版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等差數(shù)列的前項和為,,則()A. B. C. D.2.關(guān)于的不等式的解集中,恰有3個整數(shù),則的取值范圍是()A. B.C. D.3.在等比數(shù)列中,,,則()A.140 B.120 C.100 D.804.在中,角,,的對邊分別是,,,若,則()A. B. C. D.5.如圖,在中,已知D是邊延長線上一點,若,點E為線段的中點,,則()A. B. C. D.6.若各項為正數(shù)的等差數(shù)列的前n項和為,且,則()A.9 B.14 C.7 D.187.對于數(shù)列,定義為數(shù)列的“好數(shù)”,已知某數(shù)列的“好數(shù)”,記數(shù)列的前項和為,若對任意的恒成立,則實數(shù)的取值范圍為()A. B. C. D.8.在中,角A、B、C的對邊分別為a、b、c,若,則角()A. B. C. D.9.已知a,b,,且,,則()A. B. C. D.10.如圖所示是一樣本的頻率分布直方圖,則由圖形中的數(shù)據(jù),可以估計眾數(shù)與中位數(shù)分別是()A.12.5;12.5 B.13;13 C.13;12.5 D.12.5;13二、填空題:本大題共6小題,每小題5分,共30分。11.已知等差數(shù)列滿足,則____________.12.如圖,圓錐型容器內(nèi)盛有水,水深,水面直徑放入一個鐵球后,水恰好把鐵球淹沒,則該鐵球的體積為________13.定義在上的函數(shù),對任意的正整數(shù),都有,且,若對任意的正整數(shù),有,則___________.14.設(shè)數(shù)列的前項和,若,,則的通項公式為_____.15.已知數(shù)列{an}、{bn}都是公差為1的等差數(shù)列,且a1+b1=5,16.給出下列四個命題:①正切函數(shù)在定義域內(nèi)是增函數(shù);②若函數(shù),則對任意的實數(shù)都有;③函數(shù)的最小正周期是;④與的圖象相同.以上四個命題中正確的有_________(填寫所有正確命題的序號)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,四棱錐P-ABCD中,PA⊥菱形ABCD所在的平面,∠ABC=60°,E是BC的中點,M(1)求證:AE⊥平面PAD;(2)若AB=AP=2,求三棱錐P-ACM的體積.18.已知函數(shù).(1)用五點法作圖,填表井作出的圖像.x0y(2)求在,的最大值和最小值;(3)若不等式在上恒成立,求實數(shù)m的取值范圍.19.已知直線l1:ax﹣y﹣2=0與直線l2:(3﹣2a)x+y﹣1=0(a∈R).(1)若l1與l2互相垂直,求a的值:(2)若l1與l2相交且交點在第三象限,求a的取值范圍.20.已知A、B分別在射線CM、CN(不含端點C)上運動,∠MCN=23π(Ⅰ)若a、b、(Ⅱ)若c=3,∠ABC=θ,試用θ表示ΔABC21.已知數(shù)列的前項和.(1)求數(shù)列通項公式;(2)令,求數(shù)列的前n項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
利用等差數(shù)列下標(biāo)和的性質(zhì)可計算得到,由計算可得結(jié)果.【詳解】由得:本題正確選項:【點睛】本題考查等差數(shù)列性質(zhì)的應(yīng)用,涉及到等差數(shù)列下標(biāo)和性質(zhì)和等差中項的性質(zhì)應(yīng)用,屬于基礎(chǔ)題.2、C【解析】
