版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
初中數(shù)學(xué)演義作者李樹(shù)茂數(shù)學(xué)立體通關(guān)教學(xué)法創(chuàng)始人數(shù)學(xué)中考考點(diǎn)全覆蓋+初中數(shù)學(xué)解題模型大揭密目錄總體結(jié)構(gòu),思路,理念及方法有理數(shù)及運(yùn)算實(shí)數(shù)及運(yùn)算整式及加減整式的乘除因式分解分式及分式方程一元一次方程二元一次方程組應(yīng)用題題型匯總不等式及應(yīng)用幾何圖形+立體圖形三角形全等三角形三角形及證明勾股定理平移與旋轉(zhuǎn)特殊的四邊形一元二次方程圖形的相似視圖與投影位置與坐標(biāo)函數(shù)及圖象一次函數(shù)反比例函數(shù)解直角三角形二次函數(shù)動(dòng)態(tài)問(wèn)題破解口訣圓統(tǒng)計(jì)與概率立體通關(guān)教學(xué)法簡(jiǎn)介包頭中考六道大題破解口訣初中數(shù)學(xué)通關(guān)口訣代數(shù)抓精髓;代入是關(guān)鍵。代數(shù)一般式;兩得全搞定。算功過(guò)三關(guān);解功四門(mén)檻。方程辨兩類(lèi);函數(shù)識(shí)三型。函數(shù)三姐妹;勾股三用途。系數(shù)不為零;指數(shù)要相吻。非負(fù)三兄弟;蛻皮兩魔鬼。統(tǒng)計(jì)要通關(guān);兩查走在前。幾何要通透;精髓是特殊。四圖加一表;數(shù)據(jù)整理好。重點(diǎn)特殊圖;識(shí)圖定性判。數(shù)據(jù)分析透;三差加三數(shù)。兩圖談感情;特殊關(guān)系聯(lián)。概率也不難;頻率能估算。全等加相似;對(duì)稱(chēng)與旋轉(zhuǎn)。列表和樹(shù)型;搞清總和分。平移與投影;位似也要算。魚(yú)池魚(yú)幾多;應(yīng)用記概型。考點(diǎn)說(shuō)舉做;做題改變找。動(dòng)點(diǎn)巧分類(lèi);最短牛喝水。條件挖隱含;分類(lèi)不漏點(diǎn)。找準(zhǔn)臨界點(diǎn);相似巧破題。思路技巧精;反思記模型。代數(shù)兩特殊;首先特殊數(shù)。應(yīng)用均同宗;關(guān)系是根本。數(shù)數(shù)拉關(guān)系;方不與函數(shù)。元量同回代;運(yùn)算有六種。關(guān)系大小等;再加倍比分。每每有熱點(diǎn);負(fù)元巧應(yīng)用。算功:有理數(shù)、無(wú)理數(shù)、代數(shù)式的三種計(jì)算功力。解功:指解一元一次方程、一元二次方程、二元一次方程組、不等式(組)的四種功力。勾股三用途:指勾股定理的計(jì)算;列方程;證明垂直的三項(xiàng)功能。戲說(shuō)初中數(shù)學(xué)三國(guó)演義代數(shù)幾何統(tǒng)概數(shù)與式方程與不等式函數(shù)及其圖象圖形基礎(chǔ)、三角形及圖形的全等變換多邊形及四邊形相似、視圖、投影和解直角三角形圓統(tǒng)計(jì)與概率八仙過(guò)海難題突破——突破方向的確定三句話(huà):基本圖形→經(jīng)驗(yàn)積累→模式識(shí)別九個(gè)字:改條件→變結(jié)論→找接口學(xué)數(shù)學(xué)首先必須掌握的基本功三種語(yǔ)言:自然語(yǔ)言;符號(hào)語(yǔ)言;圖形語(yǔ)言。三類(lèi)符號(hào):運(yùn)算符號(hào);關(guān)系符號(hào);推理符號(hào)。六種運(yùn)算:加;減;乘;除;乘方;開(kāi)方+銳角三角函數(shù)。兩解一分:解方程;解不等式;分解因式。兩句口訣:算功不過(guò)關(guān);一切都枉然。解功不過(guò)關(guān),高分是空談。戲說(shuō)數(shù)學(xué)之——代數(shù)分式方程(可化為一元一次方程)死數(shù)(實(shí)數(shù))活數(shù)(含有字母的數(shù))代數(shù)式(定義)有理式無(wú)理式整式分式單項(xiàng)式多項(xiàng)式特殊數(shù)數(shù)與數(shù)之間的特殊關(guān)系相等關(guān)系:等式及方程不等關(guān)系:不等式(組)全部關(guān)系:函數(shù)與圖象整式方程一元(一次;二次)二元(一次方程組)按照數(shù)的性質(zhì)為代數(shù)式分類(lèi)代數(shù)式死數(shù)(實(shí)數(shù))活數(shù)(含字母的數(shù))永正數(shù):非負(fù)數(shù)+正數(shù)非負(fù)數(shù):平;絕;根永負(fù)數(shù):-(非負(fù)數(shù)+正數(shù))條件活數(shù)(川劇變臉)戲說(shuō)數(shù)學(xué)之——幾何基本圖形(點(diǎn)、線(xiàn)、面、空)特殊圖形(三、四、多、圓)特殊圖形三角形性質(zhì)(直角等腰)(平矩菱正)特殊圖圖與圖之間的特殊關(guān)系全等關(guān)系相似關(guān)系變換關(guān)系定義四邊形判定定義性質(zhì)判定對(duì)稱(chēng)—興致—平移—位似—投影—視圖多邊形與圓(正、圓)普通圖形(丑)特殊圖形(美)(整容)學(xué)習(xí)幾何要過(guò)三關(guān)畫(huà)圖關(guān):按照題意畫(huà)圖形。語(yǔ)言關(guān):文字語(yǔ)言(自然語(yǔ)言)、圖形語(yǔ)言、符號(hào)語(yǔ)言這三種語(yǔ)言的轉(zhuǎn)換和翻譯。推理關(guān):證明,推理的能力和步驟。數(shù)學(xué)怎么學(xué)說(shuō)(說(shuō)得出)—舉(會(huì)舉例)—做(能做題)例:以有理數(shù);絕對(duì)值;代數(shù)式;整式;分式;多項(xiàng)式的次數(shù)為例。
初中數(shù)學(xué)精髓幾何:兩個(gè)字概括——特殊:特殊圖形;特殊關(guān)系(全等、相似)。代數(shù):兩個(gè)字概括——代入:字母的含義代入代數(shù)式、方程、不等式或者函數(shù)。幾何三大方法:全等、相似、勾股定理。輔助線(xiàn)的認(rèn)識(shí)對(duì)內(nèi)分割對(duì)外補(bǔ)形壓軸題大類(lèi):幾何綜合;代數(shù)綜合;代幾綜合。中學(xué)數(shù)學(xué)常用到的五種思想,十六種方法五種解題思想:1.整體思想;2.化歸思想;3.方程思想;4.數(shù)形結(jié)合思想;5.函數(shù)思想;文字語(yǔ)言轉(zhuǎn)化為符號(hào)、圖形語(yǔ)言的思想。十六種解題方法:1、配方法;2、因式分解法;3、換元法;4、判別式法與韋達(dá)定理;5、待定系數(shù)法;6、構(gòu)造法;7、反證法;8、面積法;9、幾何變換法(平移;旋轉(zhuǎn);對(duì)稱(chēng);翻折);10、客觀性題的解題方法(直接推演法;驗(yàn)證法;特殊元素法-取特值法;排除、篩選法;分析法);11、倒數(shù)法;12、割補(bǔ)法;3、拆項(xiàng)法;14、借來(lái)還去法15、因果對(duì)應(yīng)法;16、恒等變形法------。壓軸題基本模型相似存在掉包計(jì);是否垂直化相似。直角存在還勾股;角若相等想弦切。線(xiàn)段最短牛喝水;三平交點(diǎn)定平四。等腰風(fēng)水輪流轉(zhuǎn);兩線(xiàn)合一也等腰。壓軸題復(fù)習(xí)(學(xué)習(xí))方法背題:把別人的方法背下來(lái)。做題:自己把題做出來(lái)。一定要自己做出來(lái)。壓軸題必考點(diǎn):一動(dòng)二分——?jiǎng)狱c(diǎn)問(wèn)題分類(lèi)討論重點(diǎn)章節(jié)知識(shí)結(jié)構(gòu)演義根號(hào)中不能有開(kāi)出去的因式(數(shù))-根號(hào)中無(wú)有分母;分母中無(wú)根號(hào)---根號(hào)中不能有小數(shù)(變分?jǐn)?shù)處理)-運(yùn)算——加減:先化后算;乘除:先算后化。三個(gè)重要公式若x2=a則x=±√a(用來(lái)解方程)。(√a)2=a(a≥0)(√a2)2=IaI(需分類(lèi)討論).
