版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
初中數(shù)學(xué)競(jìng)賽專題輔導(dǎo)中位線及其應(yīng)用例1如圖2-53所示.△ABC中,AD⊥BC于D,E,F(xiàn),△ABC的面積.分析由條件知,EF,EG分別是三角形ABD和三角形ABC的中位線.利用中位線的性質(zhì)及條件中所給出的數(shù)量關(guān)系,不難求出△ABC的高AD及底邊BC的長(zhǎng).解由已知,E,F(xiàn)分別是AB,BD的中點(diǎn),所以,EF是△ABD的一條中位線,所以由條件AD+EF=12(厘米)得EF=4(厘米),從而AD=8(厘米),由于E,G分別是AB,AC的中點(diǎn),所以EG是△ABC的一條中位線,所以BC=2EG=2×6=12(厘米),顯然,AD是BC上的高,所以例2如圖2-54所示.△ABC中,∠B,∠C的平分線BE,CF相交于O,AG⊥BE于G,AH⊥CF于H.(1)求證:GH∥BC;(2)若AB=9厘米,AC=14厘米,BC=18厘米分析若延長(zhǎng)AG,設(shè)延長(zhǎng)線交BC于M.由角平分線的對(duì)稱性可以證明△ABG≌△MBG,從而G是AM的中點(diǎn);同樣,延長(zhǎng)AH交BC于N,H是AN的中點(diǎn),從而GH就是△AMN的中位線,所以GH∥BC,進(jìn)而,利用△ABC的三邊長(zhǎng)可求出GH的長(zhǎng)度.(1)證分別延長(zhǎng)AG,AH交BC于M,N,在△ABM中,由已知,BG平分∠ABM,BG⊥AM,所以△ABG≌△MBG(ASA).從而,G是AM的中點(diǎn).同理可證△ACH≌△NCH(ASA),從而,H是AN的中點(diǎn).所以GH是△AMN的中位線,從而,HG∥MN,即HG∥BC.(2)解由(1)知,△ABG≌△MBG及△ACH≌△NCH,所以AB=BM=9厘米,AC=CN=14厘米.又BC=18厘米BN=BC-CN=18-14=4(厘米),MC=BC-BM=18-9=9(厘米).從而MN=18-4-9說明(1)在本題證明過程中,我們事實(shí)上證明了等腰三角形頂角平分線三線合一(即等腰三角形頂角的平分線也是底邊的中線及垂線)性質(zhì)定理的逆定理:“若三角形一個(gè)角的平分線也是該角對(duì)邊的垂線,則這條平分線也是對(duì)邊的中線,這個(gè)三角形是等腰三角形”.EF>EG-FG.③由①,②,③例5如圖2-59所示.梯形ABCD中,AB∥CD,E為BC的中點(diǎn),AD=DC+AB.求證:DE⊥AE.分析本題等價(jià)于證明△AED是直角三角形,其中∠AED=90°.在E點(diǎn)(即直角三角形的直角頂點(diǎn))是梯形一腰中點(diǎn)的啟發(fā)下,添梯形的中位線作為輔助線,若能證明,該中位線是直角三角形AED的斜邊(即梯形另一腰)的一半,則問題獲解.證取梯形另一腰AD的中點(diǎn)F,連接EF,則EF是梯形ABCD的中位線,所以因?yàn)锳D=AB+CD,所以從而∠1=∠2,∠3=∠4,所以∠2+∠3=∠1+∠4=90°(△ADE的內(nèi)角和等于180°).從而∠AED=∠2+∠3=90°,所以DE⊥AE.例6如圖2-60所示.△ABC外一條直線l,D,E,F(xiàn)分別是三邊的中點(diǎn),AA1,F(xiàn)F1,DD1,EE1都垂直l于A1,F(xiàn)1,D1,E1.求證:AA1+EE1=FF1+DD1.分析顯然ADEF是平行四邊形,對(duì)角線的交點(diǎn)O平分這兩條對(duì)角線,OO1恰是兩個(gè)梯形的公共中位線.利用中位線定理可證.證連接EF,EA,ED.由中位線定理知,EF∥AD,DE∥AF,所以ADEF是平行四邊形,它的對(duì)角線AE,DF互相平分,設(shè)它們交于O,作OO1⊥l于O1,則OO1是梯形AA1E1E及FF1D1D的公共中位線,所以即AA1+EE1=FF1+DD1.練習(xí)十四1.已知△ABC中,D為AB的中點(diǎn),E為AC上一點(diǎn),AE=2CE,CD,BE交于O點(diǎn),OE=2厘米.求BO2.已知△ABC中,BD,CE分別是∠ABC,∠ACB的平分線,AH⊥BD于H,AF⊥CE于F.若AB=14厘米,AC=8厘米,BC=18厘米3.已知在△ABC中,AB>AC,AD⊥BC于D,E,F(xiàn),G分別是AB,BC,AC的中點(diǎn).求證:∠BFE=∠EGD.4.如圖2-61所示.在四邊形ABCD中,AD=BC,E,F(xiàn)分別是CD,AB的中點(diǎn),延長(zhǎng)AD,BC,分別交FE的延長(zhǎng)線于H,G.求證:∠AHF=∠BGF.5.在△ABC中,AH⊥BC于H,D,E,F(xiàn)分別是BC,CA,AB的中點(diǎn)(如圖2-62所示).求證:∠DEF=∠HFE.6.如圖2-6
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 臨沂科技職業(yè)學(xué)院《STM單片機(jī)原理及其應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 遼東學(xué)院《體育游戲創(chuàng)編》2023-2024學(xué)年第一學(xué)期期末試卷
- 江西新能源科技職業(yè)學(xué)院《山水畫基礎(chǔ)二》2023-2024學(xué)年第一學(xué)期期末試卷
- 江蘇電子信息職業(yè)學(xué)院《數(shù)字化空間設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 華東師范大學(xué)《媒介通論》2023-2024學(xué)年第一學(xué)期期末試卷
- 江蘇連云港某公司“12.9”爆炸事故報(bào)告
- 湖北國(guó)土資源職業(yè)學(xué)院《信號(hào)與控制綜合實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 遵義醫(yī)科大學(xué)醫(yī)學(xué)與科技學(xué)院《PC技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 珠海格力職業(yè)學(xué)院《電工技術(shù)與電氣控制》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶能源職業(yè)學(xué)院《電子信息科學(xué)與技術(shù)導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷
- 2022年淮安市漣水縣輔警考試試卷真題
- 中醫(yī)藥適宜培訓(xùn)-刮痧療法教學(xué)課件
- 2.1特種設(shè)備安全法、容規(guī)、管規(guī)等法律法規(guī)培訓(xùn)
- 慢性腎病高磷血癥
- 廣告牌計(jì)算程序
- 名著:駱駝祥子
- 免疫組化he染色fishish
- 裝配式構(gòu)件供貨合同文本模板
- 【電信網(wǎng)絡(luò)企業(yè)運(yùn)營(yíng)模式研究文獻(xiàn)綜述(5100字)】
- 六年級(jí)國(guó)學(xué)經(jīng)典《大學(xué)》課件
- 下肢靜脈血栓形成課件
評(píng)論
0/150
提交評(píng)論