,請說明理由.【答案】(1)拋物線解析式為:y=﹣x2+2x+3;直線AC解析式為:y=3x+3;(2)點E坐標(biāo)為(1,0)或(﹣7,0);(3)存在以P,M,N為頂點的三角形為等腰直角三角形,t的值為或或.【解析】【分析】(1)用待定系數(shù)法即能求出拋物線和直線AC解析式.(2)△CGE與△CGO雖然有公共底邊CG,但高不好求,故把△CGE構(gòu)造在比較好求的三角形內(nèi)計算.延長GC交x軸于點F,則△FGE與△FCE的差即為△CGE.(3)設(shè)M的坐標(biāo)(e,3e+3),分別以M、N、P為直角頂點作分類討論,利用等腰直角三角形的特殊線段長度關(guān)系,用e表示相關(guān)線段并列方程求解,再根據(jù)e與AP的關(guān)系求t的值.【詳解】(1)∵拋物線y=ax2+bx+c過點A(-1,0),B(3,0),C(0,3),,解得:,∴拋物線解析式為:y=-x2+2x+3,設(shè)直線AC解析式為y=kx+3,∴-k+3=0,得:k=3,∴直線AC解析式為:y=3x+3.(2)延長GC交x軸于點F,過G作GH⊥x軸于點H,∵y=-x2+2x+3=-(x-1)2+4,∴G(1,4),GH=4,∴S△CGO=OC?xG=×3×1=,∴S△CGE=S△CGO=×=2,①若點E在x軸正半軸上,設(shè)直線CG:y=k1x+3,∴k1+3=4

得:k1=1,∴直線CG解析式:y=x+3,∴F(-3,0),∵E(m,0),∴EF=m-(-3)=m+3,∴S△CGE=S△FGE-S△FCE=EF?GH-EF?OC=EF?(GH-OC)=(m+3)?(4-3)=,∴=2,解得:m=1,∴E的坐標(biāo)為(1,0).②若點E在x軸負半軸上,則點E到直線CG的距離與點(1,0)到直線CG距離相等,即點E到F的距離等于點(1,0)到F的距離,∴EF=-3-m=1-(-3)=4,解得:m=-7

即E(-7,0),綜上所述,點E坐標(biāo)為(1,0)或(-7,0).(3)存在以P,M,N為頂點的三角形為等腰直角三角形,設(shè)M(e,3e+3),則yN=yM=3e+3,①若∠MPN=90°,PM=PN,如圖2,過點M作MQ⊥x軸于點Q,過點N作NR⊥x軸于點R,∵MN∥x軸,∴MQ=NR=3e+3,∴Rt△MQP≌Rt△NRP(HL),∴PQ=PR,∠MPQ=∠NPR=45°,∴MQ=PQ=PR=NR=3e+3,∴xN=xM+3e+3+3e+3=7e+6,即N(7e+6,3e+3),∵N在拋物線上,∴-(7e+6)2+2(7e+6)+3=3e+3,解得:e1=-1(舍去),e2=?,∵AP=t,OP=t-1,OP+OQ=PQ,∴t-1-e=3e+3,∴t=4e+4=,②若∠PMN=90°,PM=MN,如圖3,∴MN=PM=3e+3,∴xN=xM+3e+3=4e+3,即N(4e+3,3e+3),∴-(4e+3)2+2(4e+3)+3=3e+3,解得:e1=-1(舍去),e2=?,∴t=AP=e-(-1)=?+1=,③若∠PNM=90°,PN=MN,如圖4,∴MN=PN=3e+3,N(4e+3,3e+3),解得:e=?,∴t=AP=OA+OP=1+4e+3=,綜上所述,存在以P,M,N為頂點的三角形為等腰直角三角形,t的值為或或.【點睛】本題考查了待定系數(shù)法求函數(shù)解析式,坐標(biāo)系中三角形面積計算,等腰直角三角形的性質(zhì),解一元二次方程,考查了分類討論和方程思想.第(3)題根據(jù)等腰直角三角形的性質(zhì)找到相關(guān)線段長的關(guān)系是解題關(guān)鍵,靈活運用因式分解法解一元二次方程能簡便運算.2.對于二次函數(shù)y=ax2+(b+1)x+(b﹣1),若存在實數(shù)x0,使得當(dāng)x=x0,函數(shù)y=x0,則稱x0為該函數(shù)的“不變值”.(1)當(dāng)a=1,b=﹣2時,求該函數(shù)的“不變值”;(2)對任意實數(shù)b,函數(shù)y恒有兩個相異的“不變值”,求a的取值范圍;(3)在(2)的條件下,若該圖象上A、B兩點的橫坐標(biāo)是該函數(shù)的“不變值”,且A、B兩點關(guān)于直線y=kx-2a+3對稱,求b的最小值.