![2030年國家充電網(wǎng)絡(luò)報(bào)告_第1頁](http://file4.renrendoc.com/view/061e5cbc5d5e4da2c10a37b0f75ccfb2/061e5cbc5d5e4da2c10a37b0f75ccfb21.gif)
![2030年國家充電網(wǎng)絡(luò)報(bào)告_第2頁](http://file4.renrendoc.com/view/061e5cbc5d5e4da2c10a37b0f75ccfb2/061e5cbc5d5e4da2c10a37b0f75ccfb22.gif)
![2030年國家充電網(wǎng)絡(luò)報(bào)告_第3頁](http://file4.renrendoc.com/view/061e5cbc5d5e4da2c10a37b0f75ccfb2/061e5cbc5d5e4da2c10a37b0f75ccfb23.gif)
![2030年國家充電網(wǎng)絡(luò)報(bào)告_第4頁](http://file4.renrendoc.com/view/061e5cbc5d5e4da2c10a37b0f75ccfb2/061e5cbc5d5e4da2c10a37b0f75ccfb24.gif)
![2030年國家充電網(wǎng)絡(luò)報(bào)告_第5頁](http://file4.renrendoc.com/view/061e5cbc5d5e4da2c10a37b0f75ccfb2/061e5cbc5d5e4da2c10a37b0f75ccfb25.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
The2030National
ChargingNetwork:
EstimatingU.S.Light-DutyDemandfor
ElectricVehicleChargingInfrastructure
ii
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
Acknowledgments
TheauthorswouldliketoacknowledgetheJointOfficeofEnergyandTransportationandtheU.S.DepartmentofEnergy’s(DOE’s)VehicleTechnologiesOfficeforsupportingthisanalysis.SpecificthankstoDOE,U.S.DepartmentofTransportation,andJointOfficestafffortheirongoingguidance,includingJacobWard,RaphaelIsaac,PatrickWalsh,WayneKillen,RachaelNealer,LissaMyers,SuraiyaMotsinger,AlanJenn,NoelCrisostomo,KaraPodkaminer,AlexSchroeder,GabeKlein,AndrewRodgers,AndrewWishnia,andMichaelBerube.
InternalsupportattheNationalRenewableEnergyLaboratorywascriticaltocompletionofthisreport,includingfromJeffGonder,MatteoMuratori,AndrewMeintz,ArthurYip,NickReinicke,JustinRickard,ElizabethStone,MichaelDeneen,JohnFarrell,ChrisGearhart,andJohneyGreen.
TheauthorswouldalsoliketothankcolleaguesattheCaliforniaEnergyCommission(MichaelNicholasandAdamDavis)andU.S.EnvironmentalProtectionAgency(SusanBurkeandMeredithCleveland)forongoingcollaborationsthathavebeensynergistictowardtheexecutionofthisanalysis,includingsupportforEVI-ProandEVI-RoadTrip.
TimelycontributionsfromAtlasPublicPolicywerenecessarytoaccuratelyestimatethemagnitudeofcharginginfrastructureannouncementsfromthepublicandprivatesectors.ThankstoSpencerBurget,NoahGabriel,andLucyMcKenzie.
