鋼板剪力墻設(shè)計方法的探討_第1頁
鋼板剪力墻設(shè)計方法的探討_第2頁
鋼板剪力墻設(shè)計方法的探討_第3頁
鋼板剪力墻設(shè)計方法的探討_第4頁
鋼板剪力墻設(shè)計方法的探討_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

鋼板剪力墻設(shè)計方法的探討

0鋼板剪力墻在實際工作中的應(yīng)用特點(diǎn)20世紀(jì)70年代,自20世紀(jì)70年代以來,夾持鋼板是一種新型的抗側(cè)力組件,已被證明是一種優(yōu)秀的抗疲勞動能材料。最為經(jīng)典的成功實例是神戶市政廳大樓,由于二層以上采用了加勁鋼板剪力墻,在1995年阪神大地震后未出現(xiàn)任何明顯的結(jié)構(gòu)破壞,僅26層加勁鋼板發(fā)生了局部屈曲,然而緊鄰其前的八層鋼筋混凝土建筑,上部三層整體坍塌。依據(jù)不同的墻板構(gòu)造特點(diǎn),鋼板剪力墻(以下簡稱為鋼板墻)可大致分為以下八類:①非加勁鋼板墻;②加勁鋼板墻;③兩側(cè)開縫鋼板墻;④開洞鋼板墻;⑤壓型鋼板墻;⑥豎縫鋼板墻;⑦組合鋼板墻;⑧防屈曲鋼板墻。其中,非加勁鋼板墻經(jīng)濟(jì)性好,顯示出良好的市場應(yīng)用前景。防屈曲鋼板墻抗震性能優(yōu)越,在鋼板的一側(cè)或兩側(cè)覆以預(yù)制混凝土蓋板,克服了其它鋼板墻的很多缺點(diǎn)。因此,本文將研究對象鎖定在非加勁鋼板墻及防屈曲鋼板墻,總結(jié)二者在性能和設(shè)計理論方面的主要研究成果,同時指出當(dāng)前設(shè)計方法的不足之處,提出今后研究工作中要解決的關(guān)鍵理論問題。1非加強(qiáng)鋼板墻1.1薄鋼板屈曲分析如圖1,對于非加勁鋼墻板,其力學(xué)行為由墻板正則化寬厚比λn控制。一般地,按剪切屈服與屈曲的先后關(guān)系,將墻板分為三大類:①厚板:剪切屈曲不先于屈服;②中厚板:屈曲發(fā)生在彈塑性階段;③薄板:彈性范圍即發(fā)生屈曲。若取Q235級材質(zhì)的方形板,則厚板高厚比λ≤100,中厚板為100<λ≤150,薄板為λ>150。20世紀(jì)30年代,Wagner就發(fā)現(xiàn)薄壁鋁板具有較大的剪切屈曲后強(qiáng)度,并建立了所謂的“拉力帶”理論。盡管如此,早期鋼板墻的設(shè)計還是將剪切屈曲荷載τcr作為承載力極限,這導(dǎo)致不得不采用厚板或在薄板上增焊加勁肋,不但耗鋼量與焊接工作量大,而且焊接引起的薄板變形與熱影響區(qū)使材質(zhì)變脆,在反復(fù)荷載作用下可能提前斷裂。利用薄鋼板屈曲后強(qiáng)度的概念最先由加拿大學(xué)者Thorburn等于1983年提出。研究表明,與邊緣構(gòu)件可靠連接的薄鋼板墻,屈曲并不意味喪失承載能力,相反,由于“拉力帶”的作用類似于一系列斜撐,屈曲后強(qiáng)度可達(dá)數(shù)十倍屈曲荷載。所以,將薄鋼板嵌入框架,利用薄鋼板屈曲后性能來抵抗水平荷載(風(fēng)或地震作用)成為近二十年來的研究熱點(diǎn)。1.1.1力學(xué)能力(1)用鋼量與斜支撐的選擇為說明鋼板墻的承載力與剛度,可與相同用鋼量的支撐作比較。在本節(jié)推導(dǎo)中,均不涉及墻板與框架的相互作用,在邊框架無限剛且梁柱銷接的條件下,分析墻板自身的能力(圖2)。根據(jù)側(cè)移剛度等效的原則,鋼板墻可等效為圖3所示斜撐,且等效斜撐的截面積按式(1)確定。AEB=tpLsin22α2sin?sin2?(1)AEB=tpLsin22α2sin?sin2?(1)式中:?為等效支撐與框架柱的夾角;L為墻板寬度;tp為墻板厚度;α為墻板拉力帶傾角,一般α=38°~45°,sin22α≈1.0,式(1)可推演為式(2)的形式。AEB=tp(L2+h2s)√L2+h2s4Lhs(2)AEB=tp(L2+h2s)L2+h2s√4Lhs(2)式中,hs為墻板高度。若將墻板的用鋼量折合為斜支撐,則斜支撐的截面積Ab可由式(3)確定。Ab=tpLhs√L2+h2s(3)Ab=tpLhsL2+h2s√(3)比較等效斜撐AEB與Ab,可發(fā)現(xiàn)AEB≥Ab。這就是說,同樣的用鋼量,鋼板墻所提供的抗側(cè)剛度總是大于或等于斜支撐的抗側(cè)能力,當(dāng)且僅當(dāng)L=hs,即墻板為方形時二者的側(cè)移剛度相等。從受剪承載力看,相同用鋼量條件下,非加勁鋼板墻也總是高于斜支撐。鋼板墻與斜支撐的受剪承載力分別由式(4)、(5)計算。Vwu=0.5Ltpfy(4)Vbu=tpfyL2hsL2+h2s(5)Vwu=0.5Ltpfy(4)Vbu=tpfyL2hsL2+h2s(5)式中,fy為鋼板屈服強(qiáng)度。同樣,比較二者的受剪承載力,可發(fā)現(xiàn)式(6)總是成立的。VwuVbu=L2+h2s2Lhs≥1(6)VwuVbu=L2+h2s2Lhs≥1(6)因此,無論抗側(cè)剛度還是受剪承載力,相同的用鋼量,鋼板墻的能力都高于斜支撐。另外,利用屈曲后強(qiáng)度的鋼板墻不必?fù)?dān)心墻板屈曲,可自由地調(diào)整結(jié)構(gòu)的側(cè)移剛度,而普通鋼支撐的失穩(wěn)將造成承載力和剛度的驟降,特別是在支撐長細(xì)比較大的情況下。因而,設(shè)計時要保證屈曲不先于屈服,這導(dǎo)致支撐截面積加大,進(jìn)而增加結(jié)構(gòu)剛度及地震反應(yīng),與調(diào)整剛度形成一對矛盾。此外,對于非加勁鋼板墻,在選擇抗側(cè)力方式時,設(shè)計者擔(dān)心鋼板的抗側(cè)剛度不足,難以滿足規(guī)范層間位移要求。然而,高層建筑設(shè)計實踐顯示,這一擔(dān)心是沒有必要的。(2)拉壓交替階段墻板力學(xué)性能鋼板墻滯回曲線的捏縮機(jī)理后來得到解釋:方向正交的拉力帶在拉壓交替過程中,需要經(jīng)歷一個鼓曲后被拉平的過程,此階段的墻板基本不能承擔(dān)外力,在荷載-位移曲線上形成捏縮。