【答案】(1)-1,3;(2)0<a<1;(3)-【解析】【分析】(1)先確定二次函數(shù)解析式為y=x2-x-3,根據(jù)xo是函數(shù)y的一個不動點的定義,把(xo,xo)代入得x02-x0-3=xo,然后解此一元二次方程即可;(2)根據(jù)xo是函數(shù)y的一個不動點的定義得到axo2+(b+1)xo+(b-1)=xo,整理得ax02+bxo+(b-1)=0,則根據(jù)判別式的意義得到△=b2-4a(b-1)>0,即b2-4ab+4a>0,把b2-4ab+4a看作b的二次函數(shù),由于對任意實數(shù)b,b2-4ab+4a>0成立,則(4a)2-4.4a<0,然后解此不等式即可.(3)(利用兩點關(guān)于直線對稱的兩個結(jié)論,一是中點在已知直線上,二是兩點連線和已知直線垂直.找到a,b之間的關(guān)系式,整理后在利用基本不等式求解可得.【詳解】解:(1)當(dāng)a=1,b=-2時,二次函數(shù)解析式為y=x2-x-3,把(xo,xo)代入得x02-x0-3=xo,解得xo=-1或xo=3,所以函數(shù)y的不動點為-1和3;(2)因為y=xo,所以axo2+(b+1)xo+(b-1)=xo,即ax02+bxo+(b-1)=0,因為函數(shù)y恒有兩個相異的不動點,所以此方程有兩個不相等的實數(shù)解,所以△=b2-4a(b-1)>0,即b2-4ab+4a>0,而對任意實數(shù)b,b2-4ab+4a>0成立,所以(4a)2-4.4a<0,解得0<a<1.(3)設(shè)A(x1,x1),B(x2,x2),則x1+x2A,B的中點的坐標(biāo)為(),即M()A、B兩點關(guān)于直線y=kx-2a+3對稱,又∵A,B在直線y=x上,∴k=-1,A,B的中點M在直線y=kx-2a+3上.∴=-2a+3得:b=2a2-3a所以當(dāng)且僅當(dāng)a=時,b有最小值-【點睛】本題是在新定義下對函數(shù)知識的綜合考查,是一道好題.關(guān)于兩點關(guān)于直線對稱的問題,有兩個結(jié)論同時存在,一是中點在已知直線上,二是兩點連線和已知直線垂直.3.如圖,拋物線與x軸相交于兩點,(點A在B點左側(cè))與y軸交于點C.(Ⅰ)求兩點坐標(biāo).(Ⅱ)連結(jié),若點P在第一象限的拋物線上,P的橫坐標(biāo)為t,四邊形的面積為S.試用含t的式子表示S,并求t為何值時,S最大.(Ⅲ)在(Ⅱ)的基礎(chǔ)上,若點分別為拋物線及其對稱軸上的點,點G的橫坐標(biāo)為m,點H的縱坐標(biāo)為n,且使得以四點構(gòu)成的四邊形為平行四邊形,求滿足條件的的值.【答案】(Ⅰ);(Ⅱ),當(dāng)時,;(Ⅲ)滿足條件的點的值為:,或,或【解析】【分析】(Ⅰ)令y=0,建立方程求解即可得出結(jié)論;

(Ⅱ)設(shè)出點P的坐標(biāo),利用S=S△AOC+S梯形OCPQ+S△PQB,即可得出結(jié)論;

(Ⅲ)分三種情況,利用平行四邊形的性質(zhì)對角線互相平分和中點坐標(biāo)公式建立方程組即可得出結(jié)論.【詳解】解:(Ⅰ)拋物線,令,則,解得:或,∴(Ⅱ)由拋物線,令,∴,∴,如圖1,點P作軸于Q,∵P的橫坐標(biāo)為t,∴設(shè),∴∴,∴當(dāng)時,;(Ⅲ)由(Ⅱ)知,,∴,∵拋物線的對稱軸為,∴設(shè)以四點構(gòu)成的四邊形為平行四邊形,,①當(dāng)和為對角線時,∴,∴,②當(dāng)和是對角線時,∴,∴,③和為對角線時,∴,∴,即:滿足條件的點的值為:,或,或【點睛】此題是二次函數(shù)綜合題,主要考查了坐標(biāo)軸上點的特點,三角形的面積公式,梯形的面積公式,平行四邊形的性質(zhì),中點坐標(biāo)公式,用方程的思想解決問題是解本題的關(guān)鍵.4.如圖,直線y=-x-3與x軸,y軸分別交于點A,C,經(jīng)過點A,C的拋物線y=ax2+bx﹣3與x軸的另一個交點為點B(2,0),點D是拋物線上一點,過點D作DE⊥x軸于點E,連接AD,DC.設(shè)點D的橫坐標(biāo)為m.(1)求拋物線的解析式;(2)當(dāng)點D在第三象限,設(shè)△DAC的面積為S,求S與m的函數(shù)關(guān)系式,并求出S的最大值及此時點D的坐標(biāo);(3)連接BC,若∠EAD=∠OBC,請直接寫出此時點D的坐標(biāo).【答案】(1)y=x2+x﹣3;(2)S△ADC=﹣(m+3)2+;△ADC的面積最大值為;此時D(﹣3,﹣);(3)滿足條件的點D坐標(biāo)為(﹣4,﹣3)或(8,21).