版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021年河北省邯鄲市市第一中學(xué)高二數(shù)學(xué)理模擬試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.考慮一元二次方程,其中的取值分別等于將一枚骰子連擲兩次先后出現(xiàn)的點(diǎn)數(shù),則方程有實(shí)根的概率為(
)A.
B.
C.
D.參考答案:A2.在線性回歸模型中,下列說(shuō)法正確的是(
).A.是一次函數(shù)
B.因變量y是由自變量x唯一確定的C.因變量y除了受自變量x的影響外,可能還受到其它因素的影響,這些因素會(huì)導(dǎo)致隨機(jī)誤差e的產(chǎn)生D.隨機(jī)誤差e是由于計(jì)算不準(zhǔn)確造成的,可以通過(guò)精確計(jì)算避免隨機(jī)誤差e的產(chǎn)生參考答案:C3.設(shè)命題p:?x0∈R,x﹣1>0,則¬p為()A.?x0∈R,x﹣1≤0 B.?x0∈R,x﹣1<0C.?x∈R,x2﹣1≤0 D.?x∈R,x2﹣1<0參考答案:C【考點(diǎn)】命題的否定.【專題】轉(zhuǎn)化思想;定義法;簡(jiǎn)易邏輯.【分析】根據(jù)特稱命題的否定是全稱命題進(jìn)行判斷即可.【解答】解:命題是特稱命題,則命題的否定是:?x∈R,x2﹣1≤0,故選:C【點(diǎn)評(píng)】本題主要考查含有量詞的命題的否定,比較基礎(chǔ).4.設(shè)變量,滿足約束條件,則目標(biāo)函數(shù)的最小值為
A.
B.
C.
D.參考答案:B5.某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如下表:廣告費(fèi)用x(萬(wàn)元)4235銷售額y(萬(wàn)元)4926?54由上表求得回歸方程=9.4x+9.1,當(dāng)廣告費(fèi)用為3萬(wàn)元時(shí),銷售額為()A.39萬(wàn)元 B.38萬(wàn)元 C.38.5萬(wàn)元 D.39.373萬(wàn)元參考答案:A【考點(diǎn)】線性回歸方程.【分析】算出x的平均數(shù),y的平均數(shù),利用線性回歸方程,得到自變量為3時(shí)的預(yù)報(bào)出結(jié)果.【解答】解:設(shè)當(dāng)廣告費(fèi)用為3萬(wàn)元時(shí),銷售額為m,由題意,==3.5,=,代入=9.4x+9.1,可得=9.4×3.5+9.1,∴m=39.故選:A.6.設(shè)命題P:?x>0,x2≤1,則¬P為()A.?x>0,x2<1 B.?x>0,x2>1 C.?x>0,x2>1 D.?x>≤0,x2≤1參考答案:C【考點(diǎn)】2K:命題的真假判斷與應(yīng)用.【分析】由?x∈A,M成立,其否定為:?x∈A,¬M成立.對(duì)照選項(xiàng)即可得到結(jié)論.【解答】解:由?x∈A,M成立,其否定為:?x∈A,¬M成立.命題P:?x>0,x2≤1,可得¬P為?x>0,x2>1,故選:C.7.設(shè),則下列不等式中正確的是(
)A.
B.
C.
D.參考答案:B略8.從甲單位的3人和乙單位的2人中選出3人參加一項(xiàng)聯(lián)合調(diào)查工作,要求這3人中兩個(gè)單位的人都要有,則不同的選法共有
(
)
A.9種
B.10種
C.18種
D.20種
參考答案:A9.執(zhí)行如圖所示的程序框圖,輸出.那么判斷框內(nèi)應(yīng)填()A.k≤2015 B.k≤2016 C.k≥2015 D.k≥2016參考答案:A【考點(diǎn)】程序框圖.【專題】計(jì)算題;圖表型;運(yùn)動(dòng)思想;分析法;算法和程序框圖.【分析】模擬執(zhí)行程序框圖,根據(jù)程序的功能進(jìn)行求解即可.【解答】解:本程序的功能是計(jì)算S=++…+=1﹣+﹣+…+﹣=1﹣,由1﹣=,得=,即k+1=2016,即k=2015,即k=2016不成立,k=2015成立,故斷框內(nèi)可填入的條件k≤2015,故選:A.【點(diǎn)評(píng)】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用問(wèn)題,也考查了數(shù)列求和的應(yīng)用問(wèn)題,屬于基礎(chǔ)題.10.如果函數(shù)y=|x|﹣2的圖象與曲線C:x2+y2=λ恰好有兩個(gè)不同的公共點(diǎn),則實(shí)數(shù)λ的取值范圍是(
