福建省福州市瑯岐中學2022-2023學年高一數(shù)學第二學期期末統(tǒng)考試題含解析_第1頁
福建省福州市瑯岐中學2022-2023學年高一數(shù)學第二學期期末統(tǒng)考試題含解析_第2頁
福建省福州市瑯岐中學2022-2023學年高一數(shù)學第二學期期末統(tǒng)考試題含解析_第3頁
福建省福州市瑯岐中學2022-2023學年高一數(shù)學第二學期期末統(tǒng)考試題含解析_第4頁
福建省福州市瑯岐中學2022-2023學年高一數(shù)學第二學期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.方程的解集是()A. B.C. D.2.《九章算術》是我國古代數(shù)學成就的杰出代表作,其中《方田》章給出計算弧田面積所用的經(jīng)驗公式為弧田面積,弧田(如圖所示)由圓弧和其所對的弦圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差,現(xiàn)有圓心角為,半徑為6米的弧田,按照上述經(jīng)驗公式計算所得弧田面積大約是()()A.16平方米 B.18平方米C.20平方米 D.24平方米3.為了得到的圖象,只需將的圖象()A.向右平移 B.向左平移 C.向右平移 D.向左平移4.已知是等差數(shù)列,,其前10項和,則其公差A. B. C. D.5.在銳角中,角的對邊分別為.若,則角的大小為()A. B.或 C. D.或6.已知兩點,,直線過點且與線段相交,則直線的斜率的取值范圍是()A. B.C. D.或7.若直線xa+yb=1(a>0,b>0)A.3 B.4 C.3+22 D.8.若直線與直線互相平行,則的值等于()A.0或或3 B.0或3 C.0或 D.或39.素數(shù)指整數(shù)在一個大于1的自然數(shù)中,除了1和此整數(shù)自身外,不能被其他自然數(shù)整除的數(shù)。我國數(shù)學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果。哥德巴赫猜想是“每個大于2的偶數(shù)可以表示為兩個素數(shù)的和”,如。在不超過15的素數(shù)中,隨機選取兩個不同的數(shù),其和小于18的概率是()A. B. C. D.10.已知實數(shù)滿足,則的最大值為()A.8 B.2 C.4 D.6二、填空題:本大題共6小題,每小題5分,共30分。11.已知等差數(shù)列的前項和為,若,則=_______12.__________.13.半徑為的圓上,弧長為的弧所對圓心角的弧度數(shù)為________.14.已知,且,則的取值范圍是____________.15.與終邊相同的最小正角是______.16.如圖,將全體正整數(shù)排成一個三角形數(shù)陣,按照這樣的排列規(guī)律,第行從右至左的第3個數(shù)為___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列的前項和為,且滿足(1)求數(shù)列的通項公式;(2)設,令,求18.已知為銳角,,.(1)求的值;(2)求的值.19.數(shù)列中,,.前項和滿足.(1)求(用表示);(2)求證:數(shù)列是等比數(shù)列;(3)若,現(xiàn)按如下方法構造項數(shù)為的有窮數(shù)列,當時,;當時,.記數(shù)列的前項和,試問:是否能取整數(shù)?若能,請求出的取值集合:若不能,請說明理由.20.已知向量,,,.(1)求的最小值及相應的t的值;(2)若與共線,求實數(shù)m.21.設函數(shù)的定義域為R,當時,,且對任意實數(shù)m、n,有成立,數(shù)列滿足,且.(1)求的值;(2)若不等式對一切都成立,求實數(shù)k的最大值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

把方程化為,結合正切函數(shù)的性質(zhì),即可求解方程的解,得到答案.【詳解】由題意,方程,可化為,解得,即方程的解集為.故答案為:C.【點睛】本題主要考查了三角函數(shù)的基本關系式,以及三角方程的求解,其中解答中熟記正切函數(shù)的性質(zhì),準確求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.2、C【解析】分析:根據(jù)已知數(shù)據(jù)分別計算弦和矢的長度,再按照弧田面積經(jīng)驗公式計算,即可得到答案.詳解:由題可知,半徑,圓心角,弦長:,弦心距:,所以矢長為.按照弧田面積經(jīng)驗公式得,面積故選C.點睛:本題考查弓形面積以及古典數(shù)學的應用問題,考查學生對題意的理解和計算能力.3、B【解析】

先利用誘導公式將函數(shù)化成正弦函數(shù)的形式,再根據(jù)平移變換,即可得答案.【詳解】∵,∵,∴只需將的圖象向左平移可得.故選:B.【點睛】本題考查誘導公式、三角函數(shù)的平移變換,考查邏輯推理能力和運算求解能力,求解時注意平移是針對自變量而言的.4、D【解析】,解得,則,故選D.5、A【解析】

利用正弦定理,邊化角化簡即可得出答案.【詳解】由及正弦定理得,又,所以,所以,又,所以.故選A【點睛】本題考查正弦定理解三角形,屬于基礎題.6、D【解析】

作出示意圖,再結合兩點間的斜率公式,即可求得答案.【詳解】,,又直線過點且與線段相交,作圖如下:則由圖可知,直線的斜率的取值范圍是:或.故選:D【點睛】本題借直線與線段的交點問題,考查兩點間的斜率公式,考查理解辨析能力,屬于中檔題.7、C【解析】

將1,2代入直線方程得到1a+2【詳解】將1,2代入直線方程得到1a+b=(a+b)(當a=2故答案選C【點睛】本題考查了直線方程,均值不等式,1的代換是解題的關鍵.8、D【解析】