【解析】【分析】(1)求出A坐標(biāo),再用待定系數(shù)法求解析式;(2)設(shè)DE與AC的交點為點F.設(shè)點D的坐標(biāo)為:(m,m2+m﹣3),則點F的坐標(biāo)為:(m,﹣m﹣3),根據(jù)S△ADC=S△ADF+S△DFC求出解析式,再求最值;(3)①當(dāng)點D與點C關(guān)于對稱軸對稱時,D(﹣4,﹣3),根據(jù)對稱性此時∠EAD=∠ABC.②作點D(﹣4,﹣3)關(guān)于x軸的對稱點D′(﹣4,3),直線AD′的解析式為y=x+9,解方程組求出函數(shù)圖像交點坐標(biāo).【詳解】解:(1)在y=﹣x﹣3中,當(dāng)y=0時,x=﹣6,即點A的坐標(biāo)為:(﹣6,0),將A(﹣6,0),B(2,0)代入y=ax2+bx﹣3得:,解得:,∴拋物線的解析式為:y=x2+x﹣3;(2)設(shè)點D的坐標(biāo)為:(m,m2+m﹣3),則點F的坐標(biāo)為:(m,﹣m﹣3),設(shè)DE與AC的交點為點F.∴DF=﹣m﹣3﹣(m2+m﹣3)=﹣m2﹣m,∴S△ADC=S△ADF+S△DFC=DF?AE+?DF?OE=DF?OA=×(﹣m2﹣m)×6=﹣m2﹣m=﹣(m+3)2+,∵a=﹣<0,∴拋物線開口向下,∴當(dāng)m=﹣3時,S△ADC存在最大值,又∵當(dāng)m=﹣3時,m2+m﹣3=﹣,∴存在點D(﹣3,﹣),使得△ADC的面積最大,最大值為;(3)①當(dāng)點D與點C關(guān)于對稱軸對稱時,D(﹣4,﹣3),根據(jù)對稱性此時∠EAD=∠ABC.②作點D(﹣4,﹣3)關(guān)于x軸的對稱點D′(﹣4,3),直線AD′的解析式為y=x+9,由,解得或,此時直線AD′與拋物線交于D(8,21),滿足條件,綜上所述,滿足條件的點D坐標(biāo)為(﹣4,﹣3)或(8,21)【點睛】本題屬于二次函數(shù)綜合題,考查了待定系數(shù)法,一次函數(shù)的應(yīng)用,二次函數(shù)的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會構(gòu)建二次函數(shù)解決最值問題,學(xué)會構(gòu)建一次函數(shù)解決實際問題,屬于中考壓軸題..5.已知關(guān)于x的一元二次方程x2﹣(2k+1)x+k2=0有兩個實數(shù)根.(1)求k的取值范圍;(2)設(shè)x1,x2是方程兩根,且,求k的值.【答案】(1)k≥﹣;(2)k=.【解析】【分析】(1)根據(jù)方程有兩個實數(shù)根可以得到△≥0,從而求得k的取值范圍;(2)利用根與系數(shù)的關(guān)系將兩根之和和兩根之積代入代數(shù)式求k的值即可.【詳解】解:(1)△=(2k+1)2﹣4k2=4k2+4k+1﹣4k2=4k+1∵△≥0∴4k+1≥0∴k≥﹣;(2)∵x1,x2是方程兩根,∴x1+x2=2k+1x1x2=k2,又∵,∴,即,解得:,又∵k≥﹣,即:k=.【點睛】本題考查了根與系數(shù)的關(guān)系以及一元二次方程的解,根的判別式等知識,牢記“兩根之和等于,兩根之積等于”是解題的關(guān)鍵.6.已知拋物線上有兩點M(m+1,a)、N(m,b).(1)當(dāng)a=-1,m=1時,求拋物線的解析式;(2)用含a、m的代數(shù)式表示b和c;(3)當(dāng)a<0時,拋物線滿足,,,求a的取值范圍.【答案】(1);(2)b=-am,c=-am;(3)【解析】【分析】(1)根據(jù)題意得到M(2,-1)、N(1,b),代入拋物線解析式即可求出b、c;(2)將點M(m+1,a)、N(m,b)代入拋物線,可得,化簡即可得出;(3)把,代入可得,把,代入可得,然后根據(jù)m的取值范圍可得a的取值范圍.【詳解】解:(1)∵a=-1,m=1,∴M(2,-1)、N(1,b)由題意,得,解,得(2)∵點M(m+1,a)、N(m,b)在拋物線上①-②得,,∴把代入②,得(3)把,代入得,把,代入得,,,當(dāng)時,隨m的增大而增大即【點睛】本題考查待定系數(shù)法求函數(shù)解析式以及二次函數(shù)的圖像和性質(zhì),由函數(shù)圖像上點的坐標(biāo)特征求出,是解題關(guān)鍵.7.