(3)框架柱延性系數(shù)國內(nèi)外大量試驗表明,當(dāng)鋼板墻與鋼框架構(gòu)成雙重抗側(cè)力體系時,試驗一般是以邊框柱的失穩(wěn)或與基礎(chǔ)焊縫撕開而告終,鋼板墻延性系數(shù)可達(dá)8~13。(4)鋼板墻的力學(xué)性能試驗發(fā)現(xiàn),由于魚尾板的不連續(xù)性,墻角應(yīng)力集中,易發(fā)生撕裂,但未發(fā)現(xiàn)對鋼板墻整體性能產(chǎn)生影響,而且裂縫也沒有繼續(xù)擴(kuò)展??梢婁摪鍓Ρ旧砭褪浅o定體系,內(nèi)力重分布的能力很強(qiáng)。與普通支撐相比,鋼板墻可理解成將支撐材料平展,把靜定的支撐構(gòu)件轉(zhuǎn)化為高冗余度的超靜定結(jié)構(gòu)。1.1.2電梯井周圍地層、將鋼板墻安裝位置位置(1)非加勁鋼板墻(薄板)幾乎加載就屈曲,反復(fù)荷載作用下,始終伴隨“啪啪”的鼓曲聲響和面外變形,舒適度不佳。(2)工程中剪力墻也常常布置在電梯井周圍作為內(nèi)筒墻,電梯的運(yùn)行易引起鋼板墻的振動,舒適度不好。另外,電梯井要求有較高的防火措施。1.1.3板墻臨界摩擦鋼板墻與框架連接時,若采用螺栓連接,螺栓的滑移將框架結(jié)構(gòu)的屈服點(diǎn)提前,栓接得到的彈性剛度及屈服荷載要低于焊接試件。所以,栓接方式必須采用摩擦型高強(qiáng)螺栓,且嚴(yán)格控制設(shè)計荷載作用下的滑移,在鋼板墻充分屈服前臨界摩擦力不應(yīng)被克服。這對設(shè)計及施工提出了相當(dāng)高的要求,獲得的好處是在大震作用下螺栓摩擦滑移能消耗部分地震輸入能量,但相對栓接的高昂代價,得不償失。從鋼板墻延性角度,一般認(rèn)為栓接延性高于焊接。但從迄今為止的試驗資料看,焊接鋼板墻自身的延性就足夠好,已經(jīng)高于一般延性鋼框架。因此,考慮到與鋼框架延性的匹配度,通過栓接進(jìn)一步提高墻板的延性是不必要的。而且,大量的螺栓連接給安裝帶來困難,現(xiàn)場必須不斷敲打螺栓,將螺栓強(qiáng)行擠入螺栓孔,安裝效率很低。更關(guān)鍵的是使用性差,承載過程中,螺栓滑移產(chǎn)生的聲響不斷,類似鞭炮聲,其聲響高于墻板屈曲時發(fā)生的聲響,舒適度極差。1.2非加劇鋼板墻的承受力和剛性公式1.2.1梁柱鉸接受剪承載力不涉及鋼板墻與框架的相互作用,文獻(xiàn)推導(dǎo)出非加勁鋼板墻的承載力公式,與試驗值吻合良好,且該公式被FEA450采納。梁柱鉸接時,鋼板墻的受剪承載力Vu由式(7)計算。Vu=12Ltpfysin2α(7)Vu=12Ltpfysin2α(7)與式(4)比較可發(fā)現(xiàn),式(7)只是多出一個系數(shù)sin2α,所以式(4)可認(rèn)為是鋼板墻承載力的上限。但一般兩者的計算結(jié)果差別很小,因為當(dāng)框架柱剛度滿足一定要求后,sin2α=0.96~1.0。1.2.2鋼板墻的應(yīng)力應(yīng)變圖4是鋼板墻的剪力-位移關(guān)系曲線,A點(diǎn)對應(yīng)的是彈性屈曲點(diǎn),B點(diǎn)對應(yīng)鋼板的屈服點(diǎn)。實際分析中,為簡化計算,直接以O(shè)B作為鋼墻板屈服前的荷載-位移模型,相應(yīng)的彈性側(cè)移剛度見式(8)。Κi=VuUΤot=Ltp(τcr+0.5fysin2α)(τcrG+2fyEsin2α)hs(8)式中:UTot為鋼板墻的總位移;τcr為鋼板墻剪切屈曲荷載;G為鋼材剪切模量;E為鋼材彈性模量。由于鋼板墻(薄板)屈曲荷載較低,且初始面外變形將掩蓋墻板的分岔屈曲,因而可忽略鋼板墻的彈性屈曲OA段,并考慮sin22α≈1.0,將式(8)進(jìn)一步簡化為(9)。Κi=Etp4?Lhs(9)1.3墻板計算模型將鋼板墻嵌入框架,要精確模擬鋼板墻的屈曲后性能,必須采用復(fù)雜的有限元程序,不僅耗機(jī)時,且極易遇到不收斂的困擾。所以可用簡易的基于桿單元的等代模型來替代墻板,已經(jīng)提出的計算模型有:①拉桿條模型SM(stripmodel);②修正拉桿模型MSM(modifiedstripmodel);③襯板條模型SGM(stripgussetmodel);④多角度拉桿模型MASM(muti-anglestripmodel);⑤框架-鋼板墻相互作用模型MPFI(modifiedplateframeinteractionmodel);⑥統(tǒng)一等代模型USM(unifiedstripmodel)。1.3.1動態(tài)布置模型的適用性如圖5,文獻(xiàn)首先提出了非加勁鋼板墻的等代模型(SM),三個關(guān)鍵參數(shù)為:①桿元截面積:從物理角度,桿元(只拉不壓)的截面積Ast為其從屬墻板寬度d與墻板厚度tp的乘積;②拉桿根數(shù):根據(jù)剛度收斂的原則,得出10根拉桿已足夠表征整塊墻板的拉力帶特征;③拉桿傾角:考慮到墻板的變形模態(tài)是層剪力作用下勢能最低時出現(xiàn),拉桿傾角α可由最小勢能原理導(dǎo)出:tanα=4√1+Ltp/(2Ac)1+hstp/Ab(10)式中:Ac為邊框柱截面積;Ab為邊框梁截面積。需要說明,式(10)推導(dǎo)過程中,總勢能略去了邊緣構(gòu)件的彎曲變形能,只考慮軸向剛度的影響。為檢驗SM的有效性,Kulak等進(jìn)行了兩層單跨足尺模型試驗。試驗觀察到,當(dāng)試件達(dá)到極限狀態(tài)時,拉力帶夾角α發(fā)生顯著改變,且邊框柱有彎曲變形,顯示出邊框柱的彎曲剛度與α有關(guān)聯(lián)。所以再次依據(jù)極小勢能原理,考慮邊框柱彎曲勢能,將式(10)修正為式(11)。tanα=4√1+tpL/(2Ac)1+tphs[1/Ab+h3s/(360ΙcL)](11)進(jìn)一步考慮邊框梁的彎曲勢能,可得到更精細(xì)的傾角:tanα=4√1+tpL[1/(2Ac)+L3/(120Ιbhs)]1+tphs[1/(2Ab)+h3s/(320ΙcL)](12)式中:Ib為邊框梁的截面慣性矩;Ic為邊框柱的截面慣性矩。