Specialthankstoexternalreviewerswhoprovidedfeedbackduringvariousphasesofthiswork.Whilereviewerswerecriticaltoimprovingthequalityofthisanalysis,theviewsexpressedinthisreportarenotnecessarilyareflectionoftheir(ortheirorganization’s)opinions.Externalreviewersincluded:
CharlesSatterfield………...EdisonElectricInstitute
JamieDunckley…………………ElectricPowerResearchInstitute
PaulJ.Allen………………EnvironmentalResourcesManagement
ColinMurchieandAlexBeatonEVgo
JamieHall,AlexanderKeros,MichaelPotter,andKellyJezierskiGeneralMotors
BrianWilkie,ChristopherCoy,andRyanWheeler…………………NationalGrid
JenRoberton………NewYorkStateDepartmentofPublicService
VincentRiscica…….NewYorkStateEnergyResearch&DevelopmentAuthority
ErickKarlen……………...ShellRechargeSolutions
MadhurBoloorandMichaelMachala…………………..ToyotaResearchInstitute
NikitaDemidov……………Trillium
SusanBurke….U.S.EnvironmentalProtectionAgency,OfficeofTransportationandAirQuality
iii
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
Authors
Theauthorsofthisreportare:
EricWood,NationalRenewableEnergyLaboratory(NREL)
BrennanBorlaug,NREL
MattMoniot,NREL
Dong-Yeon(D-Y)Lee,NREL
YanboGe,NREL
FanYang,NREL
ZhaocaiLiu,NREL
iv
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
ListofAcronyms
battery-electricvehicle
core-basedstatisticalarea
CombinedChargingSystem
directcurrent
U.S.DepartmentofEnergy
electricvehicle
electricvehicleinfrastructureanalysistoolselectricvehiclesupplyequipment
FederalHighwayAdministrationInternationalCouncilonCleanTransportationJointOfficeofEnergyandTransportation
Level1
Level2
light-dutyvehicle
NorthAmericanChargingSpecificationNationalHouseholdTravelSurveyplug-inelectricvehicle
plug-inhybridelectricvehicle
single-familyhome
stateofcharge
TravelerAnalysisFramework
BEV
CBSA
CCS
DC
DOE
EV
EVI-X
EVSE
FHWA
ICCT
JointOffice
transportationnetworkvehiclemilestraveledzero-emissionvehicle
company
L1
L2
LDV
NACS
NHTS
PEV
PHEV
SFH
SOC
TAF
TNC
VMT
ZEV
v
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
ExecutiveSummary
U.S.climategoalsforeconomywidenet-zerogreenhousegasemissionsby2050willrequirerapiddecarbonizationofthelight-dutyvehicle
1
fleet,andplug-inelectricvehicles(PEVs)arepoisedtobecomethepreferredtechnologyforachievingthisend(U.S.DepartmentofEnergy2023).ThespeedofthisintendedtransitiontoPEVsisevidentinactionstakenbygovernmentandprivateindustry,bothintheUnitedStatesandglobally.NewPEVsaleshavereached7%–10%oftheU.S.light-dutymarketasofearly2023(ArgonneNationalLaboratory2023).Globally,PEVsalesaccountedfor14%ofthelight-dutymarketin2022,withChinaandEuropeat29%and21%,respectively(IEA2023).A2021executiveorder(ExecutiveOfficeofthePresident2021)targets50%ofU.S.passengercarandlighttrucksalesaszero-emissionvehicles(ZEVs)by2030,andCaliforniahasestablishedrequirementsfor100%light-dutyZEVsalesby2035(CaliforniaAirResourcesBoard2022),withmanystatesadoptingorconsideringsimilarregulations(Khatib2022).ThesegoalsweresetpriortopassageofthelandmarkU.S.BipartisanInfrastructureLawandInflationReductionAct,whichprovidesubstantialpolicysupportthroughtaxcreditsandinvestmentgrants(ElectrificationCoalition2023).Companiesintheautomotiveindustryhavecommittedtothistransition,withmostcompaniesrapidlyexpandingofferings(BartlettandPreston2023)andmanypledgingtobecomeZEV-onlymanufacturers.TeslahasbeenaZEV-onlycompanysinceitsinceptionin2003;Audi,Fiat,Volvo,andMercedes-BenzaretargetingZEV-onlysalesby2030;andGeneralMotorsandHondaaretargetingZEV-onlysalesby2035and2040,respectively(BloombergNewEnergyFinance2022).Thecombinationofpolicyactionandindustrygoal-settinghasledanalyststoprojectthatby2030,PEVscouldaccountfor48%–61%oftheU.S.light-dutymarket(Slowiketal.2023).Thistransitionisunprecedentedinthehistoryoftheautomotiveindustryandwillrequiresupportacrossmultipledomains,includingadequatesupplychains,favorablepublicpolicy,broadconsumereducation,proactivegridintegration,and(germanetothisreport)anationalchargingnetwork.
AsestablishedbytheInfrastructureInvestmentandJobsAct,alsoknownastheBipartisanInfrastructureLaw,theJointOfficeofEnergyandTransportation(JointOffice)issettingthevisionforanationalchargingnetworkthatisconvenient,affordable,reliable,andequitabletoenableafuturewhereeveryonecanrideanddriveelectric.ThisreportsupportsthevisionoftheJointOfficebypresentingaquantitativeneedsassessment
2
foranationalchargingnetworkcapableofsupporting30–42millionPEVsontheroadby2030.