如圖,已知拋物線經(jīng)過A(-3,0),B(1,0),C(0,3)三點,其頂點為D,對稱軸是直線l,l與x軸交于點H.(1)求該拋物線的解析式;(2)若點P是該拋物線對稱軸l上的一個動點,求△PBC周長的最小值;(3)如圖(2),若E是線段AD上的一個動點(E與A、D不重合),過E點作平行于y軸的直線交拋物線于點F,交x軸于點G,設(shè)點E的橫坐標(biāo)為m,△ADF的面積為S.①求S與m的函數(shù)關(guān)系式;②S是否存在最大值?若存在,求出最大值及此時點E的坐標(biāo);若不存在,請說明理由.【答案】(1).(2).(3)①.②當(dāng)m=﹣2時,S最大,最大值為1,此時點E的坐標(biāo)為(﹣2,2).【解析】【分析】(1)根據(jù)函數(shù)圖象經(jīng)過的三點,用待定系數(shù)法確定二次函數(shù)的解析式即可.(2)根據(jù)BC是定值,得到當(dāng)PB+PC最小時,△PBC的周長最小,根據(jù)點的坐標(biāo)求得相應(yīng)線段的長即可.(3)設(shè)點E的橫坐標(biāo)為m,表示出E(m,2m+6),F(xiàn)(m,),最后表示出EF的長,從而表示出S于m的函數(shù)關(guān)系,然后求二次函數(shù)的最值即可.【詳解】解:(1)∵拋物線經(jīng)過A(-3,0),B(1,0),∴可設(shè)拋物線交點式為.又∵拋物線經(jīng)過C(0,3),∴.∴拋物線的解析式為:,即.(2)∵△PBC的周長為:PB+PC+BC,且BC是定值.∴當(dāng)PB+PC最小時,△PBC的周長最小.∵點A、點B關(guān)于對稱軸I對稱,∴連接AC交l于點P,即點P為所求的點.∵AP=BP,∴△PBC的周長最小是:PB+PC+BC=AC+BC.∵A(-3,0),B(1,0),C(0,3),∴AC=3,BC=.∴△PBC的周長最小是:.(3)①∵拋物線頂點D的坐標(biāo)為(﹣1,4),A(﹣3,0),∴直線AD的解析式為y=2x+6∵點E的橫坐標(biāo)為m,∴E(m,2m+6),F(xiàn)(m,)∴.∴.∴S與m的函數(shù)關(guān)系式為.②,∴當(dāng)m=﹣2時,S最大,最大值為1,此時點E的坐標(biāo)為(﹣2,2).8.在平面直角坐標(biāo)系xOy中,已知拋物線的頂點坐標(biāo)為(2,0),且經(jīng)過點(4,1),如圖,直線y=x與拋物線交于A、B兩點,直線l為y=﹣1.(1)求拋物線的解析式;(2)在l上是否存在一點P,使PA+PB取得最小值?若存在,求出點P的坐標(biāo);若不存在,請說明理由.(3)知F(x0,y0)為平面內(nèi)一定點,M(m,n)為拋物線上一動點,且點M到直線l的距離與點M到點F的距離總是相等,求定點F的坐標(biāo).【答案】(1)拋物線的解析式為y=x2﹣x+1.(2)點P的坐標(biāo)為(,﹣1).(3)定點F的坐標(biāo)為(2,1).【解析】分析:(1)由拋物線的頂點坐標(biāo)為(2,0),可設(shè)拋物線的解析式為y=a(x-2)2,由拋物線過點(4,1),利用待定系數(shù)法即可求出拋物線的解析式;(2)聯(lián)立直線AB與拋物線解析式成方程組,通過解方程組可求出點A、B的坐標(biāo),作點B關(guān)于直線l的對稱點B′,連接AB′交直線l于點P,此時PA+PB取得最小值,根據(jù)點B的坐標(biāo)可得出點B′的坐標(biāo),根據(jù)點A、B′的坐標(biāo)利用待定系數(shù)法可求出直線AB′的解析式,再利用一次函數(shù)圖象上點的坐標(biāo)特征即可求出點P的坐標(biāo);(3)由點M到直線l的距離與點M到點F的距離總是相等結(jié)合二次函數(shù)圖象上點的坐標(biāo)特征,即可得出(1--y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出關(guān)于x0、y0的方程組,解之即可求出頂點F的坐標(biāo).詳解:(1)∵拋物線的頂點坐標(biāo)為(2,0),設(shè)拋物線的解析式為y=a(x-2)2.∵該拋物線經(jīng)過點(4,1),∴1=4a,解得:a=,∴拋物線的解析式為y=(x-2)2=x2-x+1.