然而對一般樓層梁,由于兩側(cè)拉力場豎向分量能基本抵消,梁的彎曲微不足道,因而認(rèn)為式(12)更適合于單側(cè)拉力場情形。而且還發(fā)現(xiàn),式(10)~(12)得到的α值差異微小,從精度和復(fù)雜性出發(fā),建議采用式(11)統(tǒng)一確定各層α值。上述意見被加拿大規(guī)范CAN/CSAS16.1-94采納。另外,拉桿條模型SM估計的單調(diào)荷載-位移曲線與試驗曲線之包絡(luò)線吻合良好,初步驗證了模型的有效性。此后,SM被證明確能較好地估計鋼板墻(薄板)滯回曲線的包絡(luò)線,且拉桿傾角α和拉桿數(shù)量受到了廣泛關(guān)注。大量敏感性分析表明:(1)4根拉桿略高估了鋼板墻的承載力,超出試驗值2.5%;6~12根拉桿得到的承載力相同,略低于試驗值;20根拉桿反而不如10根拉桿的效果理想。因此,Thorburn提出的10根拉桿足夠描述鋼板墻拉力帶的結(jié)論得到驗證。(2)SM對拉桿傾角α并不敏感,α值在38°~45°變化時,承載力差異僅約5.1%。但是,究竟多薄的鋼板墻才能用SM獲得滿意的結(jié)果,文獻(xiàn)基于有限元分析,以承載力為指標(biāo),得出SM適用于寬厚比λ≥300的薄鋼板墻。然而,即使λ≥300,SM得到的初始剛度與精細(xì)模型(墻板采用SHELL單元)得到的結(jié)果有較大差距,因此文獻(xiàn)不將初始剛度作為評價指標(biāo),僅以承載力為指標(biāo)確定SM的適用范圍。除了單調(diào)推覆分析,SM能否用于薄鋼板墻的彈塑性時程分析也是評價模型適用性的一個重要方面,但時程結(jié)果比較凌亂和隨機(jī),不便考察SM往復(fù)振動的受力特征。規(guī)則的滯回加載則可解決上述問題,因為若SM描述的滯回曲線與試驗吻合,則可認(rèn)為時程結(jié)果具有可靠性。滯回分析時,拉桿需雙向正交布置,且屬性為只拉不壓。針對圖6所示非加勁鋼板墻,利用PISA3D(臺灣大學(xué)編)結(jié)構(gòu)非線性程序,文獻(xiàn)認(rèn)為SM能獲得與試驗相當(dāng)接近的曲線(圖7)。仔細(xì)觀察曲線差異,SM估計的滯回曲線其捏縮程度同樣高于試驗曲線。注意到,文獻(xiàn)的研究對象均為雙重抗側(cè)力體系,框架參與抵抗水平力,因而不能清晰地判斷SM估計鋼板墻自身滯回性能的準(zhǔn)確度。為此,若能將邊緣框架節(jié)點(diǎn)設(shè)計成鉸接,則能屏蔽框架的影響,著重考察SM是否適用于鋼板墻本身的滯回分析。結(jié)果如圖8所示,與鋼板墻采用SHELL單元的分析結(jié)果相比,SM估計的薄鋼板墻(λ=500)滯回曲線極度捏縮。而且,對λ=150的墻板,其捏縮程度并未得到任何改善(圖9),但實際上,隨著墻板厚度的增大,試驗滯回曲線會越來越飽滿。所以,SM不能反映板厚對滯回曲線捏縮的影響,模型記錄的滯回曲線總是捏縮程度較高,這決定SM用于滯回或時程分析時,只能針對極薄的鋼板墻,其分析結(jié)果才較滿意。究其原因,一般厚度的鋼板墻,其受力特征除拉力場效應(yīng)外,還包含一部分剪切作用。剪切機(jī)制對承載力特別是彈性剛度的貢獻(xiàn)要高于拉力場作用,且沒有如拉力帶在反復(fù)荷載作用下的“呼吸效應(yīng)”,始終參與受力。而SM只抓住了拉力場部分,完全忽略了剪切作用,因而實際鋼板墻試驗滯回曲線的捏縮程度總是低于SM。1.3.2鋼板墻初始剛度文獻(xiàn)(2005)指出,SM估計的鋼板墻初始剛度與承載力總是不同程度地低于試驗骨架曲線,并將其歸因于SM沒有反映鋼板墻受壓區(qū)的貢獻(xiàn)。為此,提出了修正拉桿模型MSM,即在SM的基礎(chǔ)上增加一道壓桿(圖10),以綜合代表受壓區(qū)的作用。文獻(xiàn)研究認(rèn)為,SM低估鋼板墻剛度和承載力的原因至少還來自以下四個方面:(1)模型忽略了鋼板墻的屈曲荷載,當(dāng)鋼板墻采用中厚板時,屈曲荷載的貢獻(xiàn)會凸顯出來。(2)如圖11,鋼板墻在屈曲前呈平面剪切狀態(tài),可理解為由無數(shù)根“主拉桿”與“主壓桿”構(gòu)成,屈曲后大部分壓桿軸力不再增加,甚至退出工作,而轉(zhuǎn)由拉桿形成拉力場。但是,在鋼板墻的拐角區(qū)域,壓桿的有效長度較短,當(dāng)鋼板墻不是極薄時,它會作為鋼板墻的受壓區(qū)參與工作,起到類似于“襯板”的作用。而且,襯板區(qū)的剛度還會因?qū)抢У谋∧ば?yīng)得到加強(qiáng),這為它參與受力進(jìn)一步提供了條件。(3)如圖12,鋼板墻受力并非純剪狀態(tài),存在傾覆力矩作用。在靠近受拉柱的一側(cè),鋼板墻屈曲后形成垂直張力帶,靠近受壓柱的一側(cè),至少較厚的魚尾板可作為有效壓力帶參與抗傾覆,但SM亦不能反映上述鋼板墻參與抗傾覆的特征。(4)如前所述,SM只體現(xiàn)了鋼板墻的拉力場效應(yīng),剪切作用被完全忽略。研究認(rèn)為忽視剪切作用是SM大幅低估鋼板墻初始剛度的最主要原因。針對MSM,文獻(xiàn)的主要結(jié)論有:(1)壓桿的截面積和強(qiáng)度是需要確定的關(guān)鍵參數(shù)。首先,假定壓桿的面積與等效斜撐模型(圖4)一致,然后通過擬合試驗骨架曲線,壓桿屈服強(qiáng)度可取鋼板墻屈服強(qiáng)度的5%~10%,推薦采用鋼板墻屈服強(qiáng)度的8%。但Shishkin同時指出,當(dāng)鋼板墻非常薄時,MSM估計的初始剛度高于試驗結(jié)果,因此,建議對極薄鋼板墻,壓桿沒有必要設(shè)置,仍然退回到SM。(2)在估計框架內(nèi)力方面,MSM和SM一般保守估計了邊緣框架內(nèi)力,但MSM更逼近于試驗所測框架內(nèi)力?;诜治鰳颖咎?在框架內(nèi)力方面需要進(jìn)一步研究。此外,MSM不便完成滯回分析,這也是模型的缺陷之一。根據(jù)研究,MSM略為高估了鋼板墻的承載力,特別是過高估計其初始剛度。且在層間側(cè)移很小時,壓桿就已屈服,模型剛度又退回到SM(圖13)。