)A.{2}∪(4,+∞) B.(2,+∞) C.{2,4} D.(4,+∞)參考答案:A【考點(diǎn)】直線與圓相交的性質(zhì).【專題】直線與圓.【分析】根據(jù)題意畫出函數(shù)y=|x|﹣2與曲線C:x2+y2=λ的圖象,抓住兩個(gè)關(guān)鍵點(diǎn),當(dāng)圓O與兩射線相切時(shí),兩函數(shù)圖象恰好有兩個(gè)不同的公共點(diǎn),過(guò)O作OC⊥AB,由三角形AOB為等腰直角三角形,利用三線合一得到OC為斜邊AB的一半,利用勾股定理求出斜邊,即可求出OC的長(zhǎng),平方即可確定出此時(shí)λ的值;當(dāng)圓O半徑為2時(shí),兩函數(shù)圖象有3個(gè)公共點(diǎn),半徑大于2時(shí),恰好有2個(gè)公共點(diǎn),即半徑大于2時(shí),滿足題意,求出此時(shí)λ的范圍,即可確定出所有滿足題意λ的范圍.【解答】解:根據(jù)題意畫出函數(shù)y=|x|﹣2與曲線C:x2+y2=λ的圖象,如圖所示,當(dāng)AB與圓O相切時(shí)兩函數(shù)圖象恰好有兩個(gè)不同的公共點(diǎn),過(guò)O作OC⊥AB,∵OA=OB=2,∠AOB=90°,∴根據(jù)勾股定理得:AB=2,∴OC=AB=,此時(shí)λ=OC2=2;當(dāng)圓O半徑大于2,即λ>4時(shí),兩函數(shù)圖象恰好有兩個(gè)不同的公共點(diǎn),綜上,實(shí)數(shù)λ的取值范圍是{2}∪(4,+∞).故選A【點(diǎn)評(píng)】此題考查了直線與圓相交的性質(zhì),利用了數(shù)形結(jié)合的思想,靈活運(yùn)用數(shù)形結(jié)合思想是解本題的關(guān)鍵.二、填空題:本大題共7小題,每小題4分,共28分11.執(zhí)行如圖所示的偽代碼,輸出i的值為
.參考答案:11【考點(diǎn)】程序框圖.【分析】根據(jù)已知的程序語(yǔ)句可得,該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量i的值,模擬程序的運(yùn)行過(guò)程,可得答案.【解答】解:當(dāng)i=1,S=0時(shí),滿足進(jìn)行循環(huán)的條件,執(zhí)行循環(huán)后,S=5,i=3;當(dāng)i=3,S=5時(shí),滿足進(jìn)行循環(huán)的條件,執(zhí)行循環(huán)后,S=9,i=5;當(dāng)i=5,S=9時(shí),滿足進(jìn)行循環(huán)的條件,執(zhí)行循環(huán)后,S=13,i=7;當(dāng)i=7,S=13時(shí),滿足進(jìn)行循環(huán)的條件,執(zhí)行循環(huán)后,S=17,i=9;當(dāng)i=9,S=17時(shí),滿足進(jìn)行循環(huán)的條件,執(zhí)行循環(huán)后,S=21,i=11;當(dāng)i=11,S=21時(shí),不滿足進(jìn)行循環(huán)的條件,故輸出的i值為11,故答案為:1112.已知函數(shù)f(x)=x2-mx對(duì)任意的x1,x2∈[0,2],都有|f(x2)-f(x1)|≤9,求實(shí)數(shù)m的取值范圍
.參考答案:∵f(x)=x2﹣mx對(duì)任意的x1,x2∈,都有|f(x2)﹣f(x1)|≤9,∴f(x)max﹣f(x)min≤9,∵函數(shù)f(x)=x2﹣mx的對(duì)稱軸方程為:x=,①若≤0,即m≤0時(shí),函數(shù)f(x)=x2﹣mx在區(qū)間上單調(diào)遞增,f(x)max=f(2)=4﹣2m,f(x)min=f(0)=0,依題意,4﹣2m≤9,解得:m≥﹣,即﹣≤m≤0;②若0<≤1,即0<m≤2時(shí),同理可得,f(x)max=f(2)=4﹣2m,f(x)min=f()=﹣,依題意,4﹣2m﹣(﹣)≤9,解得:﹣2≤m≤10,即0<m≤2;③若1<≤2即2<m≤4時(shí),同上得:f(x)max=f(0)=0,f(x)min=f()=﹣,依題意,0﹣(﹣)≤9,解得:﹣6≤m≤6,即2<m≤4;④若>2即m>4時(shí),函數(shù)f(x)=x2﹣mx在區(qū)間上單調(diào)遞減,f(x)max=f(0)=0,f(x)min=f(2)=4﹣2m,依題意,0﹣(4﹣2m)≤9,解得:m≤,即4<m≤;綜合①②③④得:﹣≤m≤.故答案為:[,].
