第03講集合的運(yùn)算(5種題型)(原卷版)_第1頁
第03講集合的運(yùn)算(5種題型)(原卷版)_第2頁
第03講集合的運(yùn)算(5種題型)(原卷版)_第3頁
第03講集合的運(yùn)算(5種題型)(原卷版)_第4頁
第03講集合的運(yùn)算(5種題型)(原卷版)_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第03講集合的運(yùn)算(5種題型)【知識梳理】一.交集:由集合與集合的所有公共元素組成的集合叫做與的交集,記作“”,讀作“A交B”,即①;②,;③;④;⑤若,則;文氏圖:用封閉曲線直觀地表示集合及其關(guān)系的圖形成為文氏圖(以英國邏輯學(xué)家JohnVeen命名)二.并集:由所有屬于集合或者屬于集合的元素組成的集合叫做集合與的并集,記作“”,讀作“A并B”,即①;②,;③;④;⑤若,則;三.補(bǔ)集:UUA四.Venn圖表達(dá)集合的關(guān)系及運(yùn)算用平面上一條封閉曲線的內(nèi)部來代表集合,這個圖形就叫做Venn圖(韋恩圖).集合中圖形語言具有直觀形象的特點,將集合問題圖形化,利用Venn圖的直觀性,可以深刻理解集合的有關(guān)概念、運(yùn)算公式,而且有助于顯示集合間的關(guān)系.用Venn圖來解決比較簡潔、直觀、明了.【考點剖析】一.交集及其運(yùn)算(共7小題)1.(2022秋?長寧區(qū)校級期末)已知集合A={x|x2+4x+3=0},B={x|x2=1},則A∩B=.2.(2022秋?金山區(qū)校級期末)設(shè)A={(x,y)|y=﹣2x+4},B={(x,y)|y=5x﹣3},則A∩B=()A.{1,2} B.{x=1,y=2} C.{(1,2)} D.{(x,y)|x=1或y=2}3.(2022秋?閔行區(qū)校級期末)已知A={0,1,2,3,4},B={x|x≤2,x∈N},則A∩B=.4.(2022秋?浦東新區(qū)校級期末)已知集合A={x|x>1},B={x|﹣1≤x≤3},則A∩B=.5.(2022秋?閔行區(qū)期末)若集合A={x|1≤x≤3,x∈R},B=Z,則A∩B=.6.(2022秋?普陀區(qū)校級期末)設(shè)a為常數(shù),集合,集合B={(x,y)|x=a},則A∩B的元素個數(shù)為.7.(2022秋?奉賢區(qū)校級期末)已知m是實數(shù),集合M={2,3,m+6},N={0,7},若M∩N={7},則m=.二.并集及其運(yùn)算(共7小題)8.(2022春?寶山區(qū)校級期末)滿足條件{1,3,5}∪M={1,3,5,7,9}的所有集合M的個數(shù)是()A.4個 B.8個 C.16個 D.32個9.(2022秋?長寧區(qū)校級期中)已知集合A={x|﹣4<x≤5},B={x|x≤﹣1或x>6},則A∪B=.10.(2022秋?崇明區(qū)期末)集合A={2,3x},B={x,y},若A∩B={3},則A∪B=.11.(2022秋?上海期末)已知A=(﹣∞,0],B=[a,+∞),且A∪B=R,則實數(shù)a的取值范圍為.12.(2022秋?普陀區(qū)校級期中)已知集合M={0,1,2},N={x|x2+x=0},則M∪N=.13.(2022秋?浦東新區(qū)校級期中)已知集合A={x||x﹣1|>2},集合B={x|mx+1<0},若A∪B=A,則m的取值范圍是()A. B. C.[0,1] D.14.(2022秋?徐匯區(qū)校級月考)已知集合A={x|x2﹣x≤0},B={x|2x>1},則A∪B=.三.補(bǔ)集及其運(yùn)算(共8小題)15.(2022秋?徐匯區(qū)期末)已知全集U=R,集合A={x|1+x>2x+4},則=.16.(2022秋?金山區(qū)校級期末)設(shè)全集U={﹣1,0,1,2},若集合A={0,2},則=.17.(2022秋?浦東新區(qū)校級期末)設(shè)集合A={x||2x﹣1|<3},全集U=R,則=.18.(2022秋?松江區(qū)校級期末)設(shè)全集U={x|0≤x≤7,x∈Z},A={2,4,6,7},則=.19.(2022秋?閔行區(qū)校級月考)已知全集U=R,集合,則=.20.(2022秋?靜安區(qū)校級期中)設(shè)全集U={﹣1,0,1,2},若集合A={﹣1,0,2},則=.21.(2022秋?浦東新區(qū)校級期中)已知集合P={x|2≤x<5},若全集U=R,則=.22.(2022秋?嘉定區(qū)校級期中)已知全集為R,集合A={x|x≤1},則=.四.交、并、補(bǔ)集的混合運(yùn)算(共5小題)23.(2022秋?青浦區(qū)校級月考)設(shè)全集U為自然數(shù)集N,記E={x|x=2n,n∈N},F(xiàn)={x|x=4n,n∈N},那么N可以表示為()A.E∪F B. C. D.24.(2022秋?浦東新區(qū)校級月考)如果全集U={a,b,c,d,e,f},A={a,b,c,d},A∩B={a},,則B=.25.(2022秋?徐匯區(qū)校級月考)已知集合U=R,A={x|1≤3x≤27},B=(1,+∞).(1)求;(2)若C={x|a﹣1≤x≤2a},且A∩C=C,求實數(shù)a的取值范圍.26.(2022秋?徐匯區(qū)校級期中)已知集合A={x|x2﹣9≥0},B={x||x﹣4|<2},C={x|<0}.(1)求A∩B、A∪C;(2)若全集U=R,求∩B.27.(2022秋?黃浦區(qū)校級期中)已知全集為R,對任意集合A,B,下列式子恒不成立的是()A.A∪B=A∪ B.A∩B=A∩ C.∩B=∪B D.∩B=A∪五.Venn圖表達(dá)集合的關(guān)系及運(yùn)算(共5小題)28.(2022秋?閔行區(qū)校級期中)已知集合,B={x||x﹣1|<1},全集為R.(1)求集合A∪B;(2)求陰影部分表示的集合.29.(2020秋?楊浦區(qū)校級期中)如圖表示圖形陰影部分的是()A.(A∩B)∪C B.A∩(B∪C) C.(A∪B)∪C D.(A∪B)∩C30.(2022秋?徐匯區(qū)校級期中)設(shè)全集為U,用集合A、B、U的交、并、補(bǔ)集符號表圖中的陰影部分.31.(2021秋?上海期中)已知全集為U,則圖中陰影部分表示的集合是.(用含A、B或、集合語言表示).32.(2022秋?普陀區(qū)校級月考)設(shè)全集為U=R,集合,B={x|﹣7≤2x﹣1≤1}.(1)求如圖陰影部分;(2)已知C={x|3x﹣t<0},若B∪C=C,求實數(shù)t的取值范圍.【過關(guān)檢測】一、單選題1.(2020秋·上海長寧·高一上海市第三女子中學(xué)??计谥校┮阎图螹、N、P如圖所示,則圖中陰影部分所表示的集合是(