(2)聯(lián)立直線AB與拋物線解析式成方程組,得:,解得:,,∴點A的坐標(biāo)為(1,),點B的坐標(biāo)為(4,1).作點B關(guān)于直線l的對稱點B′,連接AB′交直線l于點P,此時PA+PB取得最小值(如圖1所示).∵點B(4,1),直線l為y=-1,∴點B′的坐標(biāo)為(4,-3).設(shè)直線AB′的解析式為y=kx+b(k≠0),將A(1,)、B′(4,-3)代入y=kx+b,得:,解得:,∴直線AB′的解析式為y=-x+,當(dāng)y=-1時,有-x+=-1,解得:x=,∴點P的坐標(biāo)為(,-1).(3)∵點M到直線l的距離與點M到點F的距離總是相等,∴(m-x0)2+(n-y0)2=(n+1)2,∴m2-2x0m+x02-2y0n+y02=2n+1.∵M(m,n)為拋物線上一動點,∴n=m2-m+1,∴m2-2x0m+x02-2y0(m2-m+1)+y02=2(m2-m+1)+1,整理得:(1--y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0.∵m為任意值,∴,∴,∴定點F的坐標(biāo)為(2,1).點睛:本題考查了待定系數(shù)法求二次(一次)函數(shù)解析式、二次(一次)函數(shù)圖象上點的坐標(biāo)特征、軸對稱中的最短路徑問題以及解方程組,解題的關(guān)鍵是:(1)根據(jù)點的坐標(biāo),利用待定系數(shù)法求出二次函數(shù)解析式;(2)利用兩點之間線段最短找出點P的位置;(3)根據(jù)點M到直線l的距離與點M到點F的距離總是相等結(jié)合二次函數(shù)圖象上點的坐標(biāo)特征,找出關(guān)于x0、y0的方程組.9.已知:如圖,拋物線y=ax2+bx+3與坐標(biāo)軸分別交于點A,B(﹣3,0),C(1,0),點P是線段AB上方拋物線上的一個動點.(1)求拋物線解析式;(2)當(dāng)點P運動到什么位置時,△PAB的面積最大?(3)過點P作x軸的垂線,交線段AB于點D,再過點P作PE∥x軸交拋物線于點E,連接DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求點P的坐標(biāo);若不存在,說明理由.【答案】(1)y=﹣x2﹣2x+3(2)(﹣,)(3)存在,P(﹣2,3)或P(,)【解析】【分析】(1)用待定系數(shù)法求解;(2)過點P作PH⊥x軸于點H,交AB于點F,直線AB解析式為y=x+3,設(shè)P(t,﹣t2﹣2t+3)(﹣3<t<0),則F(t,t+3),則PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t,根據(jù)S△PAB=S△PAF+S△PBF寫出解析式,再求函數(shù)最大值;(3)設(shè)P(t,﹣t2﹣2t+3)(﹣3<t<0),則D(t,t+3),PD=﹣t2﹣3t,由拋物線y=﹣x2﹣2x+3=﹣(x+1)2+4,由對稱軸為直線x=﹣1,PE∥x軸交拋物線于點E,得yE=y(tǒng)P,即點E、P關(guān)于對稱軸對稱,所以=﹣1,得xE=﹣2﹣xP=﹣2﹣t,故PE=|xE﹣xP|=|﹣2﹣2t|,由△PDE為等腰直角三角形,∠DPE=90°,得PD=PE,再分情況討論:①當(dāng)﹣3<t≤﹣1時,PE=﹣2﹣2t;②當(dāng)﹣1<t<0時,PE=2+2t【詳解】解:(1)∵拋物線y=ax2+bx+3過點B(﹣3,0),C(1,0)∴解得:∴拋物線解析式為y=﹣x2﹣2x+3(2)過點P作PH⊥x軸于點H,交AB于點F∵x=0時,y=﹣x2﹣2x+3=3∴A(0,3)∴直線AB解析式為y=x+3∵點P在線段AB上方拋物線上∴設(shè)P(t,﹣t2﹣2t+3)(﹣3<t<0)∴F(t,t+3)∴PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∴S△PAB=S△PAF+S△PBF=PF?OH+PF?BH=PF?OB=(﹣t2﹣3t)=﹣(t+)2+∴點P運動到坐標(biāo)為(﹣,),△PAB面積最大(3)存在點P使△PDE為等腰直角三角形設(shè)P(t,﹣t2﹣2t+3)(﹣3<t<0),則D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵拋物線y=﹣x2﹣2x+3=﹣(x+1)