特別注意公式2、3的區(qū)別:先開(kāi)后平就自己;先平后開(kāi)加絕對(duì)。IAI=a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-bA(A≥0)-A(A<0)數(shù)形結(jié)合判正負(fù)非負(fù)數(shù)總結(jié)定義:0和正數(shù)(沒(méi)有負(fù)數(shù)的事?。┬问剑簗A|;A2;√A。性質(zhì):和為零,每個(gè)加數(shù)必為零。與正數(shù)的和為正數(shù)。有最小值,最小值為零。與相反數(shù)、倒數(shù)、絕對(duì)值、數(shù)軸共同成為認(rèn)識(shí)和數(shù)的五大基本概念。特別記憶非負(fù)三兄弟——|A|;B2;√C蛻皮兩魔鬼——|A|;√B2科學(xué)記數(shù)法通關(guān)口訣萬(wàn)四億八現(xiàn)原形;大正小負(fù)要記清。點(diǎn)動(dòng)幾位冪為幾;有效數(shù)字不能混。模型解題拆項(xiàng)法。高斯算法。設(shè)參倍乘倒序相加法。等差數(shù)列梯形法。【典例1】——一種特殊的解題技巧。求1+2++22+23+---+22014可以這樣做:令S=1+2+22+23+---+22014
兩邊同乘2得:
2S=2+22+23+24+---+22014+22015
因此:2S-S=22015-1,仿照以上推理,計(jì)算:
1+5+52+53+---+52014=()。等比數(shù)列(略)等差數(shù)列(略)斐波拉契數(shù)列:前兩項(xiàng)的積等于第三項(xiàng)。階差數(shù)列:相鄰兩數(shù)的差為:1、2、3、4、5---(依次大1)。隔位找規(guī)律。非線(xiàn)性規(guī)律:平方乘一個(gè)數(shù)再加一個(gè)數(shù)。(二次函數(shù))其它規(guī)律找規(guī)律——標(biāo)序號(hào)(注意每個(gè)數(shù)與序號(hào)的關(guān)系)探索規(guī)律一般方法:具體事例-合理聯(lián)想-善于類(lèi)比-總結(jié)規(guī)律-大膽猜想-得出結(jié)論-驗(yàn)證完成。一般步驟;觀察-歸納-猜想-驗(yàn)證。一般技巧:相鄰看,隔一看。等差、等比、倍數(shù)+幾、平方+幾、平方的倍數(shù)+幾---按照數(shù)的性質(zhì)為代數(shù)式分類(lèi)代數(shù)式死數(shù)(實(shí)數(shù))活數(shù)(含字母的數(shù))永正數(shù):非負(fù)數(shù)+正數(shù)非負(fù)數(shù):平;絕;根永負(fù)數(shù):-(非負(fù)數(shù)+正數(shù))條件活數(shù)(川劇變臉)去括號(hào)的特殊應(yīng)用注意:(a+b)與
–a-b互為相反數(shù);(a-b)與b–a互為相反數(shù)。復(fù)習(xí):絕對(duì)值的概念和化簡(jiǎn)。
IaI=掌握:Ia-bI和Ia+bI類(lèi)的討論與化簡(jiǎn)。確定“狗籠”里是什么狗(正數(shù)還是負(fù)數(shù))。好狗(正能量)直接放出,惡狗(負(fù)能量)要帶鐵鏈。a(a≥0夏天熱,出門(mén)不用加衣)-a(a<0冬天冷,出門(mén)加衣)【例5】如圖是有理數(shù)a,b在數(shù)軸上的位置,化簡(jiǎn)Ia+bI-Ib-aI+Ia-1I+Ia+1I01-1-22ab整式的乘除知識(shí)點(diǎn)記憶口訣八個(gè)公式(冪六乘二)五個(gè)法則(三乘兩除)一種計(jì)數(shù)(科學(xué)計(jì)數(shù)法表示較小的數(shù))一個(gè)活用(公式正用逆用)五種思想(整體的思想;數(shù)形結(jié)合的思想;化歸的思想;類(lèi)比、推理、歸納的思想;方程的思想)一座橋梁(數(shù)與代數(shù)的橋梁:字母表示數(shù))冪的運(yùn)算法則性質(zhì)同底數(shù)冪的乘法同底數(shù)冪的除法積的乘方商的乘方冪的乘方零指數(shù)冪負(fù)整數(shù)指數(shù)冪(三種算法)特別提升(a+b)2=a2+b2+2ab應(yīng)用整體的思想,可以理解為三個(gè)數(shù)(畫(huà)線(xiàn)三部分),三個(gè)數(shù)知二求一是這個(gè)公式的另外一種應(yīng)用。(a-b)2=a2+b2-2ab應(yīng)用整體的思想,可以理解為三個(gè)數(shù)(畫(huà)線(xiàn)三部分),三個(gè)數(shù)知二求一是這個(gè)公式的另外一種應(yīng)用。小結(jié):兩數(shù)和、兩數(shù)的差、兩數(shù)平方的和、兩數(shù)的乘積,知二求二??梢宰寣W(xué)生自己出題加深理解記憶?;钣霉街偨Y(jié)a2-b2=(a+b)(a-b)a2+b2=(a+b)2-2ab=(a-b)2+2ab(a+b)2-(a-b)2=4ab(a+b)2+(a-b)2=2(a2+b2)X2+1/x2=(x+1/x)2-2=(x-1/x)2+2因式分解定義與乘法的關(guān)系工具性(約分;通分;解方程)方法:一提二套三十字四分組分式的乘除混合運(yùn)算(含乘方)順序:先計(jì)算乘方,再計(jì)算乘除。同級(jí)運(yùn)算按照從左到右的順序計(jì)算,有括號(hào)熏算括號(hào)除法運(yùn)算統(tǒng)一為乘法運(yùn)算。(見(jiàn)除先變乘)。運(yùn)算結(jié)果要化為最簡(jiǎn)分式。分子分母按照某一字母降冪排列。分子分母遇到多項(xiàng)式一般要先分解因式,變?yōu)槌朔e的形式后約分。乘除法:確定符號(hào)的法則與分?jǐn)?shù)乘法相同。分式的乘方:把分子分母各自乘方即可。分式的混合運(yùn)算順序:括號(hào)→乘方、開(kāi)方→乘法、除法→加法、減法→最簡(jiǎn)結(jié)果。正確運(yùn)用法則,靈活運(yùn)用運(yùn)算律。避免出錯(cuò):一步一回頭。一定順序二開(kāi)算,能簡(jiǎn)便的就簡(jiǎn)便;遇負(fù)不忘加括號(hào),遇除一定先變乘;整式分母看作1,結(jié)果一定要最簡(jiǎn)。結(jié)果中的分母和分子可以是和差的形式也可以是乘積的形式,根據(jù)情況靈活掌握。代數(shù)式求值的思路把字母的取值直接代入。把條件化簡(jiǎn)或者改造。把所給的代數(shù)式化簡(jiǎn)或變形。同時(shí)改造條件和所給代數(shù)式。整體代入法。例題:典例5---特別提升分式方程的概念復(fù)習(xí):整式方程(組):以元和次命名。分式方程:分母中含有未知數(shù)的方程叫之。方程分類(lèi)方程有理方程無(wú)理方程其它方程整式方程分式方程只有整式方程才有次數(shù)分式方程的解法基本思路:分式方程整式方程步驟(一去二解三驗(yàn)四寫(xiě)):整理-去分母-整式方程解整式方程檢驗(yàn)(必須的步驟)寫(xiě)結(jié)論驗(yàn)根的方法:把解整式方程所得到的解代入公分母中,如果使公分母為0,這個(gè)根為原方程的增根,若使公分母的值不為0,則這個(gè)根為原來(lái)方程的根。(去分母)分式方程的增根增根的意義:分式方程通過(guò)去分母變?yōu)檎椒匠?,未知?shù)的取值范圍擴(kuò)大,如果解整式方程得到的根恰巧是使原來(lái)的分式方程分母為0的值,則這個(gè)根顯然不是原方程的根。這樣的根叫做原方程的增根。解分式方程驗(yàn)根是必須的步驟。增根的產(chǎn)生并不是因?yàn)檫\(yùn)算錯(cuò)誤。⑴是整式方程的根⑵使公分母為0的未知數(shù)的值)利用增根的概念,確定方程中字母系數(shù)的值.3.增根特別提升—分式方程無(wú)解去分母后的整式方程無(wú)解去分母后的整式方程的解是原方程的增根
【典例2】已知關(guān)于x的分式方程A≤-1且a≠-2【典例3】已知關(guān)于x的方程-1或-5/3【典例4】若關(guān)于x的方程有增根,試求k的值。瑞星教育數(shù)學(xué)思維導(dǎo)圖二者關(guān)系解方程注意■去分母時(shí)小心漏乘■去分母小心丟括號(hào)■去括號(hào)時(shí)注意負(fù)號(hào)■分?jǐn)?shù)與等式性質(zhì)混列方程解應(yīng)用題■思路:試設(shè)元-回頭看-找關(guān)系-列方程(別把未知數(shù)不當(dāng)數(shù))。■注意單位的統(tǒng)一和隱含的條件初中要學(xué)習(xí)的方程列方程解應(yīng)用題思路:試設(shè)元-回頭看-找關(guān)系-列方程。步驟:審-設(shè)-列-解-驗(yàn)-答。記住:未知數(shù)也是數(shù),別把未知數(shù)不當(dāng)數(shù)。方法清單:直接設(shè)元;間接設(shè)元;設(shè)輔助未知數(shù)(或把某個(gè)總量看作整體1);巧設(shè)比例份數(shù)為未知數(shù)(一份為x)——負(fù)元法(減元法)(看似多設(shè)一元,實(shí)則減一少一元);整體設(shè)元(求6位數(shù),已知個(gè)位數(shù)字為7,則可設(shè)左邊五位數(shù)為x,則10x+7為此六位數(shù))。如何找等量關(guān)系抓關(guān)鍵詞同一個(gè)量從不同角度描述利用公式抓不變量瑞星教育數(shù)學(xué)思維導(dǎo)圖解的應(yīng)用■解應(yīng)用題思路:試設(shè)元-回頭看-找關(guān)系-列方程(別把未知數(shù)不當(dāng)數(shù))有一個(gè)或者兩個(gè)未知數(shù)的方程;三個(gè)方程有三個(gè)未知數(shù)盤(pán)點(diǎn)設(shè)未知數(shù)的五大技巧一.直接設(shè)元.二.間接試元.三.設(shè)輔助未知數(shù)(或整體1).四.設(shè)比例份數(shù)為未知數(shù)(負(fù)元法).五.整體設(shè)未知數(shù).是交點(diǎn)橫坐標(biāo)(變量互求)互相利用函數(shù)利用方程你中有我既有聯(lián)系我中有你又有區(qū)別方程與函數(shù)