正是由于MSM過高預(yù)計了鋼板墻初始剛度,導(dǎo)致框架分擔(dān)的層剪力偏小,從而低估了框架的彈性內(nèi)力,使得框架內(nèi)力分析失真。研究認(rèn)為:SM的主要缺陷在于不能體現(xiàn)鋼板墻的剪切作用,更有效的等代模型應(yīng)能同時反映鋼板墻的拉力場效應(yīng)和剪切機(jī)制;而MSM并未抓住這一深層受力機(jī)理,通過在SM上增加壓桿,基于試驗結(jié)果以擬合的方式去修正模型,對于一般厚度的非加勁鋼板墻模擬效果可能達(dá)不到期望的目標(biāo)。除文獻(xiàn)外,在考察等代模型是否有效時,一般只借助宏觀的推覆分析,都忽視了模型估計框架內(nèi)力的能力這一重要方面。因為目前的結(jié)構(gòu)設(shè)計,一般是從小震入手,由彈性分析獲得結(jié)構(gòu)內(nèi)力并校核構(gòu)件,故等代模型能否用來完成框架的構(gòu)件設(shè)計是需要注意的關(guān)鍵問題之一。總結(jié)起來,一個等代模型是否有效,應(yīng)從以下四個方面全面考察:①單調(diào)加載;②彈性內(nèi)力;③滯回加載;④時程響應(yīng)。設(shè)定上述順序的邏輯又在于:從單調(diào)加載入手,是因為它可從整體上估計模型的準(zhǔn)確性,是最直接且常用的手段。若單調(diào)加載下,等代模型的效果都不理想,則不可能期望通過它去完成結(jié)構(gòu)的其它計算分析。假定模型能較好地完成上述①、②兩項分析,則表明模型不但可估計出鋼板墻的承載力與剛度,且能較好地反映鋼板墻與框架的相互作用。進(jìn)一步,對于復(fù)雜的非常規(guī)結(jié)構(gòu),罕遇地震作用下的動力彈塑性分析是必要的。所以,等代模型能否用來完成彈塑性時程分析是需要考核的另一個關(guān)鍵。但是,時程分析結(jié)果不便于用來分析等代模型的缺陷,而規(guī)則的滯回分析可比較清晰地把握等代模型合理及不合理的因素。因此,在彈塑性時程分析之前,先以滯回加載預(yù)先校核模型。1.3.3襯板尺寸的確定Elgaaly等觀察到拉應(yīng)變沿鋼板墻寬度的分布不是均勻的,靠近框架梁、柱節(jié)點(diǎn)區(qū)的應(yīng)變相對更大。為反映上述特征,提出在SM的兩端增加方形襯板單元,如圖14。而且方形襯板尺寸的確定準(zhǔn)則是:剪切屈曲應(yīng)力與其材料屈服強(qiáng)度相等。通過反復(fù)調(diào)整拉桿的材料本構(gòu),襯板模型估計的荷載-位移關(guān)系曲線與試驗曲線吻合良好,但由于相關(guān)參數(shù)是通過擬合試驗得到的,不具一般性。1.3.4初始剛度對比Rezai(1999)通過四層三跨鋼框架內(nèi)嵌鋼板墻結(jié)構(gòu)的振動臺試驗,認(rèn)為拉力帶傾角α在整塊鋼板墻的分布不是一致的,由此提出MAM,如圖15。MAM高估了試件的初始剛度,低估了結(jié)構(gòu)的屈服荷載。針對Lubell等(1997)的單層單跨鋼框架內(nèi)嵌鋼板墻試件,與試驗結(jié)果相比,MAM得到的初始剛度較好,但保守地估計了結(jié)構(gòu)的承載力。針對Driver等(1997)的四層單跨鋼框架內(nèi)嵌鋼板墻試件,與SM相比,MAM獲得的結(jié)構(gòu)初始剛度和承載力都高于試驗結(jié)果。由于MAM并沒有改善先前SM存在的缺陷,后續(xù)研究中未能獲得更多關(guān)注。1.3.5mpfi模型的應(yīng)用文獻(xiàn)提出非加勁鋼板墻的MPFI模型。除一般的剪切變形外,該模型特別考慮了鋼板墻彎曲變形與框架的相互作用,并將鋼板墻受力性能分為三階段:彈性屈曲、屈曲后、屈服后。每一階段都推導(dǎo)出相應(yīng)的剛度及承載力表達(dá)式,將鋼板墻的荷載-位移曲線與框架的荷載-位移曲線簡單疊加便得到體系的全過程性能。與試驗結(jié)果相比(Driver等,1997),MPFI模型高估了5%的初始剛度,低估了10%的承載力,且略為保守地預(yù)測了屈服荷載。此外,MPFI模型與數(shù)值分析的結(jié)果出入也較大,因此認(rèn)為MPFI模型并不能較好預(yù)測非加勁鋼板墻的整體性能。分析發(fā)現(xiàn),墻板屈曲前,本質(zhì)與自下而上連續(xù)的混凝土剪力墻類同,框架梁與混凝土剪力墻的暗梁相似,因而呈彎曲型變形特征。但墻板屈曲后,由于框架梁將各層墻板隔開,內(nèi)嵌鋼板可理解為框架的填充墻,因而樓層墻板立刻變得相互獨(dú)立,且屈曲后各層墻板可比擬為一系列拉桿條,基本不參與抵抗傾覆力矩,所以墻板的變形特征與框架接近,使得鋼框架-鋼板墻體系的總變形以剪切型為主。里海大學(xué)通過單跨十二層鋼框架內(nèi)嵌非加勁鋼板墻的數(shù)值模擬,分析了體系的變形特征,即鋼板墻屈曲前體系的變形特征為彎曲型,屈曲后則與純框架類似,呈剪切型。由此,框架內(nèi)嵌鋼板墻的上述變形特征使得設(shè)計中不必過于考慮墻板彎曲變形的影響,在建立鋼板墻設(shè)計理論時,能以層模型作為分析對象,從而簡化研究的復(fù)雜性。1.3.6鋼板墻接觸模型分析證明,SM模型只對極薄的鋼板墻才有滿意的精度,但“極薄”的界線模糊,始終未能統(tǒng)一。而且,對中厚板與厚板,采用什么等代模型才能獲取可接受的結(jié)果也一直沒有定論。因此,提出適用于任意墻板厚度的統(tǒng)一等代模型成為非加勁鋼板墻設(shè)計理論的關(guān)鍵。認(rèn)識到SM模型的主要缺陷在于忽略了鋼板墻的剪切作用,文獻(xiàn)提出了適用于任意板厚的統(tǒng)一等代模型USM(圖16)。該模型同時抓住了鋼板墻的剪切及拉力場機(jī)制,通過一個變化的比例系數(shù)考慮了對計算模型隨板厚變化的影響。若剪切作用與拉力場機(jī)制所代表的板厚分別用ηtp與(1-η)tp表示,則對于剪切作用部分,相互正交的桿條代表的是主拉及主壓應(yīng)力作用,截面積ATC按式(13)確定。對于拉力場部分,桿條截面積AT則等于其墻板從屬寬度d與相應(yīng)板厚(1-η)tp之積,用公式(14)確定。