13.拋物線x=4y2的準(zhǔn)線方程是.參考答案:x=﹣【考點(diǎn)】拋物線的簡(jiǎn)單性質(zhì).【分析】拋物線方程化為標(biāo)準(zhǔn)方程形式求出p,再根據(jù)開(kāi)口方向,寫出其準(zhǔn)線方程.【解答】解:拋物線x=4y2,化為y2=x,∴2p=,∴p=,開(kāi)口向右,∴準(zhǔn)線方程是x=﹣.故答案為x=﹣.14.手表的表面在一平面上。整點(diǎn)1,2,…,12這12個(gè)數(shù)字等間隔地分布在半徑為的圓周上。從整點(diǎn)i到整點(diǎn)(i+1)的向量記作,則=
參考答案:解析:連接相鄰刻度的線段構(gòu)成半徑為的圓內(nèi)接正12邊形。相鄰兩個(gè)邊向量的夾角即為正12邊形外角,為30度。各邊向量的長(zhǎng)為
。則.共有12個(gè)相等項(xiàng)。所以求得數(shù)量積之和為.15.已知,(兩兩互相垂直),那么=
。參考答案:-6516.等差數(shù)列中,,,則公差=
參考答案:317.定義:對(duì)任意實(shí)數(shù),函數(shù).設(shè)函數(shù),則函數(shù)的最大值等于
▲
.參考答案:3
三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟18.為調(diào)查中國(guó)及美國(guó)的高中生在“家”、“朋友聚集的地方”、“個(gè)人空間”這三個(gè)場(chǎng)所中感到最幸福的場(chǎng)所是哪個(gè),從中國(guó)某城市的高中生中隨機(jī)抽取了55人,從美國(guó)某城市高中生中隨機(jī)抽取了45人進(jìn)行答題。中國(guó)高中生的答題情況:選擇“家”的高中生的人數(shù)占,選擇“朋友聚集的地方”的高中生的人數(shù)占,選擇“個(gè)人空間”的高中生的人數(shù)占,美國(guó)高中生的答題情況:選擇“家”的高中生的人數(shù)占,選擇“朋友聚集的地方”的高中生的人數(shù)占,選擇“個(gè)人空間”的高中生的人數(shù)占。(1)請(qǐng)根據(jù)以上調(diào)查結(jié)果將下面的2X2列聯(lián)表補(bǔ)充完整,并判斷能否有95%的把握認(rèn)為戀家(在家里感到最幸福)與國(guó)別有關(guān);
在家里感到最幸福在其他場(chǎng)所感到最幸??傆?jì)中國(guó)高中生
美國(guó)高中生
總計(jì)
(2)從被調(diào)查的不“戀家”的美國(guó)高中生中,用分層抽樣的方法隨機(jī)選出4人接受進(jìn)一步調(diào)查,再?gòu)?人中隨機(jī)選出2人到中國(guó)交流學(xué)習(xí),求2人中含有在“個(gè)人空間”感到最幸福的高中生的概率。0.0500.0250.0100.0013.8415.0246.63510.8
附:參考答案:(1)有95%的把握認(rèn)為戀家與國(guó)別有關(guān)(2)p=【分析】(1)根據(jù)題意填寫列聯(lián)表,計(jì)算觀測(cè)值,對(duì)照臨界值,即可得出結(jié)論;(2)根據(jù)分層抽樣原理,利用列舉法求出基本事件的件數(shù),計(jì)算所求的概率值.【詳解】(1)由題意,中國(guó)高中生的答題情況:選擇“家”的高中生的人數(shù)為人,則選擇“其他場(chǎng)所”的高中生的人數(shù)為33人,美國(guó)高中生的答題情況:選擇“家”的高中生的人數(shù)為人,則選擇“其他場(chǎng)所”的高中生的人數(shù)占36人,可得的列表:
在家里感到最幸福在其他場(chǎng)所感到最幸??傆?jì)中國(guó)高中生223355美國(guó)高中生9445總計(jì)3169100
所以,所以有95%的把握認(rèn)為“戀家”與國(guó)別有關(guān).(2)用分層抽樣的方法抽取4人,從被調(diào)查的不“戀家”的美國(guó)高中生中選出4人,其中含有在“個(gè)人空間”的有1人,分別設(shè)為,從中抽取2人,共有:,共有6種抽法,其中含有“個(gè)人空間”共有:,共有3種,所以2人中含有在“個(gè)人空間”感到最幸福的高中生的概率為.【點(diǎn)睛】本題主要考查了獨(dú)立性檢驗(yàn)的應(yīng)用,以及古典概型及其概率的計(jì)算,其中解答中根據(jù)題意準(zhǔn)確列出的列聯(lián)表,以及正確列舉出基本事件的總數(shù)是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于基礎(chǔ)題.19.