2+4∴對稱軸為直線x=﹣1∵PE∥x軸交拋物線于點E∴yE=y(tǒng)P,即點E、P關(guān)于對稱軸對稱∴=﹣1∴xE=﹣2﹣xP=﹣2﹣t∴PE=|xE﹣xP|=|﹣2﹣2t|∵△PDE為等腰直角三角形,∠DPE=90°∴PD=PE①當(dāng)﹣3<t≤﹣1時,PE=﹣2﹣2t∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣2∴P(﹣2,3)②當(dāng)﹣1<t<0時,PE=2+2t∴﹣t2﹣3t=2+2t解得:t1=,t2=(舍去)∴P(,)綜上所述,點P坐標(biāo)為(﹣2,3)或(,)時使△PDE為等腰直角三角形.【點睛】考核知識點:二次函數(shù)的綜合.數(shù)形結(jié)合分析問題,運用軸對稱性質(zhì)和等腰三角形性質(zhì)分析問題是關(guān)鍵.10.已知,m,n是一元二次方程x2+4x+3=0的兩個實數(shù)根,且|m|<|n|,拋物線y=x2+bx+c的圖象經(jīng)過點A(m,0),B(0,n),如圖所示.(1)求這個拋物線的解析式;(2)設(shè)(1)中的拋物線與x軸的另一個交點為拋物線的頂點為D,求出點C,D的坐標(biāo),并判斷△BCD的形狀;(3)點P是直線BC上的一個動點(點P不與點B和點C重合),過點P作x軸的垂線,交拋物線于點M,點Q在直線BC上,距離點P為個單位長度,設(shè)點P的橫坐標(biāo)為t,△PMQ的面積為S,求出S與t之間的函數(shù)關(guān)系式.【答案】(1);(2)C(3,0),D(1,﹣4),△BCD是直角三角形;(3)【解析】試題分析:(1)先解一元二次方程,然后用待定系數(shù)法求出拋物線解析式;(2)先解方程求出拋物線與x軸的交點,再判斷出△BOC和△BED都是等腰直角三角形,從而得到結(jié)論;(3)先求出QF=1,再分兩種情況,當(dāng)點P在點M上方和下方,分別計算即可.試題解析:解(1)∵,∴,,∵m,n是一元二次方程的兩個實數(shù)根,且|m|<|n|,∴m=﹣1,n=﹣3,∵拋物線的圖象經(jīng)過點A(m,0),B(0,n),∴,∴,∴拋物線解析式為;(2)令y=0,則,∴,,∴C(3,0),∵=,∴頂點坐標(biāo)D(1,﹣4),過點D作DE⊥y軸,∵OB=OC=3,∴BE=DE=1,∴△BOC和△BED都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD是直角三角形;(3)如圖,∵B(0,﹣3),C(3,0),∴直線BC解析式為y=x﹣3,∵點P的橫坐標(biāo)為t,PM⊥x軸,∴點M的橫坐標(biāo)為t,∵點P在直線BC上,點M在拋物線上,∴P(t,t﹣3),M(t,),過點Q作QF⊥PM,∴△PQF是等腰直角三角形,∵PQ=,∴QF=1.①當(dāng)點P在點M上方時,即0<t<3時,PM=t﹣3﹣()=,∴S=PM×QF==,②如圖3,當(dāng)點P在點M下方時,即t<0或t>3時,PM=﹣(t﹣3)=,∴S=PM×QF=()=.綜上所述,S=.考點:二次函數(shù)綜合題;分類討論.11.如圖1,拋物線C1:y=ax2﹣2ax+c(a<0)與x軸交于A、B兩點,與y軸交于點C.已知點A的坐標(biāo)為(﹣1,0),點O為坐標(biāo)原點,OC=3OA,拋物線C1的頂點為G.(1)求出拋物線C1的解析式,并寫出點G的坐標(biāo);(2)如圖2,將拋物線C1向下平移k(k>0)個單位,得到拋物線C2,設(shè)C2與x軸的交點為A′、B′,頂點為G′,當(dāng)△A′B′G′是等邊三角形時,求k的值:(3)在(2)的條件下,如圖3,設(shè)點M為x軸正半軸上一動點,過點M作x軸的垂線分別交拋物線C1、C2于P、Q兩點,試探究在直線y=﹣1上是否存在點N,使得以P、Q、N為頂點的三角形與△AOQ全等,若存在,直接寫出點M,N的坐標(biāo):若不存在,請說明理由.【答案】(1)拋物線C1的解析式為y=﹣x2+2x+3,點G的坐標(biāo)為(1,4);(2)k=1;(3)M1(,0)、N1(,﹣1);M2(,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).