η的表達(dá)式以及對應(yīng)的曲線在圖17中給出,其值與鋼板墻受剪屈曲對應(yīng)的正則化的高厚比有關(guān)系。AΤC=0.57ηtpd(13)AΤ=(1-η)tpd(14)剪切作用部分,拉桿傾角與主應(yīng)力方向一致,始終為45°,與墻板外觀及周邊構(gòu)件的剛度無關(guān)。在拉力場部分,模型對夾角α并不敏感,為建模方便,也可令α=45°。由此,建立墻板模型時,在每處設(shè)置兩條并行的桿單元,一條為拉壓同性,一條為只拉不壓。研究顯示,USM極大改善了SM低估墻板初始剛度的缺點(diǎn),并使得框架的內(nèi)力計算更加準(zhǔn)確。同時,克服了SM模型滯回分析的極度捏縮(圖18),證明是非加勁鋼板墻合理有效的等效模型。1.4內(nèi)部非加固鋼板墻的結(jié)構(gòu)理論在框架中嵌入鋼墻板,在拉力場作用下,邊緣框架的設(shè)計理論至關(guān)重要并得到廣泛研究。1.4.1框架柱前后開縫鋼板墻為評估薄鋼板屈曲后性能,文獻(xiàn)進(jìn)行了6個1/4比例的三層單跨鋼框架內(nèi)嵌鋼板墻結(jié)構(gòu)試驗,表明鋼框架中嵌入相對較厚的鋼板墻后,框架柱的局部屈曲及整體失穩(wěn)易發(fā)生在墻板充分屈服之前。所以,當(dāng)體系的承載力由框架柱穩(wěn)定控制時,提高墻板厚度是不必要的,宜盡量采用薄板墻,這種“強(qiáng)框架、弱墻板”的理念后來在設(shè)計及科研中廣泛采用。文獻(xiàn)借助數(shù)值分析,出于對框架柱的保護(hù),認(rèn)為將鋼板墻與框架柱脫開(只與梁連接)的結(jié)構(gòu)體系在地震區(qū)有著潛在的優(yōu)勢,因為這盡管削減了墻板的側(cè)移剛度,但墻板承擔(dān)了絕大部分水平力,在框架柱破壞之前能充分屈服并耗散能量,因此推薦采用所謂的“兩側(cè)開縫鋼板墻”。鋼板墻不與框架柱連接,避免了墻板拉力場對柱穩(wěn)定的不利影響,削弱墻板的同時相當(dāng)于加強(qiáng)了框架,也是一種“強(qiáng)框架,弱墻板”的設(shè)計思路。1.4.2小震后次結(jié)構(gòu)模型和保險絲模型的實現(xiàn)比“強(qiáng)框架、弱墻板”更具體一些,文獻(xiàn)特別推薦在鋼板墻充分屈服時,框架保持彈性。上述設(shè)計原則后來定義為“保險絲”理念,加拿大規(guī)范CAN/CSAS16.1-94及美國FEAM450就要求在設(shè)計地震作用下(相當(dāng)于我國的中震),鋼板墻充分屈服時,邊緣框架宜保持彈性。保險絲設(shè)計實際上包含主次結(jié)構(gòu)的概念。小震下主結(jié)構(gòu)(框架)和次結(jié)構(gòu)(鋼板墻)構(gòu)成雙重抗側(cè)力體系,共同控制結(jié)構(gòu)側(cè)移。中震作用下,次結(jié)構(gòu)屈服耗能,而主結(jié)構(gòu)保持彈性以提供足夠的恢復(fù)力,實現(xiàn)結(jié)構(gòu)在震后有“自復(fù)位”功能,卸去墻板,框架沒有殘余位移,易修復(fù)。Astaneh-Asl以1/2的縮尺比例,將試件以平躺的方式在實驗室完成滯回加載。試件的特點(diǎn)在于邊框柱采用大直徑的鋼管混凝土,內(nèi)填高強(qiáng)混凝土。試件的延性良好,直至試驗終止,鋼管混凝土柱仍保持彈性。這里指出邊框柱采用高強(qiáng)材料是實現(xiàn)“保險絲”設(shè)計的首選,特別是把高強(qiáng)混凝土用于鋼管混凝土結(jié)構(gòu)。然而,盡管保險絲設(shè)計理念已被接受,但如何在設(shè)計中操作和實現(xiàn),始終沒有看到成熟的研究成果。僅2004年,文獻(xiàn)在不考慮豎向荷載的前提下,推導(dǎo)出水平荷載作用下,存在拉力場作用的單層單跨框架保持彈性的臨界層間位移角,為框架結(jié)構(gòu)的初步設(shè)計提供了參考。1.4.3非加勁墻板抗側(cè)力量的剛度要求Lubell等(1997)完成了兩個單層單跨鋼框架內(nèi)嵌鋼板墻的低周反復(fù)加載試驗。如圖19所示,由于框架柱截面較小,試件觀察到明顯的“沙漏”現(xiàn)象,即框架柱錨固剛度不足,在拉力場作用下明顯彎曲??蚣苤陈┑慕Y(jié)果是拉力場朝剛度較大的梁上轉(zhuǎn)移,形成所謂的“不充分拉力場”,墻板有一部分區(qū)域不能發(fā)揮作用(圖20)。要保證鋼板墻的抗側(cè)效率,要求邊框柱必須有足夠的錨固剛度。為此,加拿大規(guī)范CAN/CSAS16-1994及美國FEMA450對邊框柱的截面慣性矩Ic提出了嚴(yán)格的限制:Ιc≥0.00307tph4sL(15)式(15)源于Kuhn等(1952)給出的“板梁翼緣”剛度限值,其作用旨在為板梁腹板發(fā)揮屈曲后強(qiáng)度提供足夠的錨固。沿用板梁的結(jié)論是因為鋼板墻整體受力特性類似于底端固接的豎向懸臂板梁:邊柱相當(dāng)于翼緣,內(nèi)嵌鋼板相當(dāng)于腹板,邊梁近似等效為橫向加勁肋。為表述的方便,本文將式(15)的柱剛度定義為“經(jīng)典閾值剛度”。實際上,拉力帶傾角α值可表征拉力場開展的程度。若α減小,墻板的有效抗側(cè)區(qū)域?qū)⒂兴蹨p。與圖19比較,同樣的方形板(圖21),框架無限剛時,傾角α≈45°。用式(15)衡量圖19所示試件的框架柱剛度,其截面慣性矩I*c=Ic/10,錨固剛度確實不足,形成了不充分拉力場情形。研究發(fā)現(xiàn),薄板性能對邊框柱剛度的變化較敏感,而厚板則基本擺脫了邊框柱剛度的控制,由此說明當(dāng)剪切作用逐漸占主導(dǎo)地位、拉力場效應(yīng)相應(yīng)削減時,鋼板墻對邊框柱剛度的要求將持續(xù)降低。然而,經(jīng)典閾值剛度卻不能反映上述趨勢,當(dāng)鋼板墻由薄板向厚板漸變時,經(jīng)典閾值剛度將對邊框柱提出過高的要求。如前所述,鋼板墻的受力同時包含拉力場效應(yīng)和剪切作用,只是隨著厚度的變化,二者的比例有所不同。數(shù)值分析表明,依賴邊框柱剛度來發(fā)揮承載力的只有拉力場部分。