下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年八年級數(shù)學滬科版下冊17.2.3一元二次方程的解法(導學案)一、知識導入1.一元二次方程回顧回顧一下一元二次方程的定義,一元二次方程是具有以下形式的方程:ax^2+bx+c=0其中,a、b、c是已知的實數(shù),且a≠0。2.一元二次方程的解一元二次方程的解是使等式成立的x的值。求解一元二次方程的一般步驟如下:-將一元二次方程轉化為標準形式:ax^2+bx+c=0,確保a≠0。-利用求根公式:x=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a}解出一元二次方程的兩個解。二、學習目標了解一元二次方程的解的概念掌握一元二次方程求解的步驟和方法三、學習重點和難點1.學習重點一元二次方程的定義一元二次方程解的概念一元二次方程的求解步驟和方法2.學習難點理解一元二次方程解的概念掌握一元二次方程的求解步驟和方法四、學習內容和步驟1.了解一元二次方程的解的概念一元二次方程的解是使方程兩邊成立的x的值。對于一元二次方程ax^2+bx+c=0,如果存在實數(shù)解,那么方程的解是兩個實數(shù)x1和x2。如果方程沒有實數(shù)解,那么方程沒有解。2.掌握一元二次方程的求解步驟和方法步驟1:將一元二次方程轉化為標準形式將一元二次方程ax^2+bx+c=0進行因式分解或配方法,將其轉化為標準形式。步驟2:利用求根公式求解方程利用求根公式:x=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a}解出一元二次方程的兩個解。3.講解示例題示例題1:解方程3x^2+4x-2=0。解:首先將方程轉化為標準形式,得到3x^2+4x-2=0。然后,根據(jù)求根公式,可以得到:x=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a}其中,a=3,b=4,c=-2。代入公式計算,得到:x=\\frac{-4\\pm\\sqrt{4^2-4(3)(-2)}}{2(3)}x=\\frac{-4\\pm\\sqrt{16+24}}{6}x=\\frac{-4\\pm\\sqrt{40}}{6}x=\\frac{-4\\pm2\\sqrt{10}}{6}化簡得到最終解:x=\\frac{-2\\pm\\sqrt{10}}{3}所以,方程的解是x=\\frac{-2+\\sqrt{10}}{3}和x=\\frac{-2-\\sqrt{10}}{3}。示例題2:解方程x^2-5x+6=0。解:首先將方程轉化為標準形式,得到x^2-5x+6=0。然后,根據(jù)求根公式,可以得到:x=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a}其中,a=1,b=-5,c=6。代入公式計算,得到:x=\\frac{-(-5)\\pm\\sqrt{(-5)^2-4(1)(6)}}{2(1)}x=\\frac{5\\pm\\sqrt{25-24}}{2}x=\\frac{5\\pm\\sqrt{1}}{2}化簡得到最終解:x=\\frac{5\\pm1}{2}所以,方程的解是x=3和x=2。4.練習題解方程2x^2+3x-5=0。解方程x^2+8x+16=0。解方程4x^2-12x+9=0。五、小結本節(jié)課我們學習了一元二次方程的解的概念和求解步驟。通過求根公式,我們可以解出一元二次方程的兩個解。掌握了這一知識點,我們可以更加靈活地解決一些實
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025北京市房屋租賃合同范本租房合同(個人,非中介版)可修改
- 2025房屋裝修工程承包合同書
- 單位健身房施工合同范例
- 抹灰公司轉讓合同范例
- 別墅改造農(nóng)村合同范例
- 扣件材料租賃合同范例
- 擬定工程材料合同范例
- 房屋承包出租合同范例
- 供熱系統(tǒng)維護合同范例
- 律師授權托合同范例
- 糖皮質激素類藥物臨床應用指導原則(2023年)
- 我的家鄉(xiāng)-東營
- 世界的海陸分布、世界的地形復習提綱
- SMT電子物料損耗率標準 貼片物料損耗標準
- NFPA-2010 固定式氣溶膠滅火系統(tǒng)標準(譯文)
- 釣魚郵件專項安全意識隨堂測試
- 復合材料力學 細觀力學基礎
- 2022年遼寧省中考數(shù)學試卷真題附解析Word版(6份打包)
- 社區(qū)矯正實務智慧樹知到答案章節(jié)測試2023年河北司法警官職業(yè)學院
- 部編版三年級下冊語文總復習期末真題模擬試卷(含答案)
- 足浴店衛(wèi)生管理制度范本3篇
評論
0/150
提交評論