首先將原不等式轉(zhuǎn)化為,然后對進行分類討論,再結(jié)合不等式解集中恰有3個整數(shù),列出關(guān)于的條件,求解即可.【詳解】關(guān)于的不等式等價于當(dāng)時,即時,于的不等式的解集為,要使解集中恰有3個整數(shù),則;當(dāng)時,即時,于的不等式的解集為,不滿足題意;當(dāng)時,即時,于的不等式的解集為,要使解集中恰有3個整數(shù),則;綜上,.故選:C.【點睛】本題主要考了一元二次不等式的解法以及分類討論思想,屬于中檔題.3、D【解析】
,計算出,然后將,得到答案.【詳解】等比數(shù)列中,又因為,所以,所以,故選D項.【點睛】本題考查等比數(shù)列的基本量計算,屬于簡單題.4、D【解析】
由題意,再由余弦定理可求出,即可求出答案.【詳解】由題意,,設(shè),由余弦定理可得:,則.故選D.【點睛】本題考查了正、余弦定理的應(yīng)用,考查了計算能力,屬于中檔題.5、B【解析】
由,,,,代入化簡即可得出.【詳解】,帶人可得,可得,故選B.【點睛】本題考查了向量共線定理、向量的三角形法則,考查了推理能力與計算能力,屬于中檔題.6、B【解析】
根據(jù)等差中項定義及條件式,先求得.再由等差數(shù)列的求和公式,即可求得的值.【詳解】數(shù)列為各項是正數(shù)的等差數(shù)列則由等差中項可知所以原式可化為,所以由等差數(shù)列求和公式可得故選:B【點睛】本題考查了等差中項的性質(zhì),等差數(shù)列前n項和的性質(zhì)及應(yīng)用,屬于基礎(chǔ)題.7、B【解析】分析:由題意首先求得的通項公式,然后結(jié)合等差數(shù)列的性質(zhì)得到關(guān)于k的不等式組,求解不等式組即可求得最終結(jié)果.詳解:由題意,,則,很明顯n?2時,,兩式作差可得:,則an=2(n+1),對a1也成立,故an=2(n+1),則an?kn=(2?k)n+2,則數(shù)列{an?kn}為等差數(shù)列,故Sn?S6對任意的恒成立可化為:a6?6k?0,a7?7k?0;即,解得:.實數(shù)的取值范圍為.本題選擇B選項.點睛:“新定義”主要是指即時定義新概念、新公式、新定理、新法則、新運算五種,然后根據(jù)此新定義去解決問題,有時還需要用類比的方法去理解新的定義,這樣有助于對新定義的透徹理解.對于此題中的新概念,對閱讀理解能力有一定的要求.但是,透過現(xiàn)象看本質(zhì),它們考查的還是基礎(chǔ)數(shù)學(xué)知識,所以說“新題”不一定是“難題”,掌握好三基,以不變應(yīng)萬變才是制勝法寶.8、C【解析】
利用余弦定理求三角形的一個內(nèi)角的余弦值,可得的值,得到答案.【詳解】在中,因為,即,利用余弦定理可得,又由,所以,故選C.【點睛】本題主要考查了余弦定理的應(yīng)用,其中解答中根據(jù)題設(shè)條件,合理利用余弦定理求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.9、A【解析】
利用不等式的基本性質(zhì)以及特殊值法,即可得到本題答案.【詳解】由不等式的基本性質(zhì)有,,故A正確,B不正確;當(dāng)時,,但,故C、D不正確.故選:A【點睛】本題主要考查不等式的基本性質(zhì),屬基礎(chǔ)題.10、D【解析】分析:根據(jù)頻率分布直方圖中眾數(shù)與中位數(shù)的定義和計算方法,即可求解頻率分布直方圖的眾數(shù)與中位數(shù)的值.詳解:由題意,頻率分布直方圖中最高矩形的底邊的中點的橫坐標(biāo)為數(shù)據(jù)的眾數(shù),所以中間一個矩形最該,故數(shù)據(jù)的眾數(shù)為,而中位數(shù)是把頻率分布直方圖分成兩個面積相等部分的平行于軸的直線橫坐標(biāo),第一個矩形的面積為,第二個矩形的面積為,故將第二個矩形分成即可,所以中位數(shù)是,故選D.點睛:本題主要考查了頻率分布直方圖的中位數(shù)與眾數(shù)的求解,其中頻率分布直方圖中小矩形的面積等于對應(yīng)的概率,且各個小矩形的面積之和為1是解答的關(guān)鍵,著重考查了推理與計算能力.二、填空題:本大題共6小題,每小題5分,共30分。11、9【解析】