關(guān)系示意圖方程組方程①方程②一次函數(shù)函數(shù)①函數(shù)①直線(xiàn)①直線(xiàn)②方程組的解(x,y)
→→函數(shù)圖象交點(diǎn)坐標(biāo)(x,y)方程組的解(x,y)←←函數(shù)圖象交點(diǎn)坐標(biāo)(x,y)(x,y)函數(shù)圖象的交點(diǎn)滿(mǎn)足函數(shù)表達(dá)式滿(mǎn)足對(duì)應(yīng)方程組方程的解滿(mǎn)足函數(shù)表達(dá)式是對(duì)應(yīng)圖象交點(diǎn)的坐標(biāo)平面直角坐標(biāo)系和圖象是橋梁:圖象既能代表方程也能代表函數(shù)!小結(jié)(理解)函數(shù)(圖象)可以解方程(不等式)方程為函數(shù)提供計(jì)算、求值、分析服務(wù)。函數(shù)都可以看做方程;方程只有化做特定的形式后才能看做方程。函數(shù)和方程的共同祖先是代數(shù)式。函數(shù)全面研究和反應(yīng)含有一個(gè)未知數(shù)的代數(shù)式的變化情況,與之相比:方程,不等式又都是函數(shù)的特例。方法清單一、直接設(shè)元二、間接設(shè)元三、設(shè)輔助未知數(shù)(或者整體1)四、設(shè)比例份數(shù)為未知數(shù)(1份)五、整體設(shè)元不等式三個(gè)定義不等式一元一次不等式一元一次不等式組三個(gè)概念不等式的解不等式的解集不等式的特解三個(gè)性質(zhì):加減;乘除正數(shù);乘除負(fù)數(shù)。兩種解法:一元一次不等式的解法;不等式組的解法。一種思想:數(shù)形結(jié)合的思想一個(gè)關(guān)系:與一次函數(shù)及方程的關(guān)系一元一次不等式與一個(gè)函數(shù)一元一次不等式與兩個(gè)函數(shù)不等式與組與函數(shù)的自變量?jī)蓚€(gè)判斷:有解;無(wú)解定參數(shù)。綜合應(yīng)用不等式不等式不等式的一個(gè)解不等式的解集不等式的性質(zhì)一元一次不等式及解法不等式組的解法(含混合不等式)不等式的應(yīng)用(無(wú)解有解定參數(shù))不等式(組)、函數(shù)、與方程(組)。不等式解集總結(jié)補(bǔ)充提升不等式|x|>a和|x|<a的解:|x|>aa<0全體實(shí)數(shù);a>則x>a或x<-a|x|<aa<0無(wú)解;a>則-a
<x<a數(shù)軸表示(幾何意義):a>0-aa|x|<a|x|>a|x|>a正方體的表面展開(kāi)圖——十一種類(lèi)型匯總
記憶口訣中四連,帽子任戴鞋任穿(1-4-1)中三連,歪帶帽子鞋任穿(2-3-1)三二相連邊對(duì)邊(2-2-2)三三相連邊對(duì)邊(3-3)總面六個(gè)不能少,凹字田字不能有。復(fù)習(xí)整理三角形概念:邊;角;頂點(diǎn)三角形的表示法(直角三角形的表示法)三角形角的關(guān)系(直角三角形兩銳角的關(guān)系)三角形三邊的關(guān)系三角形的分類(lèi)三角形中的三種線(xiàn)段三角形的分類(lèi)按角分按邊分先定標(biāo)準(zhǔn)后分類(lèi)。等邊三角形是特殊的等腰銳角三角形:三個(gè)內(nèi)角都是銳角的三角形直角三角形:有一個(gè)內(nèi)角是直角的三角形鈍角三角形:有一個(gè)內(nèi)角是鈍角的三角形不等邊三角形:三邊都不相等的三角形等腰三角形腰和底邊不相等:兩等一不等等邊三角形:三邊都相等的三角形三角形中的“三線(xiàn)”及性質(zhì)高(垂心):由高產(chǎn)生的相似及等比與點(diǎn)積。中線(xiàn)(重心):1:2或者1/2與2/3的關(guān)系。角平分線(xiàn)(內(nèi)心):兩邊的比=角平分線(xiàn)分對(duì)邊所成的兩線(xiàn)段的比。高中線(xiàn)角平分線(xiàn)自造公式角平分線(xiàn)交角的計(jì)算:
BD與CD是角平分線(xiàn),則∠ADC=90°+—∠A如圖:AD是角平分線(xiàn),
AE是高,則:∠DAE=—(∠C-∠B)[大-小]ABCD12BACDE12●內(nèi)角與鄰角外角平分線(xiàn)的交角等于第三角的一半!技巧拓展:若D是△ABC的一條中線(xiàn),則△ABD與△ACD的面積相等。拓展:△ABD與△ACD面積的比等于BD
與DC的比。中考綜合題中常常是解決問(wèn)題的突破點(diǎn)——高等,底之比等于面積比;底等,高之比等于面積比。ABCD等邊三角形面積的求法復(fù)習(xí)整理全等圖形全等三角形的概念及表示全等三角形的性質(zhì)全等三角形的用途對(duì)應(yīng)元素的確定復(fù)習(xí)整理證明三角形的全等知兩邊知兩角知角邊再找一邊相等,用SSS再找?jiàn)A角相等,用SAS再找?jiàn)A邊相等,用ASA再找對(duì)邊相等,用AAS找條件向上兩方向發(fā)展≌角相等線(xiàn)段等【創(chuàng)造條件證全等】八個(gè)渠道:公共邊或公共角;同角的余補(bǔ)角;對(duì)頂角;內(nèi)錯(cuò)角或同位角;等量加等量和相等;等量加等量差相等;等量的同倍同分量相等;全等最后一招:添加輔助線(xiàn)構(gòu)造全等三角形。全等三角形的圖形歸納起來(lái)有以下幾種典型形式:⑴平移全等型
⑴平移全等型
⑵對(duì)稱(chēng)全等型
⑶旋轉(zhuǎn)全等型
全等三角形的三類(lèi)九種基本類(lèi)型(4)翻折全等型注意共角與共邊三角形。截長(zhǎng)補(bǔ)段證明線(xiàn)段的和倍分問(wèn)題全等三角形的圖形歸納起來(lái)有以下幾種典型形式:⑴平移全等型
⑴平移全等型
⑵對(duì)稱(chēng)全等型
⑶旋轉(zhuǎn)全等型
全等三角形的三類(lèi)九種基本類(lèi)型(4)翻折全等型數(shù)學(xué)微博—求三角形面積技巧ABCEXYMNO1.三角形面積等于AE與MN乘積的一半(三線(xiàn)平行且都垂直于
MN或者X軸)!2.若知道三角形三邊的坐標(biāo),可以用這種模式求三角形的面積.關(guān)鍵是求AE的長(zhǎng)度,先求BC的關(guān)系式,再求E點(diǎn)的坐標(biāo),然后求AE的長(zhǎng)度---特別提升一重要模型ABCDEFG△ABD與△BCE為等邊三角形,則:△ABE≌△DBC;△BGC≌△BFE△BFG為等邊三角形—兩對(duì)全等三個(gè)等邊!特別提升二ABCDEP任意△ABC,△ABD與△BCE為等邊三角形。則:AE=DC,∠DPA=∠EPC=60°∠CPA=∠DPE=120°特別提示勾股定理的應(yīng)用三邊的長(zhǎng)度:知二求一(開(kāi)方式)。利用勾股定理列方程解決問(wèn)題(平方式)。知道兩條直角邊求斜邊上的高(等積法)。構(gòu)造直角三角形通過(guò)上述方法解決問(wèn)題。折疊問(wèn)題解題思路設(shè):設(shè)恰當(dāng)?shù)奈粗獢?shù)。折疊中的某邊。表:用含未知數(shù)的代數(shù)式表示未知的邊。找:找一個(gè)直角三角形(三邊可表或可求)列:用勾股定理的“平方式”列方程。解:解方程并檢驗(yàn)。答:寫(xiě)出答案。特別拓展銳角三角形中兩邊平方的和大于第三邊。鈍角三角形中鈍角的兩邊平方的和小于鈍角的對(duì)邊的平方。要會(huì)證明(做高證明)——勾股定理三情形:
a
b
c
ab
c
a
b
ca2+b2=c2a2+b2>c2a2+b2<c2特別記憶若過(guò)直角三角形兩銳角頂點(diǎn)的中線(xiàn)長(zhǎng)分別為m和n,則此直角三角形斜邊的長(zhǎng)為(如圖所示):
直角三角形快速切換求邊法(強(qiáng)化訓(xùn)練——熟練掌握)用比值法抓住已知準(zhǔn)確判斷快速求值1112345121351213√2√3√5√10用兩邊的長(zhǎng)度或比值確定屬于那種類(lèi)型,用比值知一求二(其它邊)勾股定理的應(yīng)用直角三角形的判定:一角為直角;兩銳角互余:兩邊平方和等于第三邊平方。直角三角形的性質(zhì):銳角互余;兩邊平方的和等于第三邊;斜邊上的到等于兩直角邊的乘積除以斜邊。方程的思想幫助解決問(wèn)題;輔助線(xiàn)構(gòu)造直角三角形;直接用平方的形式構(gòu)建方程:若:a2=b2+c2,d2=e2+f2,a=d,則b2+c2=e2+f2