3
1Thisstudyconsiderspersonallyowned,light-dutyvehicleswithgrossvehicleweightratingof8,500poundsorless.Importantly,thisdefinitionincludesvehiclesdrivenfortransportationnetworkcompanies(ride-hailing)butexcludesmotorcycles,light-dutycommercialvehicles,andClass2band3worktrucks,theimplicationsofwhicharediscussedinSection
4
ofthisreport.
2ThisstudyispresentedasaneedsassessmentwherethenationalchargingnetworkissizedrelativetosimulateddemandfromahypotheticalPEVfleet.Thisisslightlydifferentfromaninfrastructureforecast,whichmightmakeconsiderationsforchargingprovidersbeingincentivized(byprivateinvestorsorpublicfunding)tofuture-proofinvestments,installcharginginquantitiesfarexceedingdemand,ordeploychargingaspartofalargerbusinessmodelthatconsidersutilizationasasecondarymetricofsuccess.
3NationalPEVfleetsizescenarioshavebeendevelopedusingtheNationalRenewableEnergyLaboratory’sTransportationEnergy&MobilityPathwayOptions(TEMPO)modelandareconsistentwithmultiple2030scenariosdevelopedbythirdparties.PleaseseeSection
2.2.1
foradditionaldetails.
vi
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
EstimatinginfrastructureneedsatthenationallevelisachallenginganalyticproblemthatrequiresquantifyingtheneedsoffuturePEVdriversinvarioususecases,underregion-specificenvironmentalconditions,andwithconsiderationforthebuiltenvironment.ThisanalysisleveragestheNationalRenewableEnergyLaboratory’ssuiteofelectricvehicleinfrastructureanalysistools(EVI-X)andthebestavailablereal-worlddatadescribingPEVadoptionpatterns,vehicletechnology,residentialaccess,travelprofiles,andchargingbehaviortoestimatefuturechargingneeds.MultiplePEVchargingusecasesareconsidered,includingtypicalneedstoaccommodatedailydrivingforthosewithandwithoutresidentialaccess,corridor-basedcharging
4
supportinglong-distanceroadtrips,andride-hailingelectrification.Whiletheanalysisisnationalinscope,thesimulationframeworkenablesinspectionofresultsbystateandcity,withparametricsensitivityanalysisusedtotestarangeofassumptions.Thismodelingapproachisusedtodrawthefollowingconclusions:
?Convenientandaffordablechargingat/nearhomeiscoretotheecosystembutmustbecomplementedbyreliablepublicfastcharging.IndustryfocusgroupswithprospectivePEVbuyersconsistentlyrevealthatconsumerswantchargingthatisasfastaspossible.However,consumerpreferencestendtoshiftafteraPEVpurchaseismadeandlivedexperiencewithchargingisaccumulated.HomecharginghasbeenshowntobethepreferenceofmanyPEVownersduetoitscostandconvenience.Thisdichotomysuggeststhatreliablepublicfastchargingiskeytoconsumerconfidence,butalsothatasuccessfulchargingecosystemwillprovidetherightbalanceoffastchargingandconvenientdestinationchargingintheappropriatelocations.
5
Usingsophisticatedplanningtools,thisanalysisfindsthatanationalnetworkin2030couldbecomposedof26–35millionportstosupport30–42millionPEVs.Foramid-adoptionscenarioof33millionPEVs,anationalnetworkof28millionportscouldconsistof:
o26.8millionprivatelyaccessibleLevel1andLevel2chargingportslocatedatsingle-familyhomes,multifamilyproperties,andworkplaces
6
o182,000publiclyaccessiblefastchargingportsalonghighwaycorridorsandinlocalcommunities
o1millionpubliclyaccessibleLevel2chargingportsprimarilylocatednearhomesandworkplaces(includinginhigh-densityneighborhoods,atofficebuildings,andatretailoutlets).
Incontrasttogasstations,whichtypicallyrequirededicatedstopstopubliclocations,thePEVchargingnetworkhasthepotentialtoprovidecharginginlocationsthatdonot
4ThisstudydefinescorridorsasallroadswithintheNationalHighwaySystem(FederalHighwayAdministration2017),includingtheInterstateHighwaySystem,aswellasotherroadsimportanttonationaltransportation.