為實現(xiàn)閾值剛度能適用到一般寬厚比的非加勁墻板,有必要將Kuhn等提出的剛度要求予以修正。因此,將經(jīng)典閾值剛度中關(guān)于剪切作用所代表的板厚ηtp剝離,并保留純粹拉力場機(jī)制所代表的板厚(1-η)tp,便得到可適用任意寬厚比的非加勁墻板的邊框柱剛度要求,并定義為“修正閾值剛度”:Ιc≥(1-η)?0.00307tph4sL(16)將經(jīng)典閾值剛度修正的實際意義還有:加拿大及美國設(shè)計實踐顯示,在單層或多高層結(jié)構(gòu)的上部,邊框柱的截面一般由經(jīng)典閾值剛度控制,而不是由整體穩(wěn)定決定。這樣,為符合規(guī)范對框架柱的剛度要求,不但框架柱自身設(shè)計得相當(dāng)短粗,還給基礎(chǔ)帶來負(fù)擔(dān),經(jīng)濟(jì)性不理想。為提高非加勁鋼板墻的實用性,降低對框架柱剛度的依賴,低屈服點(diǎn)鋼板及開洞鋼板墻成為近幾年國外的研究熱點(diǎn),但均是以減弱墻板的力學(xué)性能為代價。修正閾值剛度則解決了上述墻板厚度引起框架柱短粗的問題。如圖22所示,墻板厚度的提高不會造成框架柱截面的急劇增長,這樣,就不必去尋求價格高昂的低屈服鋼材或設(shè)計方法更加復(fù)雜的開洞鋼板墻。1.5鋼板墻體結(jié)構(gòu)體系設(shè)計我國對鋼板墻的研究起步較晚,僅在JGJ99—98《高層民用建筑鋼結(jié)構(gòu)設(shè)計規(guī)程》附錄四中列入了加勁和非加勁鋼板墻的臨界屈曲應(yīng)力計算公式,其設(shè)計原則是鋼板墻的設(shè)計水平剪力不超過其受剪的屈曲荷載。利用薄板屈曲后性能的部分研究成果已經(jīng)被國外相關(guān)規(guī)范采納,如加拿大規(guī)范CAN/CSAS16.1-94及美國FEMA450,其中FEMA450基本沿用了加拿大規(guī)范。文參考加拿大及美國規(guī)范,并結(jié)合自身研究成果,給出了非加勁鋼板墻的設(shè)計流程:(1)計算設(shè)計地震作用并沿建筑物高度作剪力分配。(2)忽略框架的抗側(cè)貢獻(xiàn),假設(shè)α=45°,由強(qiáng)度條件計算各樓層最小鋼板墻厚度:ti=2ViΩsfyLsin2α(17)式中:ti為第i樓層鋼墻板厚度;Vi為第i層所承擔(dān)的層剪力;Ωs為系統(tǒng)超強(qiáng)因子。(3)依照鋼板墻厚度計算鋼板拉力場對梁柱造成的均勻荷載,初步設(shè)計梁柱斷面尺寸并滿足Kuhn等所建議的式(16)。(4)依初設(shè)結(jié)果,代入式(11)計算拉力場角度α,并取各層平均值來布置拉桿的傾斜角度,任一樓層鋼墻板至少應(yīng)以10根拉桿來代表,根據(jù)壓彎相關(guān)方程來設(shè)計鋼板墻周圍的梁柱構(gòu)件。(5)由步驟(1)~(4)所設(shè)計的結(jié)果(鋼板厚度、梁柱尺寸),求出平均拉力場角度α,檢驗是否與假設(shè)值逼近,若相差太大,則將新求出α當(dāng)作假設(shè)值代回第(2)步重復(fù),直到兩次計算結(jié)果相差甚小。此外,分析所得層間位移亦須符合規(guī)范要求。針對第(2)條,框架與鋼板墻實際上構(gòu)成的是雙重抗側(cè)力體系,共同抵抗水平力。目前設(shè)計中,鋼板墻承擔(dān)100%的層剪力,框架則一般按不小于25%總水平力設(shè)計。這一設(shè)計是為了保證結(jié)構(gòu)在鋼板墻失效后框架仍具有繼續(xù)承擔(dān)水平地震作用的潛力,是從結(jié)構(gòu)抗震第二道防線設(shè)計考慮的。注意到鋼板的延性較好(與混凝土剪力墻相比),在大震作用下仍可以與框架協(xié)同工作,框架部分應(yīng)承擔(dān)的水平剪力比例還值得進(jìn)一步研究。針對第(3)條,可改用修正閾值剛度來要求邊框柱剛度。對于第(4)條,研究表明,在邊框柱滿足修正閾值剛度條件下,可直接令α=45°,這樣不但避開了計算傾角α的復(fù)雜公式,在采用SM計算時,不必反復(fù)迭代。1.6邊界柱壓縮對鋼板墻承載力的影響鋼板剪力墻不承擔(dān)豎向荷載是它的設(shè)計理念之一,該要求在美國及加拿大規(guī)范中是常見的,其常用措施則是待主結(jié)構(gòu)封頂和大部分豎向荷載施加完畢后,再完成墻板與周邊框架的焊接或螺栓終擰,在此之前均為臨時固定。但目前我國超高層結(jié)構(gòu)工期都比較緊張,實際工程中難以做到鋼板剪力墻的滯后安裝。若內(nèi)嵌墻板與周邊框架的焊接或螺栓終擰與主結(jié)構(gòu)同步,則常常擔(dān)心主結(jié)構(gòu)的整體壓縮變形對墻板產(chǎn)生過大的預(yù)壓力,對抗側(cè)不利。因此,文獻(xiàn)在研究施工次序?qū)︿摪鍓Τ休d力影響的基礎(chǔ)上,建議折減鋼板墻的受剪承載力來考慮邊框柱壓縮量對墻板的不利作用,同時給出了定量的折減計算公式。計算發(fā)現(xiàn),當(dāng)內(nèi)嵌鋼板墻與框架的焊接或終擰和主結(jié)構(gòu)同步時,由于主框架在豎向荷載作用下的壓縮變形Δ,墻板確實受到一定的預(yù)壓力,墻板越薄,產(chǎn)生的預(yù)壓力越小,對承載力的影響相應(yīng)也越小。為描述不同墻板高度下壓縮變形的相對大小,特定義χ=(Δ/hs)×100。對一般情形χ的范圍作如下討論,假定邊框柱完全軸壓屈服,壓縮量的極限值Δmax與層高h(yuǎn)s的比值可表示為:Δmaxhs=ΝyEAc=fyAcEAc=fyE(18)式中:Ny為邊框柱軸壓屈服對應(yīng)的極限軸力;E為邊框柱材料彈性模量;Ac為邊框柱截面積。fy為邊框柱材料的屈服強(qiáng)度。當(dāng)邊框柱材料為素混凝土?xí)r,取C80強(qiáng)度等級,χmax=0.1。當(dāng)邊框柱為純鋼時,取Q420鋼材,χmax=0.18。目前高層建筑大多采用鋼管混凝土柱或鋼骨混凝土柱,則有χmax<0.18。因此,在分析邊框柱壓縮對鋼板墻的影響時,χmax取至0.2,也就是壓縮量占層高的1/500。