距離問(wèn)題;航海問(wèn)題;證明垂直;折疊問(wèn)題;側(cè)面展開(kāi)問(wèn)題;測(cè)量距離問(wèn)題---。三個(gè)基本問(wèn)題螞蟻立體對(duì)角吃東西路最近——立體插桿怎么最長(zhǎng)——梯子滑動(dòng)問(wèn)題——長(zhǎng)方體螞蟻對(duì)角爬吃東西求最短路程a、b、c為長(zhǎng)寬高計(jì)算比較判斷求之牢記:最大邊平方與另外兩邊和的平方之和的算術(shù)平方根最短勾股定理產(chǎn)生的最長(zhǎng)與最短問(wèn)題最長(zhǎng)問(wèn)題:長(zhǎng)方體對(duì)角點(diǎn)距離最長(zhǎng):長(zhǎng),寬,高平方和的算術(shù)平方根。圓柱體放置最長(zhǎng)筷子:直徑與高的平方和的算術(shù)平方根。最短線(xiàn)路:長(zhǎng)方體對(duì)角覓食:線(xiàn)路三條,最短的為長(zhǎng)寬高(中最大者的平方+另外兩邊和的平方)的算術(shù)平方根。圓的對(duì)角覓食:圓周長(zhǎng)的一半與高的平方和的算術(shù)平方根。(圓柱中間覓食:公式中高按實(shí)際高度計(jì)算)長(zhǎng)方體某頂點(diǎn)到對(duì)棱某點(diǎn)覓食:(長(zhǎng)與寬和的平方+高的平方)的算術(shù)平方根。用線(xiàn)繞圈最短問(wèn)題:(圓周長(zhǎng)的平方+高除以間隔數(shù)的平方)的算術(shù)平方根,乘圈數(shù)。勾股定理的三大功能求邊長(zhǎng)(知二求一)——開(kāi)方式。列方程(求未知數(shù))——平方式。證直角(證明垂直)——平方式。本章重點(diǎn)培養(yǎng)的思想和方法方程的思想數(shù)型結(jié)合的思想等積的思想(求斜高)分類(lèi)討論的思想(知任兩邊求另外一邊)折疊和展開(kāi)的思路(圖形折疊;螞蟻?zhàn)呗罚┒ɡ砗湍娑ɡ淼睦斫庥洃浐蛻?yīng)用動(dòng)點(diǎn)的思想(同一點(diǎn)出發(fā),一向北一向南,一個(gè)速度為3,一個(gè)速度為4,幾分鐘后相距20?圖形變換全等變換相似變換(形狀不變大小變)圖形的縮放(寶塔;酒盅---)對(duì)稱(chēng)旋轉(zhuǎn)平移翻折形狀大小都不變兩次翻折=一次平移位似投影反射平移的概念圖形變換:平移;旋轉(zhuǎn);對(duì)稱(chēng);翻折;相似。定義:在平面內(nèi),把一個(gè)圖形沿某一個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱(chēng)為平移。確定平移的兩要素:方向和距離。平移不改變圖形的形狀和大小,只改變圖形的位置。平移前后的圖形全等。相關(guān)概念:平移前后能相互重合的點(diǎn)、線(xiàn)段、角分別稱(chēng)為對(duì)應(yīng)點(diǎn)、對(duì)應(yīng)線(xiàn)段、對(duì)應(yīng)角。對(duì)應(yīng)點(diǎn)之間的連線(xiàn)(都平行)為平移的方向。平移是產(chǎn)生全等圖形的一個(gè)途徑。平移動(dòng)的特征實(shí)質(zhì):圖形上的每一個(gè)點(diǎn)都沿同一個(gè)方向移動(dòng)了相同的距離。平移前后圖形的形狀、大小完全相同(全等)連接對(duì)應(yīng)點(diǎn)的線(xiàn)段平行(或在同一條直線(xiàn)上)且相等。對(duì)應(yīng)線(xiàn)段平行(或在同一條直線(xiàn)上)且相等。對(duì)應(yīng)角相等。(沿某一邊方向移動(dòng))重要的關(guān)鍵詞:平行且相等。方向、距離。兩種情形:方向與一邊相同;方向不與任何一邊相同。平移作圖理論依據(jù):平移的特征。(方向,距離?。┎襟E:一找(拐點(diǎn));二連(一對(duì)已知的對(duì)應(yīng)點(diǎn));三定(距離、方向);四作(其它拐點(diǎn)的對(duì)應(yīng)點(diǎn));五連(按照原圖順序連接所有拐點(diǎn)的對(duì)應(yīng)點(diǎn))。作其它拐點(diǎn)的對(duì)應(yīng)點(diǎn):按照第二步中確定的方向和距離,作出其它拐點(diǎn)的對(duì)應(yīng)點(diǎn)(平行、相等、同向)。平移作圖法不唯一,在格紙上也可象例2那樣利用格紙找平移的規(guī)律然后作圖。(多次平移動(dòng))——坐標(biāo)法。點(diǎn)平移——線(xiàn)段平移——圖形平移的關(guān)系。旋轉(zhuǎn)的概念定義:平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)按某一方向旋轉(zhuǎn)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱(chēng)為旋轉(zhuǎn)。這個(gè)定點(diǎn)稱(chēng)為旋轉(zhuǎn)中心;運(yùn)動(dòng)的角稱(chēng)為旋轉(zhuǎn)角。確定旋轉(zhuǎn)的要素:一心;一角;一方向。旋轉(zhuǎn)中心的位置:圖內(nèi)、圖上、圖外都可。對(duì)應(yīng)元素:對(duì)應(yīng)點(diǎn)、對(duì)應(yīng)線(xiàn)段、對(duì)應(yīng)角。旋轉(zhuǎn)角:任意一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心連續(xù)所成的角是旋轉(zhuǎn)腳(都相等)。本質(zhì):圖上每個(gè)點(diǎn)都同時(shí)按照相同的方向繞旋轉(zhuǎn)中心旋轉(zhuǎn)了相同的角度。旋轉(zhuǎn)的基本特征旋轉(zhuǎn)不改變圖形的形狀和大小,只改變其位置。旋轉(zhuǎn)前后兩圖形全等?;咎卣鳎航?jīng)旋轉(zhuǎn),圖上每一等都繞旋轉(zhuǎn)中心沿相同的方向旋轉(zhuǎn)了相同的角度。對(duì)應(yīng)點(diǎn)的排列次序相同。對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;任一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線(xiàn)所成的角都等于旋轉(zhuǎn)角。對(duì)應(yīng)線(xiàn)段相等,對(duì)應(yīng)角相等?!取W⒁猓盒D(zhuǎn)的范圍是在同一平面內(nèi)。否則可能旋轉(zhuǎn)為立體圖形。旋轉(zhuǎn)作圖理論依據(jù):旋轉(zhuǎn)的特征。步驟:一定:定心、定方向、定旋轉(zhuǎn)角。二找:找拐點(diǎn),三轉(zhuǎn):每個(gè)拐點(diǎn)與旋轉(zhuǎn)中心相連接,按照旋轉(zhuǎn)方和旋轉(zhuǎn)角繞旋轉(zhuǎn)中心旋轉(zhuǎn),得到對(duì)應(yīng)點(diǎn)。四連:按照原圖的的次序連接這些對(duì)應(yīng)點(diǎn),得到所作的圖形。按照:旋轉(zhuǎn)點(diǎn)——旋轉(zhuǎn)線(xiàn)段——旋轉(zhuǎn)圖形,分析、理解、消化、記憶。中心對(duì)稱(chēng)與中心對(duì)稱(chēng)圖中心對(duì)稱(chēng):把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180度,它能夠與另一個(gè)圖形重合,那么,就說(shuō)這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱(chēng)(中心對(duì)稱(chēng))。中心對(duì)稱(chēng)圖形:把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180度,如果旋轉(zhuǎn)后的圖形能與原來(lái)的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱(chēng)圖形。這個(gè)點(diǎn)叫做它的對(duì)稱(chēng)中心。中心對(duì)稱(chēng)是旋轉(zhuǎn)的特例,所以具有旋轉(zhuǎn)的一切特征。不同的是旋轉(zhuǎn)角固定為180度。中心對(duì)稱(chēng):兩個(gè)圖;中心對(duì)稱(chēng)圖形:一個(gè)圖三角形的中位線(xiàn)定義:連接三角形兩邊中點(diǎn)的線(xiàn)段,叫做三角形的中位線(xiàn)。數(shù)量:任一三角形都有三條中位線(xiàn),且這三條中位線(xiàn)組成一個(gè)“中位線(xiàn)三角形”。定理:三角形的中位線(xiàn)平行于第三邊,且等于第三邊的一半。(位置關(guān)系和長(zhǎng)度關(guān)系)。兩邊中點(diǎn)中位線(xiàn)用途:證明平行或線(xiàn)段的倍、分、比關(guān)系。中位線(xiàn)三角形周長(zhǎng)等于原三角形周長(zhǎng)的一半。順次連接任意四邊形四邊的中點(diǎn)構(gòu)成一個(gè)平行四邊形。位置:平行第三邊長(zhǎng)度:等于第三邊的一半特別提升三角形的中位線(xiàn)截三角形所得的三角形的面積等于原三角形面積的1/4。三角形三邊中點(diǎn)的連線(xiàn)所成的三角形的面積等于原三角形面積的1/4。三角形三邊中點(diǎn)的連線(xiàn)把原三角形分為四個(gè)面積相等的小三角形。特別提升—三角形與平行四邊形已知一點(diǎn),過(guò)該點(diǎn)可以作無(wú)數(shù)個(gè)平行四邊形。已知兩點(diǎn),過(guò)兩點(diǎn)可以做無(wú)數(shù)個(gè)平行四邊形。已知不共線(xiàn)的三點(diǎn),過(guò)三點(diǎn)可以作三個(gè)平行四邊形。且如圖所示的小三角形的頂點(diǎn)是大三角形三邊的中點(diǎn),動(dòng)點(diǎn)問(wèn)題模型┓┓BBCAACDD■一垂兩等變等腰:作AD⊥BC,若BD=DC,則△ABC為等腰三角形。即:AB=AC!■可以用來(lái)解決平行四邊形變?yōu)榱庑蔚膯?wèn)題!■一垂三等變等腰直角三角形:作AD⊥BC,若BD=DC=AD,則△ABC為等腰直角三角形。■可以用來(lái)解決平行四邊形變?yōu)檎叫蔚膯?wèn)題!