版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一、圓的概念2、圓的外部:可以看作是到定點(diǎn)的距離大于定長(zhǎng)的點(diǎn)的集合;3、圓的內(nèi)部:可以看作是到定點(diǎn)的距離小于定長(zhǎng)的點(diǎn)的集合1、圓:到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡就是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓;(補(bǔ)充)2、垂直平分線:到線段兩端距離相等的點(diǎn)的軌跡是這條線段的垂直平分線(也叫中垂3、角的平分線:到角兩邊距離相等的點(diǎn)的軌跡是這個(gè)角的平分線;4、到直線的距離相等的點(diǎn)的軌跡是:平行于這條直線且到這條直線的距離等于定長(zhǎng)的5、到兩條平行線距離相等的點(diǎn)的軌跡是:平行于這兩條平行線且到兩條直線距離都相二、點(diǎn)與圓的位置關(guān)系rOBC三、直線與圓的位置關(guān)系3、直線與圓相交d<r有兩個(gè)交點(diǎn);rdrd四、圓與圓的位置關(guān)系外離(圖1)常無(wú)交點(diǎn)常d>R+r;外切(圖2)常有一個(gè)交點(diǎn)常ddrRrrR圖1圖2d圖3五、垂徑定理垂徑定理:垂直于弦的直徑平分弦且平分弦所對(duì)的弧。推論11)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條?。唬?)弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧;(3)平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧以上共4個(gè)定理,簡(jiǎn)稱2推3定理:此定理中共5個(gè)結(jié)論中,只要知道其中2個(gè)即可推EEFODACB推論2:圓的兩條平行弦所夾的弧相等。ADODCODEODCBABB只要知道其中的1個(gè)相等,則可以推出其它的3個(gè)結(jié)論,CDCBOABOA推論1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧是等?。患矗涸凇袿中,∵C、D都是所對(duì)的圓周角CABAO推論2:半圓或直徑所對(duì)的圓周角是直角;圓周角是直角所對(duì)的弧是半圓,所對(duì)的弦是直徑。推論3:若三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。CABAO在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等.八、圓內(nèi)接四邊形圓的內(nèi)接四邊形定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),外角等于它的內(nèi)對(duì)角。DCA九、切線的性質(zhì)與判定定理(1)切線的判定定理:過半徑外端且垂直于半徑的直線是切線;兩個(gè)條件:過半徑外端且垂直半徑,二者缺一不可∴MN是⊙O的切線O(2)性質(zhì)定理:切線垂直于過切點(diǎn)的半徑(如上圖)推論1:過圓心垂直于切線的直線必過切點(diǎn)。PP推論2:過切點(diǎn)垂直于切線的直線必過圓心。即:①過圓心;②過切點(diǎn);③垂直切線,三個(gè)條件中知道其中兩個(gè)條件就能推出最后一個(gè)。十、切線長(zhǎng)定理切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,這點(diǎn)和圓心的連線平分兩條切線BBOABCOPDABDA(2)推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)。AEDOPCBDOPCB(4)割線定理:從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積.PE十二、兩圓公共弦定理圓公共弦定理:兩圓圓心的連線垂直并且平分這兩個(gè)圓的的公共弦。ABA∴OO垂直平分ABCCBBCOADCBCOEEOA十五、扇形、圓柱和圓錐的相關(guān)計(jì)算公式21OSAB2ABDD母線長(zhǎng)底面圓周長(zhǎng)C2h212h3OARrBAEOBFD(1)由以上條件,你認(rèn)為AB和CD大小關(guān)系是什么,請(qǐng)說(shuō)明理由.(2)若交點(diǎn)P在⊙O的外部,上述結(jié)論是否成立?若成立,加以證明;若不成立,請(qǐng)說(shuō)明理由.(2)若⊙B過M2,0)且與⊙A相切,求B點(diǎn)坐標(biāo).AFDMCPEONBAAEBMPDCNF例6如圖,點(diǎn)O是ΔABC的內(nèi)切圓的圓心,若∠BAC=80°,則∠BOC=()(1)CD與⊙O相切嗎?如果相切,請(qǐng)你加以證明,如果不相切,請(qǐng)說(shuō)明理由.yyA_Ox例9.如圖,已知正六邊形ABCDEF,其外接圓的半徑是a,?求正六邊形的周長(zhǎng)和面積.例10.在直徑為AB的半圓內(nèi),劃出一塊三角形區(qū)域,如圖所示,使三角形的一邊為AB,頂點(diǎn)是否位于最大矩形水池的邊上?如果在,為了保護(hù)大樹,請(qǐng)?jiān)O(shè)計(jì)出另外的方案,使內(nèi)接于滿足條件的三角形中欲建的最大矩形水池能避開大樹.心角為直角的扇形紙板的圓心放在O處,并將紙板繞O點(diǎn)旋轉(zhuǎn),求證:正方形ABCD的邊被紙板覆蓋部分的總長(zhǎng)度為定值a.(1)若AP過圓心O,如圖①,請(qǐng)你判斷△PDC是什么三角形?并說(shuō)明理由.AAAOOBBCBBPPPDDAOED(2)若用陰影扇形OBD圍成一個(gè)圓錐側(cè)面,請(qǐng)求出這個(gè)圓錐的底面圓的半徑.例17.如圖,從一個(gè)直徑是2的圓形鐵皮中剪下一個(gè)圓心角為90的扇形.(2)在剩下的三塊余料中,能否從第③塊余料中剪出一個(gè)圓作為底面與此扇形圍成一個(gè)圓錐?請(qǐng)說(shuō)明理由.A①O③②的交點(diǎn),其他條件不變,那么上述結(jié)論CD=CE還成立嗎?為什么CDGE半徑作⊙D,分別過點(diǎn)A、B作⊙D的切線,兩條切線相交于點(diǎn)C.CEOBC∥AD,CD∥BH∥FM,BC∥DG,DH∥BH于
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年臨時(shí)工派遣合同樣本
- 信托公司委托貸款合同
- 纜索吊機(jī)租賃合同樣本
- 標(biāo)準(zhǔn)家教服務(wù)合同范本
- 2024標(biāo)準(zhǔn)附期限借款合同樣本
- 2024模板采購(gòu)合同范本
- 2024工程裝修簡(jiǎn)易合同樣本
- 物業(yè)租賃合同模板
- 技術(shù)服務(wù)合同中的保密義務(wù)與條款
- 建材產(chǎn)品購(gòu)銷協(xié)議樣本
- 民法典講座-繼承篇
- 外包施工單位入廠安全培訓(xùn)(通用)
- 糖尿病健康知識(shí)宣教課件
- 客戶接觸點(diǎn)管理課件
- Python語(yǔ)言學(xué)習(xí)通超星課后章節(jié)答案期末考試題庫(kù)2023年
- 醫(yī)學(xué)-心臟驟停急救培訓(xùn)-心臟驟停急救教學(xué)課件
- 高中英語(yǔ)-Book 1 Unit 4 Click for a friend教學(xué)課件設(shè)計(jì)
- 年產(chǎn)30萬(wàn)噸碳酸鈣粉建設(shè)項(xiàng)目可行性研究報(bào)告
- 主題班會(huì)如何對(duì)待厭學(xué)情緒(初二) 省賽獲獎(jiǎng) 省賽獲獎(jiǎng)
- 初中數(shù)學(xué)北師大版七年級(jí)上冊(cè)課件5-4 應(yīng)用一元一次方程-打折銷售
- 0-6歲兒童健康管理服務(wù)規(guī)范(第三版)
評(píng)論
0/150
提交評(píng)論