5ThisstudyconsidersLevel1andLevel2alternating-current(AC)chargersratedbetween1.4and19.2kWasdestinationchargersforlight-dutyvehicles.Direct-current(DC)chargerswithnominalpowerratingsbetween150and350+kWareconsideredfastchargersforlight-dutyvehiclesinthiswork.ItistheopinionoftheauthorsthatreferringtoallDCchargingas“DCfastcharging”(DCFC)(asistypicallydone)isinappropriategiventhattheuseof“fast”asadescriptorultimatelydependsonthecapacityofthebatterybeingcharged.Aslargercapacitylight-dutyPEVsenterthemarketandmedium-andheavy-dutymodeloptionsemerge,itislikelythecasethatsomeDCchargerswillactuallybeusedtoslowlychargePEVs.Thus,thecommonpracticeofreferringtoallDCchargingasDCFCisnoticeablyabsentfromthisreport.
6ThisanalysisemploysanovelcharginginfrastructuretaxonomythatconsidersworkplacechargingasamixofpubliclyandprivatelyaccessibleinfrastructureatavarietyoflocationtypesasdiscussedinSection
2.3.2.
vii
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
requireanadditionaltriporstop.Chargingatlocationswithlongdwelltimes(at/nearhome,work,orotherdestinations)hasthepotentialtoprovidedriverswithamoreconvenientexperience.ThisnetworkmustincludereliablefastchargingsolutionstosupportPEVusecasesnoteasilyenabledbydestinationcharging,includinglong-distancetravelandride-hailing,andtomakeelectricvehicleownershipattainableforthosewithoutreliableaccesschargingwhileathomeoratwork.
?Fastchargingservesmultipleusecases,andtechnologyisevolvingrapidly.Themajorityofthe182,000fastchargingports(65%)simulatedinthemid-adoptionscenariomeettheneedsofthosewithoutaccesstoreliableovernightresidentialcharging(estimatedas3millionvehiclesby2030inthemid-adoptionscenario).Supportforride-hailingdriversandtravelersmakinglong-distancetripsaccountsfortheremainderofsimulatedfastchargingdemand(21%and14%,respectively).Whilemostnear-termfastchargingdemandissimulatedasbeingmetby150-kWDCchargers,advancesinbatterytechnologyareexpectedtostimulatedemandforhigher-powercharging.Weestimatethatby2030,DCchargersratedforatleast350kWwillbethemostprevalenttechnologyacrossthenationalfastchargingnetwork.
?Thesizeandcompositionofthe2030nationalpublicchargingnetworkwillultimatelydependonevolvingconsumerbehaviorandwillvarybycommunity.
Whilegrowthinalltypesofchargingisnecessary,theeventualsizeandcompositionofthenationalpublicchargingnetworkwillultimatelydependonthenationalrateofPEVadoption,PEVpreferencesacrossurban,suburban,andrurallocations,accesstoresidential/overnightcharging,andindividualchargingpreferences.Sensitivityanalysissuggeststhatthesize(asmeasuredbynumberofports)ofthe2030nationalpublicchargingnetworkcouldvarybyupto50%(excludingprivatelyaccessibleinfrastructure)byvaryingtheshareofplug-inhybrids,driverchargingetiquette,andaccesstoprivateworkplacecharging(seealternatescenariospresentedinSection
3.3
).Additionally,thenationalnetworkisexpectedtovarydramaticallybycommunity.Forexample,denselypopulatedareaswillrequiresignificantinvestmentstosupportthosewithoutresidentialaccessandride-hailingelectrification,whilemoreruralareasareexpectedtorequirefastchargingalonghighwaystosupportlong-distancetravelforthosepassingthrough.
?ContinuedinvestmentsinU.S.charginginfrastructurearenecessary.Acumulative
nationalcapitalinvestmentof$53–$127billion
7
incharginginfrastructureisneededby2030(includingprivateresidentialcharging)tosupport33millionPEVs.Thelargerangeofpotentialcapitalcostsfoundinthisstudyisaresultofvariableandevolvingequipmentandinstallationcostsobservedwithintheindustryacrosschargingnetworks,locations,andsitedesigns.Theestimatedcumulativecapitalinvestmentincludes:
o$22–$72billionforprivatelyaccessibleLevel1andLevel2chargingports
o$27–$44billionforpubliclyaccessiblefastchargingports
o$5–$11billionforpubliclyaccessibleLevel2chargingports.