數(shù)學(xué)模型已知不共線(xiàn)的三點(diǎn)的坐標(biāo)為E(1,2)F(3,8)G(-5,6),是否存在一點(diǎn)M,使E、F、G、M為頂點(diǎn)組成一個(gè)平行四邊形?如果存在,請(qǐng)求出M點(diǎn)的坐標(biāo)。如果不存在,請(qǐng)說(shuō)明理由。FEG如圖所式模式:三平(三條過(guò)三角形頂點(diǎn)且分別平行對(duì)邊的綠線(xiàn))交三點(diǎn),三點(diǎn)為所求。先求EFG組成的三角形三邊的關(guān)系式,根據(jù)平行則斜率K相等得到三條平行線(xiàn)(綠線(xiàn))的K值,再根據(jù)其穿過(guò)的頂點(diǎn)E、F、G的坐標(biāo)求三條綠線(xiàn)的關(guān)系式。最后求綠線(xiàn)的三個(gè)交點(diǎn)坐標(biāo)平行四邊形菱形矩形正方形任意四邊形梯形從邊、角、對(duì)角線(xiàn)三方面說(shuō)出它們之間的轉(zhuǎn)化條件——(一角是直角且鄰邊相等)(對(duì)角線(xiàn)相等且垂直)試一試,自己補(bǔ)充完整:模型解題ABCDEF如圖:矩形ABCD沿對(duì)角線(xiàn)BD對(duì)折,C點(diǎn)到了E點(diǎn),則一對(duì)全等(小直角三角形)一對(duì)相似,兩個(gè)等腰。例AE:BD=3:5則AB:BC=4:8=1:2這是因?yàn)橄嗨票葹?:5,所以EF:FB=3:5,因此ED=4(勾股)而AD=DF+FA=5+3=8!!特別提升線(xiàn)段倍分30度角→直角邊斜中=斜的一半三角形中位線(xiàn)梯形中位線(xiàn)證明RT△兩邊垂直兩角互余勾逆證之斜中之逆特別提升重要模型——蝴蝶全等三角形。ABCDEFG模型識(shí)記正方形ABCD中,若AE=BF,則AE⊥BF;正方形ABCD中,若AE⊥BF,則AE=BF若將上面的AE、BF換成EF、GH會(huì)怎樣?ABCDEFEFGH模型拓展正方形ABCD中,E為BC上任一點(diǎn),F(xiàn)為BC延長(zhǎng)線(xiàn)上一點(diǎn),AE⊥EG交∠DCF的平分線(xiàn)于點(diǎn)G,①求證:AE=EG②若BH⊥AE,求證:BE=HG注:①搞清此模型與上一模型的關(guān)系。②在AB上截取BK=BE,證明△ECG≌△AKE是突破點(diǎn)。ABCDFEGHK中點(diǎn)四邊形通關(guān)口訣任平皆平;矩菱互變;正方自變。對(duì)等變菱;對(duì)垂變矩;等垂變正。矩形邊上一點(diǎn)到對(duì)角線(xiàn)距離之和ABCDPEF第于斜高還等于兩邊之積除以斜邊!答案:包頭中考13年20題答案:包頭中考15年20題答案:包頭中考14年20題如圖,在正方形ABCD中,對(duì)角線(xiàn)AC與BD相交于O點(diǎn),折疊正方形ABCD,使AB,使AB落在AC上,點(diǎn)B落在點(diǎn)H處,折痕AE交BO于F點(diǎn),交BC于點(diǎn)E,連接FH,則下列結(jié)論正確的是()ABCDOEFH①AD=DF②四邊形BEHF為菱形③④①②③④一個(gè)概念;三個(gè)系數(shù);五種解法。一個(gè)判別;兩個(gè)關(guān)系;綜合應(yīng)用。拓展:整體思想+換元;與二次函數(shù)聯(lián)袂。換元法圖象法一元二次方程中考選擇填空壓軸題a≠0△≥0+題目對(duì)根的要求根的定義(代入——代數(shù)之精華)韋達(dá)定理關(guān)于兩根的對(duì)稱(chēng)式:直接變?yōu)楹团c差式。關(guān)于根的非對(duì)稱(chēng)式:遇高次(一代二違)遇絕對(duì)(兩邊平方)牢記模型本章重點(diǎn)內(nèi)容三角形判定(普三;直三;等腰)性質(zhì)(長(zhǎng)度;面積)多邊形推廣相似的模型A字型:(正、歪);8字型(正、歪)K字型:(正;歪)直角;鈍角;銳角;反射型射影型(母子型):(正;歪)直射;斜射相似的應(yīng)用證明;計(jì)算。證明:等積;等比;等線(xiàn)。技巧—積變比;橫豎找;找不到;讓出去;換線(xiàn)段;換比例;相信你;一定行。先畫(huà)圖;找感覺(jué)!計(jì)算:方程的思想(設(shè)表找列)互表:變量互相表示。動(dòng)點(diǎn)問(wèn)題文字相似與符號(hào)相似的區(qū)別思路:找等角→定四邊→掉包計(jì)!方法:設(shè)→表→找→列!成比例的兩種理解:自比不變;互比相等。旋轉(zhuǎn)型:旋轉(zhuǎn)→縮放(大A型);平移型;位似型兩比五性?xún)杉家环指?平行線(xiàn)截線(xiàn)段成比例定理及其逆特別記憶ABCD如圖:△ABC為頂角為36°的等腰三角形,BD為其底角的平分線(xiàn),則:D為線(xiàn)段AC的黃金分割點(diǎn),且△CBA∽△CDB顯然——三角形中的平行與面積ABCDE圖中只要知道AD:DB的比值,就可以求出各圖形面積的比。進(jìn)一步知道一個(gè)面積,求其它面積。回味無(wú)窮三視圖主視圖——從正面看到的圖左視圖——從左面看到的圖俯視圖——從上面看到的圖畫(huà)物體的三視圖時(shí),要符合如下原則:位置:主視圖
左視圖
俯視圖大?。洪L(zhǎng)對(duì)正,高平齊,寬相等.挑戰(zhàn)“自我”,提高畫(huà)三視圖的能力.小結(jié)拓展投影與平行投影投影現(xiàn)象;物體在陽(yáng)光的照射下,會(huì)在地面或墻壁上留下它的影子,這就是投影現(xiàn)象。平行投影:太陽(yáng)光線(xiàn)可以看成是平行光線(xiàn),象這樣的平行光線(xiàn)形成的投影稱(chēng)平行投影。投影的分類(lèi)平行投影(如太陽(yáng)光照射物體留下的影子)中心投影(如燈光照射物體留下的影子)平行投影的性質(zhì)陽(yáng)光下,物體的影子隨時(shí)間的變化而變化。影子指向變化:從早到晚物體園子指向變化:西→西北→北→東北→東。物體影子長(zhǎng)度變化:從早到晚物體影子長(zhǎng)度的變化:長(zhǎng)→短→最短→短→長(zhǎng)。(想象力)物體上的點(diǎn)和其葉子上的對(duì)應(yīng)點(diǎn)的連線(xiàn)平行。在同一時(shí)刻,不同物體的影展與它們的高度成正比??梢岳斫鉃椋和粫r(shí)刻,物高:影長(zhǎng)=定值(時(shí)間不變值不變)。物體的三視圖實(shí)際上就是某一時(shí)刻垂直于投影面的平行投影。中心投影定義:若一束光線(xiàn)是從一個(gè)點(diǎn)出發(fā)的,象這樣的光線(xiàn)形成的投影叫做中心投影。中心投影的光線(xiàn)相交于同一點(diǎn)(物影對(duì)應(yīng)點(diǎn)的連線(xiàn))。中心投影下:物體不動(dòng):物體的影子隨點(diǎn)光源位置和方向的變化而變化。光源不動(dòng):物體的影子隨物體位置和方向的變化而變化。光源固定:物體水平移動(dòng),物體離光源越遠(yuǎn),其影子越長(zhǎng),反之越短(遠(yuǎn)長(zhǎng)近短)。燈光下的影子與太陽(yáng)光下影子的區(qū)別太陽(yáng)光線(xiàn)是平行的,因此同一時(shí)刻下的影子都與物體高度成正比例。物1:影1=物2:影2燈光的影子是發(fā)散的,燈光下的影子與物體高度不一定成比例。同一時(shí)刻,陽(yáng)光的影子總是在同一方向。而燈光的影子的方向則不確定。視點(diǎn)和盲區(qū)人的眼睛的位置稱(chēng)視點(diǎn)。由視點(diǎn)發(fā)出的線(xiàn)稱(chēng)為視線(xiàn)。人眼看不到的地方稱(chēng)為盲區(qū)。點(diǎn)撥:視線(xiàn)不可能穿越障礙物,視線(xiàn)如果遇到障礙物,則有觀察不到的地方(盲區(qū))。從視點(diǎn)(眼睛)與障礙物的邊緣作直線(xiàn),該直線(xiàn)通常就是盲區(qū)與可視區(qū)的分界線(xiàn)。如圖所示:一只貓蹲在墻前,老鼠躲在墻后.請(qǐng)你畫(huà)出老鼠活命的活動(dòng)區(qū)域【例5】貓墻墻盲區(qū)盲區(qū)盲區(qū)特別提升——思維訓(xùn)練如圖,把一個(gè)長(zhǎng)方形紙片OABC放入平面直角坐標(biāo)系中,使OA、OC分別落在兩坐標(biāo)軸上,連接OB、將紙片沿OB折疊,使點(diǎn)A落在點(diǎn)E的位置,若OA=10,AB=5,求E點(diǎn)的坐標(biāo)。OABOCEMNxyF1.證明OCF與BFE全等。2.利用方程求△BFE各邊長(zhǎng).3.求直角三角形BEF的斜高4.求ON=OC+CM=OC+ME5.利用勾股定理求EN.確定函數(shù)自變量取值范圍口訣一看分母不為零;二次根下為非負(fù)。零指負(fù)指底非雷;大括號(hào)下成一家。一定范圍二定值。把邊去等號(hào);在內(nèi)且相連;在外不去管。函數(shù)基本問(wèn)題定式方程法待定系數(shù)法定性定兩域(范圍)定圖象與關(guān)系式定增減;看快慢定勻速還是變速定最值(局;全)綜合:解方程(組);比大小(解不等式)取特值;設(shè)橫表縱。(補(bǔ)充)函數(shù)的圖象定義:把一個(gè)函數(shù)的自變量的每一個(gè)值與對(duì)應(yīng)的函數(shù)值分別做為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在平面直角坐標(biāo)系中描出所有對(duì)應(yīng)的點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。