【解析】【分析】(1)由點A的坐標(biāo)及OC=3OA得點C坐標(biāo),將A、C坐標(biāo)代入解析式求解可得;(2)設(shè)拋物線C2的解析式為y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,′作G′D⊥x軸于點D,設(shè)BD′=m,由等邊三角形性質(zhì)知點B′的坐標(biāo)為(m+1,0),點G′的坐標(biāo)為(1,m),代入所設(shè)解析式求解可得;(3)設(shè)M(x,0),則P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),根據(jù)PQ=OA=1且∠AOQ、∠PQN均為鈍角知△AOQ≌△PQN,延長PQ交直線y=﹣1于點H,證△OQM≌△QNH,根據(jù)對應(yīng)邊相等建立關(guān)于x的方程,解之求得x的值從而進一步求解即可.【詳解】(1)∵點A的坐標(biāo)為(﹣1,0),∴OA=1,∴OC=3OA,∴點C的坐標(biāo)為(0,3),將A、C坐標(biāo)代入y=ax2﹣2ax+c,得:,解得:,∴拋物線C1的解析式為y=﹣x2+2x+3=﹣(x﹣1)2+4,所以點G的坐標(biāo)為(1,4);(2)設(shè)拋物線C2的解析式為y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,過點G′作G′D⊥x軸于點D,設(shè)BD′=m,∵△A′B′G′為等邊三角形,∴G′D=B′D=m,則點B′的坐標(biāo)為(m+1,0),點G′的坐標(biāo)為(1,m),將點B′、G′的坐標(biāo)代入y=﹣(x﹣1)2+4﹣k,得:,解得:(舍),,∴k=1;(3)設(shè)M(x,0),則P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),∴PQ=OA=1,∵∠AOQ、∠PQN均為鈍角,∴△AOQ≌△PQN,如圖2,延長PQ交直線y=﹣1于點H,則∠QHN=∠OMQ=90°,又∵△AOQ≌△PQN,∴OQ=QN,∠AOQ=∠PQN,∴∠MOQ=∠HQN,∴△OQM≌△QNH(AAS),∴OM=QH,即x=﹣x2+2x+2+1,解得:x=(負值舍去),當(dāng)x=時,HN=QM=﹣x2+2x+2=,點M(,0),∴點N坐標(biāo)為(+,﹣1),即(,﹣1);或(﹣,﹣1),即(1,﹣1);如圖3,同理可得△OQM≌△PNH,∴OM=PH,即x=﹣(﹣x2+2x+2)﹣1,解得:x=﹣1(舍)或x=4,當(dāng)x=4時,點M的坐標(biāo)為(4,0),HN=QM=﹣(﹣x2+2x+2)=6,∴點N的坐標(biāo)為(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1);綜上點M1(,0)、N1(,﹣1);M2(,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).【點睛】本題考查的是二次函數(shù)的綜合題,涉及到的知識有待定系數(shù)法、等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì)等,熟練掌握待定系數(shù)法求函數(shù)解析式、等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì)、運用分類討論思想是解題的關(guān)鍵.12.如圖,(圖1,圖2),四邊形ABCD是邊長為4的正方形,點E在線段BC上,∠AEF=90°,且EF交正方形外角平分線CP于點F,交BC的延長線于點N,FN⊥BC.(1)若點E是BC的中點(如圖1),AE與EF相等嗎?(2)點E在BC間運動時(如圖2),設(shè)BE=x,△ECF的面積為y.①求y與x的函數(shù)關(guān)系式;②當(dāng)x取何值時,y有最大值,并求出這個最大值.【答案】(1)AE=EF;(2)①y=-x2+2x(0<x<4),②當(dāng)x=2,y最大值=2.【解析】【分析】(1)在AB上取一點G,使AG=EC,連接GE,利用ASA,易證得:△AGE≌△ECF,則可證得:AE=EF;(2)同(1)可證明AE=EF,利用AAS證明△ABE≌△ENF,根據(jù)全等三角形對應(yīng)邊相等可得FN=BE,再表示出EC,然后利用三角形的面積公式即可列式表示出△ECF的面積為y,然后整理再根據(jù)二次函數(shù)求解最值問題.