Thecostofgridupgradesanddistributedenergyresourceshavebeenexcludedfromtheseestimates.Whiletheseexcludedcostscanbesignificantinmanycasesandwill
7Thescopeofcostestimatescanbegenerallydefinedascapitalexpensesforequipmentandinstallationnecessarytosupportvehiclecharging.PleaserefertoSection
2.3.4
foradditionaldetail.
viii
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
ultimatelybecriticalinbuildingoutthenationalchargingnetwork,theytendtobesite-specificandhavebeendeemedoutofscopeforthisanalysis.
?ExistingannouncementsputtheUnitedStatesonapathtomeet2030investmentneeds.Thisreportestimatesthata$31–$55-billioncumulativecapitalinvestmentinpubliclyaccessiblecharginginfrastructureisnecessarytosupportamid-adoptionscenarioof33millionPEVsontheroadby2030.AsofMarch2023,weestimate$23.7billionofcapitalhasbeenannouncedforpubliclyaccessiblelight-dutyPEVcharginginfrastructurethroughtheendofthedecade,
8
includingfromprivatefirms,thepublicsector(includingfederal,state,andlocalgovernments),andelectricutilities.Publicandprivateinvestmentsinpubliclyaccessiblecharginginfrastructurehaveacceleratedinrecentyears.Ifsustainedwithlong-termmarketcertaintygroundedinacceleratingconsumerdemand,thesepublicandprivateinvestmentswillputtheUnitedStatesonapathtomeetingtheinfrastructureneedssimulatedinthisreport.Existingandfutureannouncementsmaybeabletoleveragedirectandindirectincentivestodeploycharginginfrastructurethroughavarietyofprograms,includingfromtheInflationReductionActandtheLowCarbonFuelStandard,ultimatelyextendingthereachofannouncedinvestments.
Whilethisanalysispresentsaneeds-basedassessmentwherecharginginfrastructureisbroughtonlinesimultaneoustogrowthinthevehiclefleet,actualcharginginfrastructurewilllikelybenecessarybeforedemandforchargingmaterializes.Thepositionthatinfrastructureinvestmentshould“l(fā)ead”vehicledeploymentisbasedontheunderstandingthatmanydriverswillneedtoseechargingavailableatthelocationstheyfrequentandalongthehighwaystheytravelbeforebecomingconfidentinthepurchaseofanelectricvehicle(Muratorietal.2020).Ontheotherhand,infrastructureinvestmentshouldbecarefulnottoleadvehicledeploymenttothepointofcreatingprolongedperiodsofpoorutilization,therebyjeopardizingthefinancialviabilityofinfrastructureoperators.
9
Theseconsiderationssuggestthebalanceofsupplyanddemandforchargingshouldbecloselymonitoredatthelocallevelandthatstepsshouldbetakentoenabletheefficientdeploymentofcharging(definedasminimizingsoftcosts[NelderandRogers2019]),includingstreamlinedpermittingandutilityserviceconnectionprocesses(Hernandez2022).Whilenotthecasetoday,anenvironmentwhereinfrastructurecanbedeployedefficientlyenablestheindustrytoresponsivelybalancethesupplyofinfrastructuresubjecttoforecastsforunprecedentedincreasesindemand.
Thisstudyleadsustoreflectonhowcharginginfrastructureplanninghasoftenbeenanalogizedtoapyramid,withchargingathomeasthefoundation,publicfastchargingasthesmallestpartofthenetworkatthetipofthepyramid,anddestinationchargingawayfromhomeoccupyingthemiddleofthepyramid.Whilethisconcepthasservedausefulpurposeovertheyears,werecommendanewconceptualmodel.Thebalanceofpublicversusprivatechargingandfast
8BasedoninvestmenttrackingconductedbyAtlasPublicPolicy.