作法:列表(選值計(jì)算畫(huà)表);描點(diǎn)(對(duì)應(yīng)值為點(diǎn)的坐標(biāo));連線(xiàn)(平滑的直線(xiàn)或曲線(xiàn))。畫(huà)出的是近似圖象。作用(學(xué)會(huì)看圖象):一看對(duì)應(yīng):(變量互求:有關(guān)系式用關(guān)系式。)二看趨勢(shì):(如何變化)三看范圍:(最大最小局部整體區(qū)別看)四看增減;(上坡下坡)五看快慢:(陡快緩慢平不變)六解方程:(組)不等式(交點(diǎn)-掃描-投影法)七比大小:(兩函數(shù),比大小,找交點(diǎn),橫分段,看變化,求得解)八出方案:(尋求生活中最優(yōu)選擇最佳方案)九取特值:(結(jié)合字母常量的幾何意義確定常量之間的關(guān)系)。十設(shè)坐標(biāo):(設(shè)橫表縱——永遠(yuǎn)不變的真理)。意義:圖象上的點(diǎn)一定滿(mǎn)足關(guān)系式,滿(mǎn)足關(guān)系式的對(duì)應(yīng)值所對(duì)應(yīng)的點(diǎn),一定在圖象上。(表式圖合一)六(補(bǔ)充)函數(shù)分類(lèi)確定關(guān)系式是核心。表式圖三合一!知類(lèi)形,設(shè)關(guān)系,用待定。不知類(lèi)形,設(shè)變量,建模思想,立方程。初中三大函數(shù)整式函數(shù)分式函數(shù):反比例函數(shù)(雙曲線(xiàn))一一次函數(shù)(含正比例函數(shù)):直線(xiàn)二次函數(shù):拋物線(xiàn)確定函數(shù)關(guān)系生活模型幾何模型一次函數(shù)中K的特殊求法找坡度—定坡角—求正切—K即定。兩點(diǎn)縱坐標(biāo)之差÷橫坐標(biāo)之差(注意順序)理解:速度;速率:變化率。知K反過(guò)來(lái)亦可求直線(xiàn)與X軸之夾角!加深對(duì)“斜率”的理解與記憶。一次函數(shù)的圖象與性質(zhì)K管方向(增減);K>0增函數(shù);k<0減函數(shù)。K相等,兩直線(xiàn)平行。K的乘積為-1,兩直線(xiàn)垂直。b管位置:y=kx+b是將直線(xiàn)y=kx平移|b|個(gè)單位得到的。
b>0向上平移;b<0向下平移。所以直線(xiàn)Y=kx+b與直線(xiàn)y=kx平行且與y軸的交點(diǎn)為(0,b)一次函數(shù)(不含正比例函數(shù))圖象的四種情況——K>0K<0
b>0b<0
b>0b<0
圖象過(guò)一二三象限,不過(guò)第四象限。增函數(shù),
圖象過(guò)一三四象限,不過(guò)第二象限。增函數(shù),
圖象過(guò)一二四象限,不過(guò)第三象限。減函數(shù),
圖象過(guò)二三四象限,不過(guò)第一象限。減函數(shù),兩個(gè)一次函數(shù)圖象的特殊關(guān)系:k同b不同則平行;k反b等關(guān)于y軸對(duì)稱(chēng);k反b反關(guān)于x軸對(duì)稱(chēng)。常函數(shù):指類(lèi)似y=b或x=a的函數(shù)。它們不是一次函數(shù),但它們的圖象也是一條直線(xiàn),且與x軸或y軸平行。一次函數(shù)圖象與兩坐標(biāo)軸圍成的三角形的面積=
——K=±1時(shí),正比例函數(shù)的圖象就是兩坐標(biāo)軸所成直角的平分線(xiàn)。b22|k|兩個(gè)一次函數(shù),若K1·K2=-1則這兩條直線(xiàn)垂直。拓展提升代數(shù)式、方程、不等式與函數(shù)的關(guān)系——Y=kx+bkx+bkx+b>0kx+b=0kx+b<0
y=kx+bkx+b>0kx+b<0kx+b=0★★★其它函數(shù)(如二次函數(shù))以此類(lèi)推!一次函數(shù)的應(yīng)用解題思路一分為二:分清橫、縱坐標(biāo)表示的實(shí)際意義。數(shù)形結(jié)合:數(shù)字—坐標(biāo)圖—直線(xiàn)圖(示意圖)之間做好“翻譯”,做到“三合一”。特別是坐標(biāo)系中每條線(xiàn)段所代表的“情景”。三法求解:算術(shù)法(小學(xué)方法);代數(shù)法(待定系數(shù)法等)確定關(guān)系式;幾何法(做好坐標(biāo)與線(xiàn)段的轉(zhuǎn)換,然后根據(jù)全等、相似等幾何特征列方程求解,最后將線(xiàn)段轉(zhuǎn)化成坐標(biāo))。三型結(jié)合:指函數(shù),方程,不等式的結(jié)合。式判;圖判;參數(shù)判。無(wú)零函數(shù);與正比例比較和聯(lián)動(dòng)。確定K:一點(diǎn)定K,橫縱相乘;面積定K,幾何意義逆推;實(shí)際問(wèn)題,尋找方程;幾何問(wèn)題,有相似用相似。常用xy=k來(lái)判斷---注意每個(gè)象限頂點(diǎn)坐標(biāo);與過(guò)圓點(diǎn)的直線(xiàn)的關(guān)系;與Y=±X的關(guān)系。雙對(duì)稱(chēng)(軸心)初中唯一的“分式”函數(shù)。相等;一半;二倍函數(shù)正比例函數(shù)反比例函數(shù)表達(dá)式圖象形狀K>0K<0位置增減性位置增減性y=kx(k≠0)
(k是常數(shù),k≠0)y=xk
直線(xiàn)
雙曲線(xiàn)一三象限
y隨x的增大而增大一三象限每個(gè)象限內(nèi),
y隨x的增大而減小二四象限二四象限
y隨x的增大而減小每個(gè)象限內(nèi),
y隨x的增大而增大填表分析正比例函數(shù)和反比例函數(shù)的區(qū)別比一比反比例函數(shù)表達(dá)式中k的幾何意義反比例長(zhǎng)方形:在反比例函數(shù)圖象上任取一點(diǎn),過(guò)該點(diǎn)分別作坐標(biāo)軸的垂線(xiàn),兩條垂線(xiàn)與兩坐標(biāo)軸圍成的長(zhǎng)方形稱(chēng)為反比例長(zhǎng)方形。反比例三角形:過(guò)反比例函數(shù)圖象上任一點(diǎn)作一條坐標(biāo)軸的垂線(xiàn),這點(diǎn)和垂足、原點(diǎn)構(gòu)成的三角形叫做反比例三角形。S反比例長(zhǎng)方形=|xy|=|k|
S反比例三角形ADO=—|k|S反比例直角三角形AEC=2|k|S反比例平行四邊形ABCD=2|k|12ABCDE特別提升一兩正一反面積公式:如圖——S△OAB=S梯形ABCD反比例函數(shù)分矩形對(duì)邊成比例定理——
如圖:AD:DB=CE:EB重要的解題思想:基本圖形
——經(jīng)驗(yàn)積累
——模式識(shí)別——ABCD0OABCED熟記基本圖形——累積解題經(jīng)驗(yàn)——識(shí)別模式靈活應(yīng)用——(從簡(jiǎn)單出發(fā))面積:大三=大梯;小三=小梯正切坡度與一次函數(shù)斜率K的關(guān)系牢記—角優(yōu)先掌握三類(lèi)模型解任意三角形增減性:比大小及化簡(jiǎn)“絕對(duì)式”等代替相似簡(jiǎn)化運(yùn)算思路清晰與相似結(jié)合威力大全章通關(guān)口訣一個(gè)坡度三個(gè)比;見(jiàn)到直角是前提。三個(gè)特角九個(gè)值;三邊之比要牢記。測(cè)距觸礁躲臺(tái)風(fēng);設(shè)法構(gòu)造三角形。輔助理當(dāng)造直角;不破已知邊與角。做題要快記模板;比較大小記增減。三角函數(shù)的應(yīng)用解三角形:依據(jù);角的關(guān)系;三邊關(guān)系;邊角關(guān)系;369三角形;45-9三角形;斜高的求法;斜中定理等。問(wèn)題:兩角三邊五要素,知二(至少一邊)求三。實(shí)際應(yīng)用:思路:實(shí)際問(wèn)題抽象為三角形問(wèn)題→有直角、用直角,無(wú)直角、造直角。→注意其中的全等,相似關(guān)系的利用。應(yīng)用方程的思想,通過(guò)方程求解。分類(lèi):邊界問(wèn)題;三垂直問(wèn)題;測(cè)量問(wèn)題;光線(xiàn)問(wèn)題;定向問(wèn)題;其它問(wèn)題。三角形面積=—ab·sinC;正三角形面積=—a2124√3直角三角形快速切換求邊法(強(qiáng)化訓(xùn)練——熟練掌握)用比值法抓住已知準(zhǔn)確判斷快速求值兩量知比值求誰(shuí)誰(shuí)在上1112345121351213√2√3√5√10用兩邊的長(zhǎng)度或比值確定屬于那種類(lèi)型,用比值知一求二(其它邊)解題“三類(lèi)”模板304530604560306030454560304530606045xxxxxxxxxx2x3xxxxx1234梯形+雙垂直5梯子模型解直角三角形破題秘訣四類(lèi)模型要牢記少破邊角造模型緊扣模型角優(yōu)先勿忘方程設(shè)表列相似不忘隨時(shí)用能乘不除少麻煩能用三角不勾股能用特值不用普特別延升正弦定理(銳角用其余角代替,前面的任意三角形用正弦求面積的公式中遇到銳角也如此處理應(yīng)用:選擇及填空題中直接用三角形面積的新求法三角形的面積=兩邊夾角的正弦與兩邊乘積的一半(需要注意:夾角遇鈍變補(bǔ))。