計算表明(圖23),鋼板墻受到預(yù)壓后,承載力確有不同程度的降低。而且,依文獻(xiàn)的研究,墻板越厚,預(yù)壓的不利作用越明顯。不同的板厚條件,就壓縮變形對承載力的折減而言,其折減量形成一定的帶寬,但差別不是太大。為使用方便和保守考慮,可用一條折減曲線來代表(圖24)。由此,當(dāng)墻板不能實現(xiàn)滯后于主結(jié)構(gòu)的安裝時,可依據(jù)各層邊框柱的壓縮量對其受剪承載力進(jìn)行折減。2抗彎鋼板墻2.1抗彎鋼板墻結(jié)構(gòu)和工作機(jī)2.1.1混凝土板抗側(cè)振動控制非加勁鋼板墻存在使用及受力上的缺點(diǎn),主要包括屈曲噪聲、易振動、滯回曲線捏縮及拉力場給邊框柱造成的附加彎矩。因此若能抑制墻板的屈曲,則有可能克服非加勁鋼板墻的很多缺陷。一般地,抑制薄板屈曲的方式有三種:①設(shè)置加勁肋;②現(xiàn)澆混凝土板且用栓釘連接;③設(shè)置預(yù)制混凝土蓋板并用螺栓連接。加勁鋼板墻的耗鋼量與焊接工作量大,經(jīng)濟(jì)性決定它市場前景不佳。組合鋼板墻(在鋼墻板一側(cè)或兩側(cè)現(xiàn)澆混凝土)的混凝土板因參與抗側(cè),很快受損并易與鋼板脫離。要保證大震要求的層間位移下混凝土與鋼板不分離,需要大量的栓釘去彌補(bǔ)混凝土參與受力而損失的面外剛度,且內(nèi)嵌鋼板越薄,需要的栓釘越多,代價過于高昂。文獻(xiàn)考慮用預(yù)制混凝土蓋板抑制內(nèi)嵌鋼板屈曲(圖25),并定義為“防屈曲鋼板墻”。其工作機(jī)理是希望通過蓋板和內(nèi)嵌鋼板接觸面之間相互錯動的變形機(jī)制,釋放蓋板的面內(nèi)受力,使其在大震作用下免遭破壞,為鋼板提供持續(xù)的面外約束。為實現(xiàn)二者可充分滑動的設(shè)想,如圖25,在兩側(cè)蓋板和內(nèi)嵌鋼板的相同位置開孔以便螺栓穿過,但關(guān)鍵構(gòu)造是蓋板上預(yù)留孔徑要大于螺桿直徑,孔徑的大小由大震作用下鋼板和混凝土蓋板的相對滑移量決定,保證蓋板與內(nèi)嵌鋼板有足夠的錯動空間。為不過于削弱鋼板的有效面積,鋼板的孔徑大致與螺桿直徑相當(dāng)。同時,螺栓可施加一定的預(yù)張力,使蓋板和內(nèi)嵌鋼板在風(fēng)荷載和小震作用下保持整體工作狀態(tài)。此外,為避免框架與混凝土蓋板過早接觸而導(dǎo)致混凝土蓋板的損壞,蓋板與梁柱之間留有一定間隙,間隙大小的確定原則是大震作用下框架不應(yīng)與蓋板擠緊。但是,近來研究表明,間隙大小宜以規(guī)范大震作用下層間位移角的限值為依據(jù)確定。這樣,當(dāng)結(jié)構(gòu)在遭遇巨震時,蓋板仍能與框架擠緊并直接參與抗側(cè),為結(jié)構(gòu)提供額外的承載力和后期抗側(cè)剛度,對防止結(jié)構(gòu)倒塌有利。2.1.2防屈曲鋼板墻要理解防屈曲墻內(nèi)嵌鋼板的受力機(jī)制,可與非加勁墻作比較。對于非加勁墻(中厚板及薄板),鋼板屈曲后(圖26),微單元體主拉應(yīng)力σt趨向于墻板屈服強(qiáng)度fy,而主壓應(yīng)力σc則基本不變或略有降低。根據(jù)防屈曲墻的試驗現(xiàn)象(圖27),當(dāng)墻板較薄時(如高厚比λ=500),在約束相對較弱的周邊區(qū)域仍觀察到細(xì)密的局部屈曲。相應(yīng)地,內(nèi)嵌鋼板在腹部平整的區(qū)域,微元體主應(yīng)力σt和σc基本相等,在低幅屈曲的地方,雖然σt≠σc,但二者的差距卻低于非加勁鋼板墻情形。這是因為在鼓曲的波峰處,墻板與蓋板在接觸面上處于頂緊狀態(tài)(圖28),屈曲發(fā)展受到抑制,不會形成如非加勁墻板的大幅值拉力帶,并且在力P的作用下,σc不會只停留在τcr附近。這也就是說,即便在這些發(fā)生局部屈曲的地方,其受力特點(diǎn)也不同于非加勁鋼板墻的拉力帶機(jī)制,這正是防屈曲鋼板墻與非加勁鋼板墻的本質(zhì)區(qū)別之一。對于防屈曲鋼板墻,盡管定性分析可判斷其內(nèi)嵌鋼板比較接近于平面應(yīng)力場,但鋼板充分屈服后,細(xì)密的局部屈曲對鋼板滯回耗能也產(chǎn)生一定影響。為考察鋼板本身的滯回性能,建立單層單跨的防屈曲墻數(shù)值模型,并令邊框架鉸接(且剛度無限大),以此剔除框架的貢獻(xiàn)。分析結(jié)果顯示(圖29a),內(nèi)嵌鋼板很薄時(λ=500),蓋板難以抑制內(nèi)嵌鋼板的局部屈曲,鋼板耗能能力大幅低于完全平面鋼板。并且,隨著層間側(cè)移的增大,單周耗能(滯回環(huán)包圍的面積)與理想平面鋼板的差距相對越大,這充分表明局部屈曲幅值的逐步增長能強(qiáng)化鋼板的“呼吸效應(yīng)”,滯回曲線的捏縮程度逐漸加重。當(dāng)內(nèi)嵌鋼板加厚至λ=200時,防屈曲鋼板墻滯回環(huán)就十分飽滿,已接近于完全平板情形(圖29b)。其機(jī)理在于鋼板越厚,其屈曲趨勢降低,特別當(dāng)鋼板進(jìn)入厚板范疇后,即便沒有蓋板的約束,滯回環(huán)的飽滿程度也可與完全平板相當(dāng);反之鋼板越薄,蓋板則越難以抑制內(nèi)嵌鋼板的局部屈曲,由此產(chǎn)生的“呼吸效應(yīng)”將削弱其耗能能力。大量算例表明,內(nèi)嵌鋼板λn≤1.6(如λ≤200的方板)且蓋板約束剛度滿足文設(shè)定的臨界剛度時,防屈曲鋼板墻滯回耗能可認(rèn)為與理想平板一致,屈曲效應(yīng)幾乎不存在。2.2抗彎鋼板墻性能2.2.1螺栓的滑移檢測試驗表明,防屈曲鋼板墻有效降低了鋼板的面外變形和屈曲噪聲。從鋼板與框架連接的使用性看,當(dāng)內(nèi)嵌鋼板栓接于魚尾板時,由于混凝土板的約束作用,螺栓受到的剪力大幅降低,未發(fā)現(xiàn)螺栓明顯滑移。鋼板外覆混凝土蓋板,起到防火、保溫、隔聲及減振作用,可減少后續(xù)工作量,降低工程造價。而且,基于防屈曲鋼板墻的工作機(jī)理,極大削弱了鋼板拉力場效應(yīng)而增加了鋼板平面剪切的受力成份,在現(xiàn)有建筑框架結(jié)構(gòu)中嵌入鋼板時,不需要對邊框柱加強(qiáng),因而比非加勁鋼板墻更加適合于現(xiàn)有結(jié)構(gòu)的改造加固。