利用等差數(shù)列下標(biāo)性質(zhì)求解即可【詳解】由等差數(shù)列的性質(zhì)可知,,則.所以.故答案為:9【點睛】本題考查等差數(shù)列的性質(zhì),熟記性質(zhì)是關(guān)鍵,是基礎(chǔ)題12、【解析】
通過將圖形轉(zhuǎn)化為平面圖形,然后利用放球前后體積等量關(guān)系求得球的體積.【詳解】作出相關(guān)圖形,顯然,因此,因此放球前,球O與邊相切于點M,故,則,所以,,所以放球后,而,而,解得.【點睛】本題主要考查圓錐體積與球體積的相關(guān)計算,建立體積等量關(guān)系是解決本題的關(guān)鍵,意在考查學(xué)生的劃歸能力,計算能力和分析能力.13、【解析】
根據(jù)條件求出的表達式,利用等比數(shù)列的定義即可證明為等比數(shù)列,即可求出通項公式.【詳解】令,得,則,,令,得,則,,令,得,即,則,即所以,數(shù)列是等比數(shù)列,公比,首項.所以,故答案為:【點睛】本題主要考查等比數(shù)列的判斷和證明,綜合性較強,考查學(xué)生的計算能力,屬于難題.14、【解析】
已知求,通常分進行求解即可。【詳解】時,,化為:.時,,解得.不滿足上式.∴數(shù)列在時成等比數(shù)列.∴時,.∴.故答案為:.【點睛】本題主要考查了數(shù)列通項式的求法:求數(shù)列通項式常用的方法有累加法、定義法、配湊法、累乘法等。15、1【解析】
根據(jù)等差數(shù)列的通項公式把abn轉(zhuǎn)化到a1+(bn-1)【詳解】S=[=[=na1=4n+n(n-1)故答案為:12【點睛】本題主要考查等差數(shù)列通項公式和前n項和的應(yīng)用,利用分組求和法是解決本題的關(guān)鍵.16、②③④【解析】
①利用反例證明命題錯誤;②先判斷為其中一條對稱軸;③通過恒等變換化成;④對兩個解析式進行變形,得到定義域和對應(yīng)關(guān)系均一樣.【詳解】對①,當(dāng),顯然,但,所以,不符合增函數(shù)的定義,故①錯;對②,當(dāng)時,,所以為的一條對稱軸,當(dāng)取,取時,顯然兩個數(shù)關(guān)于直線對稱,所以,即成立,故②對;對③,,,故③對;對④,因為,,兩個函數(shù)的定義域都是,解析式均為,所以函數(shù)圖象相同,故④對.綜上所述,故填:②③④.【點睛】本題對三角函數(shù)的定義域、值域、單調(diào)性、對稱性、周期性等知識進行綜合考查,求解過程中要注意數(shù)形結(jié)合思想的應(yīng)用.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)3【解析】
(1)本題首先可以通過菱形的相關(guān)性質(zhì)證明出AE⊥AD,然后通過PA⊥菱形ABCD所在的平面證明出PA⊥AE,最后通過線面垂直的相關(guān)性質(zhì)即可得出結(jié)果;(2)可以將三角形APM當(dāng)成三棱錐P-ACM的底面,將AE當(dāng)成三棱錐P-ACM的高,最后通過三棱錐的體積計算公式即可得出結(jié)果.【詳解】(1)證明:連接AC,因為底面ABCD為菱形,∠ABC=60°,所以因為E是BC的中點,所以AE⊥BC,因為AD//BC,所以AE⊥AD,因為PA⊥平面ABCD,AE?平面ABCD,所以PA⊥AE,又因為PA∩AD=A,所以AE⊥平面PAD.(2)AB=AP=2,則AD=2,AE=3所以Vp【點睛】本題考查立體幾何的相關(guān)性質(zhì),主要考查線面垂直的證明以及三棱錐體積的求法,可以通過證明平面外一條直線垂直平面內(nèi)的兩條相交直線來證明線面垂直,考查推理能力,是中檔題.18、(1)見解析;(2)時,,時,;(3).【解析】