ABCabc函數(shù)并網(wǎng)——聯(lián)想數(shù)字母代數(shù)式運(yùn)算符號(hào)方程不等式有理式無(wú)理式整式分式一次函數(shù)二次函數(shù)反比例函數(shù)函數(shù)解函數(shù)題兩法定式十看定性函數(shù)大數(shù)據(jù)因變量Y(或S)自變量x(或t)關(guān)系式圖象表格辨函數(shù)(式辨+圖辨+表辨);定義域+值域;關(guān)系式-圖象-表格的信息讀取一次函數(shù)反比例函數(shù)二次函數(shù)二次函數(shù)演義一個(gè)定義:整式;二次;a≠0七種形式:一母六子雙0式一般式縱0式橫0式截0式兩根式統(tǒng)一為頂點(diǎn)式理解記憶一個(gè)圖象拋物線(xiàn)—軸對(duì)稱(chēng)常函數(shù)—五點(diǎn)法數(shù)形定性?xún)煞ǘㄊ饺?lèi)應(yīng)用方程法設(shè)表列待定系數(shù)法幾何背景代數(shù)背景實(shí)際應(yīng)用三法定一軸一軸定乾坤七式各自表三點(diǎn)法頂點(diǎn)法交點(diǎn)法綜合法思想方法:數(shù)形結(jié)合-方程思想-設(shè)橫表縱-配方法-取特值法-最值法-韋達(dá)法三大關(guān)系:與一次函數(shù)與方程;與不等式------■三大關(guān)系a、b、c的分工與合作------一次函數(shù)(正比例函數(shù));反比例函數(shù)與二次函數(shù)------最高次項(xiàng)從頂點(diǎn)橫坐標(biāo)(對(duì)稱(chēng)軸方程)出發(fā)):三種求法確定自變量取值范圍---------兩不靠三角形面積的求法。函數(shù)六小靈童六種形式的對(duì)稱(chēng)軸+求關(guān)系式時(shí)的對(duì)應(yīng)方法+八個(gè)特殊點(diǎn)的坐標(biāo)=要牢記八仙過(guò)海:頂點(diǎn)(0,C)(±1,a±b+c)(±2,4a±2b+c)(±3,9a±3b+c)確定函數(shù)關(guān)系式通關(guān)補(bǔ)充內(nèi)容掌握四類(lèi)特殊二次函數(shù)的關(guān)系式的確定雙零式(b=0、c=0、頂點(diǎn)在原點(diǎn))。設(shè)為對(duì)應(yīng)的關(guān)系式,只需圖象上的一個(gè)點(diǎn)的坐標(biāo)或一對(duì)對(duì)應(yīng)值即可確定其關(guān)系式。(畫(huà)圖:略)橫零式(b=0,頂點(diǎn)在y軸,對(duì)稱(chēng)軸為y軸):設(shè)為對(duì)應(yīng)的關(guān)系式,只需圖象上的兩個(gè)點(diǎn)的坐標(biāo)或兩對(duì)對(duì)應(yīng)值即可確定其關(guān)系式。(畫(huà)圖:略)縱零式(頂點(diǎn)在x軸,頂點(diǎn)的縱坐標(biāo)為零):設(shè)為對(duì)應(yīng)的關(guān)系式,只需圖象上的兩個(gè)點(diǎn)的坐標(biāo)或兩對(duì)對(duì)應(yīng)值即可確定其關(guān)系式。(畫(huà)圖:略)截零式:函數(shù)圖象與y軸的交點(diǎn)為(0,0),此時(shí),c=0,也可以直接設(shè)為對(duì)應(yīng)的關(guān)系式,只需圖象上的兩個(gè)點(diǎn)的坐標(biāo)或兩對(duì)對(duì)應(yīng)值即可確定其關(guān)系式。(畫(huà)圖:略掌握一般情況下二次函數(shù)關(guān)系式的五種求法:一般式;頂點(diǎn)式;交點(diǎn)式;頂橫式,頂縱式等。破解動(dòng)點(diǎn)問(wèn)題通關(guān)口訣—相似搭橋等腰——風(fēng)水輪流轉(zhuǎn);中線(xiàn)加高亦等腰。直角——與你同行找相似,勾逆斜中也能行。平行——比翼雙飛成比例,相似等角也可以。相似——找等角,掉包計(jì)(換座位),順時(shí)針。最短——兩村一路牛吃草。面積——定底表高用公式;一拆二放全搞定。長(zhǎng)度——設(shè)橫表縱,標(biāo)距互變。平四——三平定位要知曉,判定方法靈活用。特四——先平后特。一垂兩等變菱形;一垂三等正方形。無(wú)關(guān)——干掉參數(shù)就能成。思路——以靜制動(dòng),找準(zhǔn)臨界,分類(lèi)體驗(yàn),設(shè)表列解。有相似用相似,無(wú)相似造相似。三角函數(shù)靈活用。同弧所對(duì)圓周角與圓心角的關(guān)系直徑所對(duì)的圓周角是直角(原逆)同弧或等弧所對(duì)的圓周角相等三類(lèi)拓展:四點(diǎn)共圓的性質(zhì)與判定;弦切角性質(zhì)定理與逆應(yīng)用;切割及相交弦定理。幾個(gè)理念:遇弦(有中連中無(wú)中作垂);遇切(有點(diǎn)連點(diǎn)無(wú)點(diǎn)作垂;找到垂徑圖,等腰直角射影齊上陣,全等相似三角不能忘三角形四邊形正多邊形一個(gè)模型:垂徑圖-知二求四幾何題:角優(yōu)先的原則幾何計(jì)算:先算出角,而后設(shè)表列三點(diǎn)確定圓圓的計(jì)算與證明常用八種模型射影圖斜射影一線(xiàn)三垂直(正K型)一線(xiàn)三等角(歪K型)垂徑圖共圓圖弦切圖切割圖破解垂徑圖ABOCD如圖所示的模型中:半徑(直徑);弦(半弦);弦心距;弓高;小弦;和其中的角,知道兩個(gè)條件(至少一個(gè)為長(zhǎng)度),即可求出另外所有的長(zhǎng)度。弦切角模型PABC原定理:若PA為切線(xiàn),則∠PAB=∠C逆定理:若∠PAB=∠C,則PA為切線(xiàn)怎么證明(做輔助線(xiàn))?找切點(diǎn),過(guò)切點(diǎn)的弦和徑(直徑)做直角三角形即可!切割圖+斜射影APBCO如圖:PA為⊙O的切線(xiàn),PBC為割線(xiàn),則:⑴∠PAB=∠ACB⑵△PAB∽△PCA⑶PA的平方=PB·PC圖中無(wú)圓,心中有圓,四點(diǎn)共圓┓┓┓┓雙直角;對(duì)角互補(bǔ);外角等于內(nèi)對(duì)角;正多邊形。利用四點(diǎn)共圓解決角相等,線(xiàn)段成比例,三角形相似等較復(fù)雜的幾何問(wèn)題事半功倍,妙不可言!┓┓三類(lèi)模型:垂徑圖;弦切圖;共圓圖;切割圖+射影圖(斜射影)典型例題ABCD已知:正方形ABCD的邊長(zhǎng)是6,O是對(duì)角線(xiàn)AC與BD的交點(diǎn),點(diǎn)E在CD上且DE=2CE,連接BE,過(guò)點(diǎn)C作CF⊥BE,垂足為F,連接OF,則OF的長(zhǎng)是=()EF0提示:根據(jù)上述模型,易得:四邊形BCFO四點(diǎn)共圓,所以△OGF∽△BGC相似比為OG:OB,自然想到:過(guò)E作EM⊥BD,求出EM:EB,易知,BE可求,EM是等腰直角三角形DEM的直角邊,DE是知道的,最后,0F:BC(6)=OG:GB=EM:EB(已求出),問(wèn)題得到解決。MG四點(diǎn)共圓巧解題等腰三角形ABC中,∠ACB=90°,O是斜邊AB的中點(diǎn),D,E分別在直角邊AC,BC上,且∠DOE=90°DE交OC于點(diǎn)P,以下結(jié)論正確的有()ABCODE①∠DEO=45°②△AOD≌△COE③④┓┗統(tǒng)計(jì)與概率(一表兩查三數(shù)三差三率四圖)數(shù)據(jù)的收集數(shù)據(jù)的整理數(shù)據(jù)的分析應(yīng)用與決策兩種調(diào)查普查——抽樣調(diào)查總體個(gè)體樣本頻數(shù)頻率一表四圖統(tǒng)計(jì)表——折線(xiàn)統(tǒng)計(jì)圖條形統(tǒng)計(jì)圖扇形統(tǒng)計(jì)圖+頻數(shù)直方圖三數(shù)三差中位數(shù)平均數(shù)眾數(shù)—極差—方差—標(biāo)準(zhǔn)差三數(shù)定集中三差看離散兩率測(cè)算頻率概率簡(jiǎn)單概率古典概率復(fù)雜概率確定事件隨機(jī)事件試驗(yàn)法—列舉法—列表法和樹(shù)形圖法三類(lèi)概率:一個(gè)公式兩種方法(列舉法;試驗(yàn)法)。三率——頻率-概率-百分率統(tǒng)計(jì)概率破題口訣總體個(gè)體和樣本普查抽樣容其中四數(shù)三差和兩率(中位數(shù)眾數(shù)平均數(shù)頻數(shù))算術(shù)加權(quán)平均數(shù)確定概率兩法通放回不放要分清一表四圖捕信息有總有分關(guān)系明初中數(shù)學(xué)立體通關(guān)教學(xué)法培訓(xùn)李樹(shù)茂發(fā)現(xiàn)、建模、分享、并網(wǎng)—四步教學(xué)“說(shuō)、舉、做、反”——四步通關(guān)“改、變、找、寫(xiě)”——四步破題“懂、會(huì)、對(duì)、好”——四種境界李氏數(shù)學(xué)立體通關(guān)教學(xué)法四步互動(dòng)——發(fā)現(xiàn)、建模、分享、并網(wǎng)。解決怎么自學(xué)的問(wèn)題。四步通關(guān)——說(shuō)、分、舉、做。解決怎么聽(tīng)課的問(wèn)題。四步破題——改、變、找、寫(xiě)、反。解決怎么做題的問(wèn)題。兩個(gè)精華——幾何精華;代數(shù)精華(特殊個(gè)體+特殊關(guān)系)解決學(xué)什么的問(wèn)題。四種境界——懂、會(huì)、對(duì)、好。解決怎么評(píng)估的問(wèn)題。