已知函數(shù),數(shù)列{an}對(duì)于,總有,(1)求,,的值,并猜想數(shù)列{an}的通項(xiàng)公式;(2)用數(shù)學(xué)歸納法證明你的猜想.參考答案:(1),,,(2)見(jiàn)證明【分析】(1)計(jì)算得到,,,猜想.(2)利用數(shù)學(xué)歸納法驗(yàn)證,假設(shè),推導(dǎo)的順序證明猜想.【詳解】(1)解:由,得,因?yàn)?,所以,,,猜?(2)證明:用數(shù)學(xué)歸納法證明如下:①當(dāng)時(shí),,猜想成立;②假設(shè)當(dāng)時(shí)猜想成立,即,則當(dāng)時(shí),,所以當(dāng)時(shí)猜想也成立.由①②知,對(duì),都成立.【點(diǎn)睛】本題考查了數(shù)列的計(jì)算,歸納猜想,數(shù)學(xué)歸納法,意在考查學(xué)生對(duì)于數(shù)學(xué)歸納法的掌握情況.20.在1,2,3,4,5的所有排列中,(1)求滿足的概率;(2)記為某一排列中滿足的個(gè)數(shù),求的分布列和數(shù)學(xué)期望.參考答案:解:(1)所有的排列種數(shù)有個(gè).滿足的排列中,若取集合中的元素,取集合中的元素,都符合要求,有個(gè).若取集合中的元素,取集合中的元素,這時(shí)符合要求的排列只有共4個(gè).故滿足的概率.…………6分(2)隨機(jī)變量可以取,,,,?!?分故的分布列為01235
的數(shù)學(xué)期望?!?3分略21.已知復(fù)數(shù)z1滿足(1+i)z1=-1+5i,z2=a-2-i,其中i為虛數(shù)單位,a∈R,若<|z1|,求a的取值范圍.參考答案:解:由題意得z1==2+3i,
于是==,=.
<,得a2-8a+7<0,1<a<7.
略22.以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東外語(yǔ)外貿(mào)大學(xué)南國(guó)商學(xué)院《房地產(chǎn)會(huì)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東司法警官職業(yè)學(xué)院《教學(xué)設(shè)計(jì)案例分析》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東食品藥品職業(yè)學(xué)院《材料化學(xué)合成與制備》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東輕工職業(yè)技術(shù)學(xué)院《城市地理信息系統(tǒng)》2023-2024學(xué)年第一學(xué)期期末試卷
- 七年級(jí)上冊(cè)《6.3.1角的概念》課件與作業(yè)
- 廣東南華工商職業(yè)學(xué)院《現(xiàn)代電子技術(shù)綜合設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東梅州職業(yè)技術(shù)學(xué)院《企業(yè)運(yùn)營(yíng)管理課程設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 二班小學(xué)二年級(jí)少先隊(duì)工作計(jì)劃-指導(dǎo)思想
- 人教版歷史必修3第一單元《中國(guó)傳統(tǒng)文化主流思想的演變》測(cè)試題
- 《XX戰(zhàn)略講稿》課件
- 數(shù)學(xué)-2025年高考綜合改革適應(yīng)性演練(八省聯(lián)考)
- 市場(chǎng)營(yíng)銷試題(含參考答案)
- 2024年醫(yī)療器械經(jīng)營(yíng)質(zhì)量管理規(guī)范培訓(xùn)課件
- 景區(qū)旅游安全風(fēng)險(xiǎn)評(píng)估報(bào)告
- 2023年新高考(新課標(biāo))全國(guó)2卷數(shù)學(xué)試題真題(含答案解析)
- 事業(yè)單位工作人員獎(jiǎng)勵(lì)審批表
- DL-T 1476-2023 電力安全工器具預(yù)防性試驗(yàn)規(guī)程
- 小學(xué)數(shù)學(xué)小專題講座《數(shù)學(xué)教學(xué)生活化 》(課堂PPT)
- 雞場(chǎng)養(yǎng)殖情況記錄登記表
- 高壓配電柜系列產(chǎn)品出廠檢驗(yàn)規(guī)范
- 節(jié)流孔板孔徑計(jì)算
評(píng)論
0/150
提交評(píng)論