9Whileutilizationisakeymetrictomoststationowners,itisnottheonlymetricofsuccess.Businessmodelsunderlyingchargingnetworksarecomplexandevolving,withsomestationscollocatedwithmorelucrativeretailactivities(asisthecasewithmostgasstationstodayofferingfuelatlowermarginsthanitemsintheconveniencestore)andsomestationsdeployedatalosstohelp“complete”thenetworkinareascriticalforenablinginfrequent,long-distancetravel.Businessrelationshipsbetweenchargingnetworks,automakers,advertisers,andsitehostsalsomakeitdifficulttomeasurethesuccessofanindividualstationfromutilizationalone.
ix
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
chargingversusdestinationchargingsuggestsaplanningphilosophyakintoatree,asshownin
FigureES-1
.
Aswithatree,therearepartsofthenationalchargingnetworkthatarevisibleandthosethatarehidden.Publicchargingisthevisiblepartofthenetworkthatcanbeseenalonghighways,atpopulardestinations,andthroughdataaccessibleonline.Privatechargingisthehiddenpartofthenetworktuckedawayinpersonalgarages,atapartmentcomplexes,andatcertaintypesofworkplaces.Thisprivatenetworkisakintotherootsofatree,asitisfoundationaltotherestofthesystemandanenablerforgrowthinmorevisiblelocations.
FigureES-1.Conceptualillustrationofnationalcharginginfrastructureneeds
Ifaccesstoprivatechargingaretherootsofthesystem,areliablepublicfastchargingnetworkisthetrunk,asitbenefitsfromaccesstochargingathomeandotherprivatelocations(akeysellingpointofPEVs)andultimatelyhelpsgrowthesystembymakingPEVownershipmoreconvenient(enablingroadtripsandsupportingthosewithoutresidentialaccess).Whilefastchargingisestimatedtobearelativelysmallpartofthenationalnetworkintermsofnumberoftotalports,itrequiressignificantinvestmentandisvitaltoenablingfuturegrowthbyassuringdriverstheywillbeabletochargequicklywhenevertheyneedorwant.
Thelastpartofthesystemisabroadsetofpubliclyaccessibledestinationcharginglocationsindenseneighborhoods,officebuildings,andretailoutletswherethespeedofchargingcanbedesignedtomatchtypicalparkingtimes(“right-speeding”).Thisnetworkissimilartothebranchesofatreeinthatitsexistenceiscontingentonabroadprivatenetworkandareliablefastchargingnetwork.Aswiththebranchesofatree,thepublicdestinationchargingnetworkisill-equippedtogrowwithoutthesupportofchargingelsewhere.
x
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
Thisanalysisenvisionsafuturenationalchargingnetworkthatisstrategicinlocatingtherightamountofcharging,intherightlocations,withappropriatechargingpower.EnsuringthatthisinfrastructureisreliablewillbeessentialtoestablishingdriverconfidenceandacceleratingwidespreadadoptionofPEVs.AsuccessfulnationalchargingnetworkwillpositionPEVstoprovideasuperiordrivingexperience,lowertotalcostofownershipfordrivers,becomeprofitableforindustryparticipants,andenablegridintegration,allwhilemeetingU.S.climategoals.
xi
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
TableofContents
ExecutiveSummary v
1.Introduction 1
1.1.CurrentStateofU.S.PEVandEVSEMarkets 2
1.2.RecentChargingInfrastructureInvestmentandAnalysisStudies 3
1.3.EquityConsiderations 4
1.4.ReportMotivationandStructure 5
2.AnIntegratedApproachforMultipleLDVUseCases 6
2.1.ModelingPhilosophyandSimulationPipeline 8
2.1.1.EVI-Pro:ChargingDemandsforDailyTravel 9
2.1.2.EVI-RoadTrip:ChargingDemandsforLong-DistanceTravel 10
2.1.3.EVI-OnDemand:ChargingDemandsforRide-HailingPEVs 11
2.1.4.Utilization-BasedNetworkSizing 12
2.2.Demand-SideConsiderations:DefiningPEVUseCaseScenarios 13
2.2.1.PEVAdoptionandFleetComposition 15
2.2.2.PEVTechnologyAttributes 18
2.2.3.ResidentialChargingAccess(There’sNoPlaceLikeHome) 20
2.2.4.DrivingPatterns 23
2.2.5.ChargingBehavior 27
2.3.Supply-SideConsiderations:ChargingNetworkTerminology,Taxonomy,Utilization,
andCost 28
2.3.1.EVSETerminology 28
2.3.2.EVSETaxonomy 29
2.3.3.NetworkUtilization 30
2.3.4.Cost 33
3.TheNationalChargingNetworkof2030 35
3.1.2030ResultsbyEVSETaxonomy,PEVUseCase,andRegion 35
3.1.1.ResultsbyEVSETaxonomy 35
3.1.2.ResultsbyPEVUseCase 37
3.1.3.ResultsbyRegion 40
3.2.NetworkGrowthFrom2022to2030 49
3.3.AlternateScenarios 51
4.Discussion 56
4.1.PhilosophicalContribution 56
4.2.ModelingUncertainty 57
4.3.CostEstimateConsiderations 58
4.4.CriticalTopicsforFutureResearch 59
4.5.AccessingEVI-XCapabilities 60
References 61
Appendix:2022ModelingComparison 67
xii
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratoryat/publications.