根據(jù)直線的平行關系,列方程解參數(shù)即可.【詳解】由題:直線與直線互相平行,所以,,解得:或.經(jīng)檢驗,當或時,兩條直線均平行.故選:D【點睛】此題考查根據(jù)直線平行關系求解參數(shù)的取值,需要熟記公式,注意考慮直線重合的情況.9、B【解析】

找出不超過15的素數(shù),從其中任取2個共有多少種取法,找到取出的兩個和小于18的個數(shù),根據(jù)古典概型求解即可.【詳解】不超過15的素數(shù)為,共6個,任取2個分別為,,,,,,,,,,,,,,,共15個基本事件,其中兩個和小于18的共有11個基本事件,根據(jù)古典概型概率公式知.【點睛】本題主要考查了古典概型,基本事件,屬于中檔題.10、D【解析】

設點,根據(jù)條件知點均在單位圓上,由向量數(shù)量積或斜率知識,可發(fā)現(xiàn),對目標式子進行變形,發(fā)現(xiàn)其幾何意義為兩點到直線的距離之和有關.【詳解】設,,均在圓上,且,設的中點為,則點到原點的距離為,點在圓上,設到直線的距離分別為,,,.【點睛】利用數(shù)形結合思想,發(fā)現(xiàn)代數(shù)式的幾何意義,即構造系數(shù),才能看出目標式子的幾何意義為兩點到直線距離之和的倍.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

利用等差數(shù)列前項和,可得;利用等差數(shù)列的性質(zhì)可得,然后求解三角函數(shù)值即可.【詳解】等差數(shù)列的前項和為,因為,所以;又,所以.故答案為:.【點睛】本題考查等差數(shù)列的前項和公式和等差數(shù)列的性質(zhì)的應用,熟練掌握和若,則是解題的關鍵.12、【解析】

在分式的分子和分母上同時除以,然后利用極限的性質(zhì)來進行計算.【詳解】,故答案為:.【點睛】本題考查數(shù)列極限的計算,解題時要熟悉一些常見的極限,并充分利用極限的性質(zhì)來進行計算,考查計算能力,屬于基礎題.13、【解析】

根據(jù)弧長公式即可求解.【詳解】由弧長公式可得故答案為:【點睛】本題主要考查了弧長公式的應用,屬于基礎題.14、【解析】

利用正弦函數(shù)的定義域求得值域,即的范圍,再根據(jù)反余弦函數(shù)的定義可求得的取值范圍.【詳解】因為且,所以,則根據(jù)反余弦函數(shù)的定義可得,則的取值范圍是.故答案為:【點睛】本題考查了正弦函數(shù)的定義域和值域,考查了反余弦函數(shù)的定義,屬于基礎題.15、【解析】

根據(jù)終邊相同的角的定義以及最小正角的要求,可確定結果.【詳解】因為,所以與終邊相同的最小正角是.故答案為:.【點睛】本題主要考查終邊相同的角,屬于基礎題.16、【解析】

由題可以先算出第行的最后一個數(shù),再從右至左算出第3個數(shù)即可.【詳解】由圖得,第行有個數(shù),故前行一共有個數(shù),即第行最后一個數(shù)為,故第行從右至左的第3個數(shù)為.【點睛】本題主要考查等差數(shù)列求和問題,注意從右至左的第3個數(shù)為最后一個數(shù)減2.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

試題分析:(1)利用得到相鄰兩項的關系,把問題轉化為等比數(shù)列問題;(2)利用裂項相消法求和.試題解析:(1)由,得得∴是等比數(shù)列,且公比為(2)由(1)及得,18、(1);(2)【解析】分析:先根據(jù)同角三角函數(shù)關系得,再根據(jù)二倍角余弦公式得結果;(2)先根據(jù)二倍角正切公式得,再利用兩角差的正切公式得結果.詳解:解:(1)因為,,所以.因為,所以,因此,.(2)因為為銳角,所以.又因為,所以,因此.因為,所以,因此,.點睛:應用三角公式解決問題的三個變換角度(1)變角:目的是溝通題設條件與結論中所涉及的角,其手法通常是“配湊”.(2)變名:通過變換函數(shù)名稱達到減少函數(shù)種類的目的,其手法通常有“切化弦”、“升冪與降冪”等.(3)變式:根據(jù)式子的結構特征進行變形,使其更貼近某個公式或某個期待的目標,其手法通常有:“常值代換”、“逆用變用公式”、“通分約分”、“分解與組合”、“配方與平方”等.19、(1)(2)證明見詳解.(3)能取整數(shù),此時的取值集合為.【解析】

(1)利用遞推關系式,令,通過,求出即可.(2)遞推關系式轉化為:,化簡推出數(shù)列是等比數(shù)列.(3)由,求出,求出,得到通項公式,然后求解的分母與分子,討論要使取整數(shù),需為整數(shù),推出的取值集合為時,取整數(shù)【詳解】解:(1)令,則,將,代入,有.解得:.(2)由得,化簡得,又,是等比數(shù)列.(3)由,,又是等比數(shù)列,,,①當時,依次為,.②當時,,,,要使取整數(shù),需為整數(shù),令,,,要么都為整數(shù),要么都不是整數(shù),又所以當且僅當為奇數(shù)時,為整數(shù),即的取值集合為時,取整數(shù).【點睛】本題主要考查利用遞推公式結合,為判斷等比數(shù)列,考查數(shù)列前項和的比的問題的轉化與化歸思想的綜合性解題能力.20、(1)時,最小值為;(2).【解析】

(1)利用向量的模長公式計算出的表達式然后求最值.

(2)先求出的坐標,利用向量平行的公式得到關于m的方程,可解得答案.【詳解】(1)∵,

∴當時,取得最小值.(2).∵與共線,∴,則.【點睛】本題考查向量的模

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論