2.2.2鋼板墻拉拔性分析防屈曲鋼板墻克服了非加勁墻板的“呼吸效應(yīng)”,耗能能力顯著增強(qiáng)(圖30)。此外,其內(nèi)嵌鋼板的受力趨近于平面應(yīng)力狀態(tài),拉力場效應(yīng)大大降低,對邊框柱負(fù)擔(dān)減輕。若混凝土蓋板厚度及螺栓排布合理,則與非加勁鋼板墻相比,防屈曲鋼板墻受剪承載力增長約10%,彈性側(cè)移剛度可提高15%~20%。對于防屈曲鋼板墻,若內(nèi)嵌鋼板與框架采用栓接,則螺栓受力相對均衡,可以克服非加勁鋼板墻易發(fā)生的“解紐扣”現(xiàn)象。2.3抗彎鋼板墻設(shè)計理論2.3.1彈性側(cè)移剛度文獻(xiàn)給出了防屈曲鋼板墻的受剪承載力和彈性側(cè)移剛度計算公式:VBRu=0.55Ltpfy(19)ΚBRi=Gtp1.2(L/hs)(20)2.3.2混凝土鋼板屈曲混凝土蓋板厚度及連接螺栓間距是抑制屈曲的兩個關(guān)鍵參數(shù),與內(nèi)嵌鋼板厚度有關(guān)。若設(shè)計不合理,則混凝土蓋板后期會有所損傷,對鋼板屈曲的抑制作用不理想(圖31)。文獻(xiàn)運(yùn)用彈性板殼理論及大量的彈塑性數(shù)值分析,確定出混凝土蓋板厚度及螺栓間距的設(shè)計公式,并得到試驗支持。試驗表明,直至內(nèi)嵌鋼板被完全剪斷,混凝土蓋板始終保持完好,只在表面發(fā)現(xiàn)若干微裂紋。2.3.3鋼板墻等代模型的討論與非加勁鋼板墻一樣,希望提出適用于防屈曲鋼板墻的等代模型。為此,文獻(xiàn)曾提出一系列傾斜的、相互正交的桿單元置換墻板。與USM不同,模型中所有桿元都是拉壓同性,代表主應(yīng)力作用,拉力場效應(yīng)被完全忽略。但是隨后文獻(xiàn)的滯回分析表明,在約束構(gòu)件(混凝土蓋板及螺栓排布)不是無限強(qiáng)大,并只滿足文獻(xiàn)所定義的臨界約束剛度條件下,內(nèi)嵌鋼板局部的低幅屈曲對滯回曲線飽滿程度的影響不能忽略。這樣,在進(jìn)行時程分析時,等代模型會高估防屈曲鋼板墻的滯回耗能。為此,仍考慮采用剪切與拉力場相疊加的形式(圖32),只是剪切系數(shù)η及桿元面積須另行確定。并且,文獻(xiàn)將防屈曲等代模型定義為“雙向交叉桿模型”,簡稱BSM。防屈曲鋼板墻承載力比非加勁鋼板墻提高約10%,因而其等代模型中桿元面積不能沿用USM,可把剪切作用部分桿元面積調(diào)整為式(21),拉力場部分桿元面積的計算方法不變。Ac=0.55tpd(21)算例分析顯示,BSM在單調(diào)推覆分析、彈性框架內(nèi)力計算都有理想的計算精度,但滯回效果值得討論。參數(shù)分析發(fā)現(xiàn),通過調(diào)整η不可能獲得與精細(xì)模型完全一致的滯回曲線,考慮到鋼板在大震中的主要性能指標(biāo)是滯回耗能,因此,采用能量耗散等效的原則,以2%層間位移為目標(biāo)位移(大震作用下層間位移限值),令BSM估計的滯回環(huán)面積與精細(xì)模型(墻板采用SHELL單元)得出的相等,從而確定出最終的剪切系數(shù)η,并可擬合出η-λn的函數(shù)關(guān)系曲線(圖33)。一般地,若等代模型能準(zhǔn)確地模擬滯回曲線,則它也能較好地完成彈塑性時程分析。但是,與非加勁鋼板墻不同,防屈曲鋼板墻在彈塑性時程分析時須將混凝土蓋板的質(zhì)量在等代模型中體現(xiàn),因此可考慮將混凝土蓋板的質(zhì)量均勻地彌散到BSM的桿元中去,并可通過調(diào)整桿元的密度來實現(xiàn)。算例表明,等代模型BSM模擬大震作用下彈塑性時程的效果良好。2.3.4設(shè)計流程不合理防屈曲鋼板墻是近幾年才提出的新型抗側(cè)力構(gòu)件,其研究成果還未在我國規(guī)范中體現(xiàn)。防屈曲鋼板墻總的設(shè)計流程可基本沿用非加勁鋼板墻,只需在各分項中將相關(guān)公式或等代模型作相應(yīng)替換。研究認(rèn)為,內(nèi)嵌鋼板拉力場效應(yīng)被極大削弱后,不再需要對邊框柱提出剛度要求??紤]到工程中墻板尺寸較大,單塊預(yù)制混凝土蓋板可能給現(xiàn)場吊裝帶來困難,且會有開裂問題,建議混凝土蓋板分塊預(yù)制,現(xiàn)場拼裝。3延性在中震彈性設(shè)計中的應(yīng)用針對非加勁鋼板墻結(jié)構(gòu),從設(shè)計方法看,基于統(tǒng)一等代分析模型的引入,若遵循我國常規(guī)的兩階段設(shè)計路線(小震設(shè)計,大震驗算),則目前的研究成果已經(jīng)足夠。然而,鋼板墻作為經(jīng)濟(jì)有效的抗側(cè)力構(gòu)件,與混凝土剪力墻相比,其延性及耗能都十分優(yōu)秀,若依據(jù)國外(歐美及日本)的延性地震作用理論,可基于延性對中震彈性反應(yīng)譜進(jìn)行折減從而確定基底剪力。這樣,延性系數(shù)越大,地震作用折減得越多。為進(jìn)行彈性設(shè)計,我國在1989年引入了小震地震作用的計算。雖然其本質(zhì)還是考慮結(jié)構(gòu)彈塑性變形(延性)的影響而對中震彈性地震作用的折減,但默認(rèn)的延性系數(shù)為3,主要針對的是鋼筋混凝土結(jié)構(gòu),對鋼板剪力墻這種延性好的結(jié)構(gòu)并不合適。這導(dǎo)致在我國增加結(jié)構(gòu)延性卻不能通過減小基底剪力而帶來經(jīng)濟(jì)上的補(bǔ)償,從小震入手的第一階段抗震設(shè)計不能定量體現(xiàn)鋼板墻性能的優(yōu)越性,使得目前各種延性耗能結(jié)構(gòu)(延性也是增加耗能的一個最重要方面)在設(shè)計中不能產(chǎn)生經(jīng)濟(jì)效益,因而難以在國內(nèi)推廣應(yīng)用。因此,結(jié)合我國規(guī)范的理論

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論