ListofFigures
FigureES-1.Conceptualillustrationofnationalcharginginfrastructureneeds ix
Figure1.SharedsimulationpipelineintegratingEVI-Pro,EVI-RoadTrip,andEVI-OnDemand 9
Figure2.EVI-Problockdiagramforchargingbehaviorsimulationsandnetworkdesign 10
Figure3.EVI-RoadTripblockdiagramfortrafficgeneration,chargingbehaviorsimulations,andnetwork
design 11
Figure4.EVI-OnDemandblockdiagramfordriversimulationsandrelatedassumptions 12
Figure5.Conceptualdiagramillustratingindependentdemandestimations,demandaggregation,and
integratednetworkdesign 12
Figure6.CompositehourlydemandforDCchargingbyusecaseforanillustrativeregion 13
Figure7.U.S.nationallight-dutyPEVstockunderthreeadoptionscenarios 16
Figure8.Assumedspatialdistributionof33millionPEVsin2030byCBSAandstate 17
Figure9.Spatialdistributionofnew(2019–2022)LDVregistrationsbybodytype 18
Figure10.ResidentialchargingaccessibilityscenariosasafunctionofPEVstockshare.Intheboxplot
figure,theboxreflectstheinnerquartilerange(25%–75%),withthehorizontalline
reflectingthemedianvalue.Whiskersrepresentthe5thand95thpercentilevalues,
respectively 21
Figure11.Likelihoodofovernightchargingaccessforride-hailingdriversforthebaselinescenario
acrossallmetropolitanCBSAs 22
Figure12.2017NHTSau
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 個(gè)人房屋擔(dān)保合同細(xì)則
- 個(gè)人借款還款合同書樣本
- 專業(yè)商品保管合同樣本全新修訂版
- 個(gè)人消費(fèi)借款合同模板
- 個(gè)體商家合作合同范本權(quán)威版
- 臨時(shí)用工分包合同
- 個(gè)人住房按揭貸款合同樣本
- 個(gè)人房屋抵押借款正式合同書
- 上海全日制員工勞動(dòng)合同模板
- 2024年文化產(chǎn)業(yè)合作項(xiàng)目執(zhí)行合同
- 安全生產(chǎn)網(wǎng)格員培訓(xùn)
- 統(tǒng)編版語文三年級(jí)下冊(cè)第三單元綜合性學(xué)習(xí)中華傳統(tǒng)節(jié)日 活動(dòng)設(shè)計(jì)
- 降低順產(chǎn)產(chǎn)婦產(chǎn)后2小時(shí)失血率PDCA成果匯報(bào)書
- 小學(xué)數(shù)學(xué)分?jǐn)?shù)四則混合運(yùn)算300題帶答案
- 林下野雞養(yǎng)殖建設(shè)項(xiàng)目可行性研究報(bào)告
- 心肺復(fù)蘇術(shù)課件2024新版
- 苜蓿青貯料質(zhì)量分級(jí)DB41-T 1906-2019
- 新鮮牛肉購銷合同模板
- 2024年內(nèi)蒙古呼和浩特市中考文科綜合試題卷(含答案)
- 大型商場(chǎng)招商招租方案(2篇)
- 會(huì)陰擦洗課件
評(píng)論
0/150
提交評(píng)論