)A. B.C. D.2.(2022秋·上海浦東新·高一??计谥校┰O(shè)全集,集合,則(

)A. B. C. D.3.(2022秋·上?!じ咭黄谥校┤鐖D,表示全集,是的子集,則陰影部分所表示的集合是(

)A. B. C. D.4.(2022秋·上海嘉定·高一??计谥校┘希?,則集合的子集個數(shù)為(

)A.7 B.8 C.15 D.165.(2022秋·上海金山·高一上海市金山中學(xué)校考期末)設(shè),,則(

)A. B.C. D.或6.(2022·上海·高一專題練習(xí))記P={a|a是等腰三角形},T={b|b是至少有一邊為1,且至少有一內(nèi)角為30°的三角形},則P∩T的元素有()A.2個 B.3個 C.4個 D.5個7.(2022·上?!じ咭粚n}練習(xí))如圖,I是全集,M、P、S是I的3個子集,則陰影部分所表示的集合是(

)A. B. C. D.8.(2022秋·上海普陀·高一曹楊二中校考階段練習(xí))已知全集,設(shè)集合,,則(

).A. B.C. D.9.(2023春·上海金山·高一統(tǒng)考階段練習(xí))設(shè)集合A、B、C均為非空集合,下列命題中為真命題的是(

)A.若,則 B.若,則C.若,則 D.若,則二、填空題10.(2023秋·上海崇明·高一統(tǒng)考期末)集合,,若,則_____________.11.(2023春·上海嘉定·高一統(tǒng)考階段練習(xí))已知集合,,則______.12.(2022·上?!じ咭粚n}練習(xí))已知集合A={1,2,3,4},則滿足A∪B={1,2,3,4,5}的集合B共有__________個.13.(2022秋·上海浦東新·高一校考階段練習(xí))設(shè),,,則實數(shù)的值是_________.14.(2023秋·上海松江·高一上海市松江二中校考期末)設(shè)全集,,則___________15.(2022秋·上海靜安·高一上海市回民中學(xué)??计谥校┰O(shè)全集為,集合,,則=________.16.(2022秋·上海長寧·高一上海市復(fù)旦中學(xué)??茧A段練習(xí))設(shè)集合,,集合,則實數(shù)的值為_____.17.(2023秋·上海徐匯·高一上海市西南位育中學(xué)??计谀┰O(shè)方程解集為A,解集為B,解集為C,且,,則_________.18.(2023春·上海松江·高一上海市松江二中??计谥校┰O(shè)集合,,若,則的取值范圍是________.19.(2022秋·上海浦東新·高一??茧A段練習(xí))已知集合,集合,若,則實數(shù)的取值范圍是_________.20.(2022秋·上海普陀·高一曹楊二中??计谀┰O(shè)為常數(shù),集合,集合,則的元素個數(shù)為__________.21.(2021秋·上海浦東新·高一上海市進(jìn)才中學(xué)??茧A段練習(xí))已知全集,集合,滿足,,,則集合__________.22.(2022秋·上海普陀·高一曹楊二中??茧A段練習(xí))已知全集.若集合、滿足,,則________.23.(2023春·上海青浦·高一統(tǒng)考開學(xué)考試)已知集合,集合,則______.三、解答題24.(2022秋·上海長寧·高一上海市復(fù)旦中學(xué)??茧A段練習(xí))已知集合,.(1)在①,②,③這三個條件中選擇一個條件,求;(2)若,求實數(shù)的取值范圍.25.(2022秋·上海浦東新·高一??茧A段練習(xí))若集合(1)用列舉法表示集合.(2)若,求實數(shù)的值.26.(2021秋·上海嘉定·高一上海市嘉定區(qū)第一中學(xué)校考期中)已知集合,(1)當(dāng)時,求;(2)若,求實數(shù)的取值范圍.27.(2022秋·上海徐匯·高一上海市南洋模范中學(xué)??计谀┮阎癁?,集合,.(1)若,求,;(2)若,求實數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論