版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省長沙同升湖實驗學校2023年高二上數(shù)學期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在二項式的展開式中,前三項的系數(shù)成等差數(shù)列,把展開式中所有的項重新排成一列,則有理項互不相鄰的概率()A. B.C. D.2.橢圓的焦點坐標為()A.和 B.和C.和 D.和3.設(shè)點P是雙曲線,與圓在第一象限的交點,、分別是雙曲線的左、右焦點,且,則此雙曲線的離心率為()A. B.C. D.34.已知F是拋物線x2=y(tǒng)的焦點,A、B是該拋物線上的兩點,|AF|+|BF|=3,則線段AB的中點到x軸的距離為()A. B.C.1 D.5.已知函數(shù),則()A.3 B.C. D.6.如圖,棱長為1的正方體中,為線段上的動點,則下列結(jié)論錯誤的是A.B.平面平面C.的最大值為D.的最小值為7.在棱長為2的正方體中,為線段的中點,則點到直線的距離為()A. B.C. D.8.已知直線與圓相交于,兩點,則的取值范圍為()A. B.C. D.9.已知直線方程為,則其傾斜角為()A.30° B.60°C.120° D.150°10.已知拋物線,,點在拋物線上,記點到直線的距離為,則的最小值是()A.5 B.6C.7 D.811.動點P,Q分別在拋物線和圓上,則的最小值為()A. B.C. D.12.已知等差數(shù)列,,,則數(shù)列的前項和為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,若,則______14.定義點到曲線的距離為該點與曲線上所有點之間距離的最小值,則點到曲線距離為___________.15.已知拋物線的焦點為F,若拋物線上一點P到x軸的距離為2,則|PF|的值為___________.16.已知點F是拋物線的焦點,點,點P為拋物線上的任意一點,則的最小值為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列是公比為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.18.(12分)在平面直角坐標系xOy中,圓O以原點為圓心,且經(jīng)過點.(1)求圓O的方程;(2)若直線與圓O交于兩點A,B,求弦長.19.(12分)已知命題:對任意實數(shù)都有恒成立;命題:關(guān)于的方程有實數(shù)根(1)若命題為假命題,求實數(shù)的取值范圍;(2)如果“”為真命題,且“”為假命題,求實數(shù)的取值范圍20.(12分)已知P,Q的坐標分別為,,直線PM,QM相交于點M,且它們的斜率之積是.設(shè)點M的軌跡為曲線C.(1)求曲線的方程;(2)設(shè)為坐標原點,圓的半徑為1,直線:與圓相切,且與曲線交于不同的兩點A,B.當,且滿足時,求面積的取值范圍.21.(12分)如圖,在正方體中,分別是,的中點.求證:(1)平面;(2)平面平面.22.(10分)已知復(fù)數(shù),其中i是虛數(shù)單位,m為實數(shù)(1)當復(fù)數(shù)z為純虛數(shù)時,求m的值;(2)當復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于第三象限時,求m的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】先根據(jù)前三項的系數(shù)成等差數(shù)列求,再根據(jù)古典概型概率公式求結(jié)果【詳解】因為前三項的系數(shù)為,,,當時,為有理項,從而概率為.故選:A.2、D【解析】本題是焦點在x軸的橢圓,求出c,即可求得焦點坐標.【詳解】,可得焦點坐標為和.故選:D3、C【解析】根據(jù)幾何關(guān)系得到是直角三角形,然后由雙曲線的定義及勾股定理可求解.【詳解】點到原點的距離為,又因為在中,,所以是直角三角形,即.由雙曲線定義知,又因為,所以.在中,由勾股定理得,化簡得,所以.故選:C.4、B【解析】根據(jù)拋物線的方程求出準線方程,利用拋物線的定義拋物線上的點到焦點的距離等于到準線的距離,列出方程求出,的中點縱坐標,求出線段的中點到軸的距離【詳解】解:拋物線的焦點準線方程,設(shè),,,解得,線段的中點縱坐標為,線段的中點到軸的距離為,故選:B【點睛】本題考查解決拋物線上的點到焦點的距離問題,利用拋物線的定義將到焦點的距離轉(zhuǎn)化為到準線的距離,屬于基礎(chǔ)題5、B【解析】由導(dǎo)數(shù)運算法則求出導(dǎo)發(fā)函數(shù),然后可得導(dǎo)數(shù)值【詳解】由題意,所以故選:B6、C【解析】∵,,∴面,面,∴,A正確;∵平面即為平面,平面即為平面,且平面,∴平面平面,∴平面平面,∴B正確;當時,為鈍角,∴C錯;將面與面沿展成平面圖形,線段即為的最小值,在中,,利用余弦定理解三角形得,即,∴D正確,故選C考點:立體幾何中的動態(tài)問題【思路點睛】立體幾何問題的求解策略是通過降維,轉(zhuǎn)化為平面幾何問題,具體方法表現(xiàn)為:
求空間角、距離,歸到三角形中求解;2.對于球的內(nèi)接外切問題,作適當?shù)慕孛妫纫芊从吵鑫恢藐P(guān)系,又要反映出數(shù)量關(guān)系;求曲面上兩點之間的最短距離,通過化曲為直轉(zhuǎn)化為同一平面上兩點間的距離7、D【解析】根據(jù)正方體的性質(zhì),在直角△中應(yīng)用等面積法求到直線的距離.【詳解】由正方體的性質(zhì):面,又面,故,直角△中,若到上的高為,∴,而,,,∴.故選:D.8、C【解析】求得直線恒過的定點,找出弦長取得最值的狀態(tài),利用弦長公式求解即可.【詳解】因直線方程為:,整理得,故該直線恒過定點,又,故點在圓內(nèi),又圓的圓心為則,此時直線過圓心;當直線與直線垂直時,取得最小值,此時.故的取值范圍為.故選:.9、D【解析】由直線方程可得斜率,根據(jù)斜率與傾斜角的關(guān)系即可求傾斜角大小.【詳解】由題設(shè),直線斜率,若直線的傾斜角為,則,∵,∴.故選:D10、D【解析】先求出拋物線的焦點和準線,利用拋物線的定義將轉(zhuǎn)化為的距離,即可求解.【詳解】由已知得拋物線的焦點為,準線方程為,設(shè)點到準線的距離為,則,則由拋物線的定義可知∵,當點、、三點共線時等號成立,∴,故選:.11、B【解析】設(shè),根據(jù)兩點間距離公式,先求得P到圓心的最小距離,根據(jù)圓的幾何性質(zhì),即可得答案.【詳解】設(shè),圓化簡為,即圓心為(0,4),半徑為,所以點P到圓心的距離,令,則,令,,為開口向上,對稱軸為的拋物線,所以的最小值為,所以,所以的最小值為.故選:B12、A【解析】求出通項,利用裂項相消法求數(shù)列的前n項和.【詳解】因為等差數(shù)列,,,所以,所以,所以數(shù)列的前項和為故B,C,D錯誤.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)空間向量垂直得到等量關(guān)系,求出答案.【詳解】由題意得:,解得:故答案為:14、2【解析】設(shè)出曲線上任意一點,利用兩點間距離公式表達出,利用基本不等式求出最小值.【詳解】當時,顯然不成立,故,此時,設(shè)曲線任意一點,則,其中,當且僅當,即時等號成立,此時即為最小值.故答案為:215、3【解析】先求出拋物線的焦點坐標和準線方程,再利用拋物線的定義可求得答案【詳解】拋物線的焦點為,準線為,因為拋物線上一點P到x軸的距離為2,所以由拋物線的定義可得,故答案為:316、3【解析】根據(jù)拋物線的定義可求最小值.【詳解】如圖,過作拋物線準線的垂線,垂足為,連接,則,當且僅當共線時等號成立,故的最小值為3,故答案為:3.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)題意,通過解方程求出公比,即可求解;(2)根據(jù)題意,求出,結(jié)合組合法求和,即可求解.小問1詳解】根據(jù)題意,設(shè)公比為,且,∵,,∴,解得或(舍),∴.【小問2詳解】根據(jù)題意,得,故,因此.18、(1)(2)【解析】(1)根據(jù)兩點距離公式即可求半徑,進而得圓方程;(2)根據(jù)直線與圓的弦長公式即可求解【小問1詳解】由,所以圓O的方程為;【小問2詳解】由點O到直線的距離為所以弦長19、(1);(2)【解析】(1)先分別求出命題為真命題和命題為真命題時參數(shù)的范圍,則可得當命題為假命題,實數(shù)的取值范圍(2)由“”為真命題,且“”為假命題,則命題,一真一假,再分真,且假,和真,且假兩種情況分別求出參數(shù)的范圍,再綜合得到答案.【詳解】命題為真命題:對任意實數(shù)都有恒成立或;命題為真命題:關(guān)于的方程有實數(shù)根;(1)命題為假命題,則實數(shù)取值范圍(2)由“”為真命題,且“”為假命題,則命題,一真一假.如果真,且假,有,且,則如果真,且假,有或,且,則綜上,實數(shù)的取值范圍為20、(1)(2)【解析】【小問1詳解】設(shè)點,則,整理得曲線的方程:【小問2詳解】因為圓的半徑為1,直線:與圓相切,則,,設(shè),將代入得,,,,,所以,,因為,令,在上單調(diào)減,,所以21、證明見解析【解析】(1)連接,根據(jù)線面平行的判定定理,即可證明結(jié)論成立;(2)連接,,先由線面平行的判定定理,得到平面,再由(1)的結(jié)果,結(jié)合面面平行的判定定理,即可證明結(jié)論成立.【詳解】(1)如圖,連接.∵四邊形是正方形,是的中點,∴是的中點.又∵是的中點,∴.∵平面,平面,∴平面.(2)連接,,∵四邊形是正方形,是的中點,∴是的中點.又∵是中點,∴.∵平面平面,∴平面.由(1)知平面,且,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 期末測試卷(二)2022-2023學年七年級道德與法治下學期期中期末考點大串講(部編版)(原卷版)
- 四川建筑職業(yè)技術(shù)學院《設(shè)計思維訓(xùn)練》2023-2024學年第一學期期末試卷
- 百日誓師教師演講稿
- 開封大學《園林與建筑設(shè)計初步》2023-2024學年第一學期期末試卷
- 土地權(quán)利轉(zhuǎn)讓協(xié)議書(2篇)
- 城市街道照明設(shè)施安裝合同(2篇)
- 商業(yè)空間租賃合同范本
- 服裝設(shè)計師聘用合同年薪制
- 娛樂場所使用權(quán)租賃合同
- 2024版校園零星維修簡單的合同范本
- FZ/T 81024-2022機織披風
- GB/T 24123-2009電容器用金屬化薄膜
- 艾滋病梅毒乙肝實驗室檢測
- 國鐵橋梁人行道支架制作及安裝施工要點課件
- 領(lǐng)導(dǎo)科學全套精講課件
- 粵教版地理七年級下冊全冊課件
- 小學科學蘇教版六年級上冊全冊精華知識點(2022新版)
- 萎縮性胃炎共識解讀
- 《中外資產(chǎn)評估準則》課件第8章 澳大利亞與新西蘭資產(chǎn)評估準則
- 2022版義務(wù)教育語文課程標準(2022版含新增和修訂部分)
- 精品金屬線管布線施工工程施工方法
評論
0/150
提交評論