(1)當(dāng)時,求出相應(yīng)的x,然后填入表中;標(biāo)出5個點,然后用一條光滑的曲線把它們連接起來;(2)先根據(jù)x的范圍求出的范圍,再由正弦函數(shù)的性質(zhì)可求出函數(shù)的最大值和最小值;(3)不等式在上恒成立,轉(zhuǎn)化為在上恒成立,進一步轉(zhuǎn)化為m-2,m+2與函數(shù)在上的最值關(guān)系,列不等式后求得實數(shù)m的取值范圍.【詳解】(1)x0y131-10(2),,即,所以的最大值為3,最小值為2.(3),,由(2)知,,,且,即m的取值范圍為.【點睛】本題考查正弦函數(shù)的最值和恒成立問題,把不等式恒成立問題轉(zhuǎn)化為含m的代數(shù)式與的最值關(guān)系的問題是解決本題的關(guān)鍵,屬于中檔題.19、(1)a,或a=1(2)a>3【解析】
(1)由題意利用兩條直線互相垂直的性質(zhì),求得的值;(2)聯(lián)立方程組求出兩條直線的交點坐標(biāo),再根據(jù)交點在第三象限,求出的取值范圍.【詳解】(1)∵直線l1:ax﹣y﹣2=0與直線l2:(3﹣2a)x+y﹣1=0,l1與l2互相垂直,∴a?(3﹣2a)+(﹣1)?1=0,求得a,或a=1.(2)若l1與l2相交且交點在第三象限,聯(lián)立方程組,∵l1與l2相交,故a≠3,求得方程組的解為,∴,求得a>3.【點睛】本題主要考查兩條直線互相垂直的性質(zhì),求兩條直線的交點坐標(biāo),屬于基礎(chǔ)題.20、(1)c=7或c=2.(1)=2sinθ+2【解析】試題分析:(Ⅰ)由題意可得a=c-4、b=c-1.又因∠MCN=π,,可得恒等變形得c1-9c+14=0,再結(jié)合c>4,可得c的值.(Ⅱ)在△ABC中,由正弦定理可得AC=1sⅠnθ,BC=,△ABC的周長f(θ)=|AC|+|BC|+|AB|=,再由利用正弦函數(shù)的定義域和值域,求得f(θ)取得最大值.試題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025山東建筑安全員C證考試(專職安全員)題庫附答案
- 2025年河南省建筑安全員考試題庫及答案
- 廣州新華學(xué)院《專業(yè)綜合實訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣州現(xiàn)代信息工程職業(yè)技術(shù)學(xué)院《工程倫理學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025安徽省建筑安全員A證考試題庫及答案
- 2025年海南省安全員知識題庫
- 2025年貴州省安全員C證考試(專職安全員)題庫附答案
- 中醫(yī)內(nèi)科學(xué)-癭病
- 【大學(xué)課件】建筑設(shè)備工程
- 聲音的產(chǎn)生與傳播+flash課件
- 第五單元《圓》(大單元教學(xué)設(shè)計)-2024-2025學(xué)年六年級上冊數(shù)學(xué)人教版
- 商業(yè)道德和反腐敗制度
- 水利工程土方回填施工方案
- 宜昌市西陵區(qū)2024年數(shù)學(xué)六年級第一學(xué)期期末檢測試題含解析
- 眼藥水項目創(chuàng)業(yè)計劃書
- 2024年全國《國防和兵役》理論知識競賽試題庫與答案
- 經(jīng)營性房屋租賃項目投標(biāo)方案(技術(shù)標(biāo))
- 入戶調(diào)查合同范本
- 七年級道法上冊第一學(xué)期期末綜合測試卷(人教版 2024年秋)
- 標(biāo)桿地產(chǎn)五星級酒店精裝修標(biāo)準
- 廣東省廣州市名校聯(lián)盟重點名校2024屆中考化學(xué)全真模擬試卷含解析
評論
0/150
提交評論