立體教學(xué)無(wú)死角反饋互動(dòng)同理心目標(biāo)分四層做題分四步回應(yīng)要四快接納要四會(huì)懂會(huì)對(duì)好改變找寫(xiě)讀寫(xiě)記算說(shuō)舉做反定—義是什么判—定為什么性—質(zhì)怎么樣定—律是什做發(fā)現(xiàn)探索建模分享并網(wǎng)通關(guān)一個(gè)知識(shí)點(diǎn)就是一個(gè)游戲關(guān)口好會(huì)懂對(duì)說(shuō)舉做反立體通關(guān)全面達(dá)標(biāo)發(fā)現(xiàn)建模分享并網(wǎng)立體互動(dòng)教學(xué)章模塊關(guān)一個(gè)數(shù)學(xué)題就是一個(gè)網(wǎng)絡(luò)游戲條件結(jié)論改條件挖隱含做輔線(xiàn)充足的武器彈藥和裝備變結(jié)論簡(jiǎn)單明了的目標(biāo)和任務(wù)運(yùn)籌指揮中心帷幄充分靈活利用資源組織有效進(jìn)攻數(shù)與代數(shù)實(shí)踐與運(yùn)用空間與圖形統(tǒng)計(jì)與概率初中數(shù)學(xué)知識(shí)樹(shù)實(shí)數(shù)方程概率統(tǒng)計(jì)函數(shù)代數(shù)式圖形與坐標(biāo)圖形與證明圖形與變換圖形的認(rèn)識(shí)課題學(xué)習(xí)綜合應(yīng)用實(shí)踐活動(dòng)運(yùn)算分類(lèi)相關(guān)概念整式分式二次根式分類(lèi)解法應(yīng)用常量變量概念表示分類(lèi)二次函數(shù)反比例函數(shù)一次函數(shù)平面直角坐標(biāo)系證明的方法證明的依據(jù)證明的含義圖形的平移圖形的軸對(duì)稱(chēng)圖形的旋轉(zhuǎn)圖形的相似三角形四邊形圓形點(diǎn)、線(xiàn)、面、體相交線(xiàn)平行線(xiàn)數(shù)據(jù)的收集與整理數(shù)據(jù)的描述數(shù)據(jù)的分析計(jì)算與估算列表、樹(shù)狀圖意義、事件獨(dú)立思考合作交流獲得體驗(yàn)提煉策略體會(huì)知識(shí)形成過(guò)程培養(yǎng)應(yīng)用意識(shí)發(fā)展思維能力教材內(nèi)容數(shù)與代數(shù)代數(shù)式整式分式二次根式單項(xiàng)式運(yùn)算多項(xiàng)式系數(shù)次數(shù)數(shù)字因數(shù)字母指數(shù)和因式分解次數(shù)項(xiàng)最高項(xiàng)的次數(shù)每個(gè)單項(xiàng)式同類(lèi)項(xiàng)合并同類(lèi)項(xiàng)冪的乘法單項(xiàng)式與多項(xiàng)式乘法公式平方差、完全平方同底數(shù)冪相除單項(xiàng)式除以單項(xiàng)式多項(xiàng)式除以單項(xiàng)式提公因式法公式法十字相乘法分組分解法逆用公式互逆運(yùn)算基本性質(zhì)運(yùn)算分式方程分母中含字母、分母不為零通分約分乘除加減乘方最簡(jiǎn)公分母公因式子積為子母積為母化除法為乘法同分母異分母分母不變分子相加減通分化成同分母注:分子、分母為多項(xiàng)式時(shí)先分解因式整式方程去分母解方程檢驗(yàn)最簡(jiǎn)公分母=00≠增根是解升降冪排列系數(shù)相加字母不變不改變分式的值解法應(yīng)用除法乘法加減定義性質(zhì)運(yùn)算加減乘除意義教材內(nèi)容一次函數(shù)與反比例函數(shù)反比例函數(shù)一次函數(shù)解析式性質(zhì)圖象性質(zhì)k>0k<0b<0,圖象在一三四象限b=0,圖象在一三象限b>0,圖象在一二三象限b<0,圖象在二三四象限b=0,圖象在二四象限b>0,圖象在一二四象限k>0k<0Y隨x的增大而增大Y隨x的增大而減小形如y=kx+b(k.b為常數(shù),k≠0)注意:過(guò)原點(diǎn)當(dāng)b=0時(shí),是正比例函數(shù)一條直線(xiàn)圖象解析式應(yīng)用應(yīng)用k>0k<0圖象在二四象限圖象在一三象限雙曲線(xiàn)Y隨x的增大而減小每一象限內(nèi)Y隨x的增大而增大每一象限內(nèi)k>0k<0柱形儲(chǔ)藏室輪船卸貨力學(xué)問(wèn)題電學(xué)問(wèn)題關(guān)系K同號(hào)時(shí),有兩交點(diǎn)。K異號(hào)時(shí),有兩個(gè)、一個(gè)或無(wú)交點(diǎn)實(shí)際問(wèn)題,圖象在第一象限最優(yōu)方案數(shù)與代數(shù)教材內(nèi)容1.開(kāi)口方向2.頂點(diǎn)坐標(biāo)3.對(duì)稱(chēng)軸4.增減性5.極值一元二次方程二次函數(shù)解析式性質(zhì)圖象解法y=ax2+bx+c(a.b.c為常數(shù)a≠0)定義應(yīng)用應(yīng)用關(guān)系二次函數(shù)與一元二次方程
一般式頂點(diǎn)式交點(diǎn)式開(kāi)口方向.a>0.向上a<0.向下對(duì)稱(chēng)軸在y軸的位置左同右異
與y軸交點(diǎn)位置c>0.在正半軸c=0.在原點(diǎn)c<0.在負(fù)半軸類(lèi)型①②③④⑤看式子類(lèi)型能口述性質(zhì)看圖象能口述性質(zhì)提公因式法公式法配方法直接開(kāi)平方法降次十字相乘法化為直接開(kāi)方萬(wàn)能公式應(yīng)用平方根ax2+bx+c=0(a≠0)傳播問(wèn)題行程問(wèn)題效率問(wèn)題面積問(wèn)題拋物線(xiàn)與x軸的交點(diǎn)一元二次方程的根Δ>0Δ=0Δ<0有兩交點(diǎn)(x1,0)(x2,0
)有一交點(diǎn)(,0)無(wú)交點(diǎn)有兩個(gè)不等根X1,
x2有兩個(gè)等根x1=x2
=無(wú)實(shí)根磁道問(wèn)題利潤(rùn)問(wèn)題拱橋問(wèn)題數(shù)與代數(shù)教材內(nèi)容相交線(xiàn).平行線(xiàn)圖形認(rèn)識(shí)初步關(guān)系圖形認(rèn)識(shí)初步
相交線(xiàn)平行線(xiàn)
多姿多彩的圖形直線(xiàn).射線(xiàn).線(xiàn)段角的度量角的比較與運(yùn)算平面圖形點(diǎn)與直線(xiàn)位置關(guān)系知名稱(chēng)三視圖展開(kāi)與折疊辨認(rèn)展開(kāi)圖確定有標(biāo)記的相對(duì)圖直線(xiàn)射線(xiàn)線(xiàn)段疊合法直線(xiàn)公理表示與畫(huà)法尋找射線(xiàn)方法表示與畫(huà)法計(jì)算與比較性質(zhì)立體圖形角的計(jì)算定義.表示進(jìn)位.計(jì)算尺規(guī)作角度.分.秒互化角的比較度量法余角.補(bǔ)角角平分線(xiàn)等角的余角相等等角的補(bǔ)角相等性質(zhì)平行線(xiàn)相交線(xiàn)對(duì)鄰頂補(bǔ)角角垂直性質(zhì)判定相等和為1800點(diǎn)到直線(xiàn)的距離性質(zhì)定義畫(huà)法條件平行公理.推論一“放”二“靠”三“推”四“畫(huà)”同位角相等內(nèi)錯(cuò)角相等同旁?xún)?nèi)角互補(bǔ)同位角相等同旁?xún)?nèi)角互補(bǔ)內(nèi)錯(cuò)角相等分類(lèi)結(jié)構(gòu)命題空間與圖形借助角研究平面內(nèi)兩條直線(xiàn)的位置關(guān)系教材內(nèi)容三角形三角形等腰三角形直角三角形有關(guān)線(xiàn)段多邊形及其內(nèi)角和有關(guān)的角概念勾股定理定義三邊關(guān)系高.中線(xiàn).角平分線(xiàn)內(nèi)角和外角的性質(zhì)定義外角和內(nèi)角和鑲嵌定義條件性質(zhì)判定特例定義表示方法要素等邊對(duì)等角三線(xiàn)合一等角對(duì)等邊等邊三角形銳角三角函數(shù)定理逆定理應(yīng)用證明內(nèi)容文字.符號(hào)圖形已知兩邊求第三邊弦圖畢達(dá)哥拉斯蘇菲爾德應(yīng)用證明內(nèi)容文字.符號(hào)圖形全等知三邊定形狀互逆命題銳角三角函數(shù)解直角三角形應(yīng)用計(jì)算定義正弦余弦正切特殊值的運(yùn)算符號(hào).幾何意義.特殊角的值坡度仰.俯角方位角三邊關(guān)系銳角關(guān)系邊角關(guān)系空間與圖形教材內(nèi)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度綠色環(huán)保廠房改造合同協(xié)議3篇
- 專(zhuān)屬擔(dān)保義務(wù)拓展協(xié)議樣本版B版
- 2025年度拆除工程安全評(píng)估與裝修監(jiān)理合同樣本4篇
- 個(gè)人住宅裝修協(xié)議樣例一
- 二零二五年度車(chē)輛租賃行業(yè)信用體系建設(shè)合同3篇
- 2025年度假離婚后子女撫養(yǎng)權(quán)爭(zhēng)奪法律合同3篇
- 專(zhuān)業(yè)油漆工程2024年度承包協(xié)議版B版
- 上海二手房買(mǎi)賣(mài)合同書(shū)范本(2024版)
- 2025年度拆遷拆除工程進(jìn)度款支付協(xié)議書(shū)4篇
- 2025年度戶(hù)外活動(dòng)場(chǎng)地及設(shè)施租賃合同范本4篇
- 大數(shù)據(jù)管理與考核制度大全
- 大學(xué)面試后感謝信
- 2022屆上海高考語(yǔ)文調(diào)研試測(cè)卷詳解(有《畏齋記》“《江表傳》曰…”譯文)
- SBT11229-2021互聯(lián)網(wǎng)舊貨交易平臺(tái)建設(shè)和管理規(guī)范
- 如何打造頂尖理財(cái)顧問(wèn)團(tuán)隊(duì)
- 土壤農(nóng)化分析課件
- 小區(qū)大型團(tuán)購(gòu)活動(dòng)策劃
- NEC(新生兒壞死性小腸結(jié)腸炎)92273
- 2023年租賃風(fēng)控主管年度總結(jié)及下一年展望
- 開(kāi)關(guān)插座必看的七個(gè)安全隱患范文
- 高分子成型加工課件
評(píng)論
0/150
提交評(píng)論