【詳解】(1)如圖,在AB上取AG=EC,∵四邊形ABCD是正方形,∴AB=BC,有∵AG=EC,∴BG=BE,又∵∠B=90°,∴∠AGE=135°,又∵∠BCD=90°,CP平分∠DCN,∴∠ECF=135°,∵∠BAE+∠AEB=90°,∠AEB+∠FEC=90°,∴∠BAE=∠FEC,在△AGE和△ECF中,,∴△AGE≌△ECF,∴AE=EF;(2)①∵由(1)證明可知當(dāng)E不是中點時同理可證AE=EF,∵∠BAE=∠NEF,∠B=∠ENF=90°,∴△ABE≌△ENF,∴FN=BE=x,∴S△ECF=(BC-BE)·FN,即y=x(4-x),∴y=-x2+2x(0<x<4),②,當(dāng)x=2,y最大值=2.【點睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),二次函數(shù)的最值問題,綜合性較強,正確添加輔助線、熟練掌握相關(guān)知識是解題的關(guān)鍵.13.在平面直角坐標(biāo)系中,拋物線過點,,與y軸交于點C,連接AC,BC,將沿BC所在的直線翻折,得到,連接OD.(1)用含a的代數(shù)式表示點C的坐標(biāo).(2)如圖1,若點D落在拋物線的對稱軸上,且在x軸上方,求拋物線的解析式.(3)設(shè)的面積為S1,的面積為S2,若,求a的值.【答案】(1);(2)拋物線的表達式為:;(3)或【解析】【分析】(1)根據(jù)待定系數(shù)法,得到拋物線的表達式為:,即可求解;(2)根據(jù)相似三角形的判定證明,再根據(jù)相似三角形的性質(zhì)得到,即可求解;(3)連接OD交BC于點H,過點H、D分別作x軸的垂線交于點N、M,由三角形的面積公式得到,,,而,即可求解.【詳解】(1)拋物線的表達式為:,即,則點;(2)過點B作y軸的平行線BQ,過點D作x軸的平行線交y軸于點P、交BQ于點Q,∵,,∴,設(shè):,點,,∴,∴,其中:,,,,,,將以上數(shù)值代入比例式并解得:,∵,故,故拋物線的表達式為:;(3)如圖2,當(dāng)點C在x軸上方時,連接OD交BC于點H,則,過點H、D分別作x軸的垂線交于點N、M,設(shè):,,,而,則,,∴,則,則,,則,則,則,解得:(舍去負值),,解得:(不合題意值已舍去),故:.當(dāng)點C在x軸下方時,同理可得:;故:或【點睛】本題考查的是二次函數(shù)綜合運用、一次函數(shù)、三角形相似、圖形的面積計算,其中(3)用幾何方法得出:,是本題解題的關(guān)鍵.14.如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點,與y軸的正半軸交于點C,頂點為D,已知A(﹣1,0).(1)求點B,C的坐標(biāo);(2)判斷△CDB的形狀并說明理由;(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.【答案】(Ⅰ)B(3,0);C(0,3);(Ⅱ)為直角三角形;(Ⅲ).【解析】【分析】(1)首先用待定系數(shù)法求出拋物線的解析式,然后進一步確定點B,C的坐標(biāo).(2)分別求出△CDB三邊的長度,利用勾股定理的逆定理判定△CDB為直角三角形.(3)△COB沿x軸向右平移過程中,分兩個階段:①當(dāng)0<t≤時,如答圖2所示,此時重疊部分為一個四邊形;②當(dāng)<t<3時,如答圖3所示,此時重疊部分為一個三角形.【詳解】解:(Ⅰ)∵點在拋物線上,∴,得∴拋物線解析式為:,令,得,∴;令,得或,∴.(Ⅱ)為直角三角形.理由如下:由拋物線解析式,得頂點的坐標(biāo)為.如答圖1所示,過點作軸于點M,則,,.過點作于點,則,.在中,由勾股定理得:;在中,由勾股定理得:;在中,由勾股定理得:.∵,∴為直角三角形.(Ⅲ)設(shè)直線的解析式為,∵,∴,解得,∴,直線是直線向右平移個單位得到,∴直線的解析式為:;設(shè)直線的解析式為,∵,∴,解得:,∴.連續(xù)并延長,射線交交于,則.在向右平移的過程中:(1)當(dāng)時,如答圖2所示:設(shè)與交于點,可得,.設(shè)與的交點為,則:.解得,∴..(2)當(dāng)時,如答圖

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論