人機對抗智能:技術、挑戰(zhàn)和機遇_第1頁
人機對抗智能:技術、挑戰(zhàn)和機遇_第2頁
人機對抗智能:技術、挑戰(zhàn)和機遇_第3頁
人機對抗智能:技術、挑戰(zhàn)和機遇_第4頁
人機對抗智能:技術、挑戰(zhàn)和機遇_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

MachineIntelligenceResearch20(3),June2023,299-317

DOI:10.1007/s11633-022-1384-6

AIinHuman-computerGaming:Techniques,ChallengesandOpportunities

Qi-YueYin1,2JunYang3Kai-QiHuang1,2,4Mei-JingZhao1Wan-ChengNi1,2BinLiang3YanHuang1,2ShuWu1,2LiangWang1,2,4

1InstituteofAutomation,ChineseAcademyofSciences,Beijing100190,China

2SchoolofArtificialIntelligence,UniversityofChineseAcademyofSciences,Beijing100049,China

3DepartmentofAutomation,TsinghuaUniversity,Beijing100084,China

4CenterforExcellenceinBrainScienceandIntelligenceTechnology,ChineseAcademyofSciences,Beijing100190,China

Abstract:WiththebreakthroughofAlphaGo,human-computergamingAIhasusheredinabigexplosion,attractingmoreandmoreresearchersallovertheworld.Asarecognizedstandardfortestingartificialintelligence,varioushuman-computergamingAIsystems(AIs)havebeendeveloped,suchasLibratus,OpenAIFive,andAlphaStar,whichbeatprofessionalhumanplayers.Therapiddevelop-mentofhuman-computergamingAIsindicatesabigstepfordecision-makingintelligence,anditseemsthatcurrenttechniquescanhandleverycomplexhuman-computergames.So,onenaturalquestionarises:Whatarethepossiblechallengesofcurrenttechniquesinhuman-computergamingandwhatarethefuturetrends?Toanswertheabovequestion,inthispaper,wesurveyrecentsuccessfulgameAIs,coveringboardgameAIs,cardgameAIs,first-personshootinggameAIs,andreal-timestrategygameAIs.Throughthissurvey,we1)comparethemaindifficultiesamongdifferentkindsofgamesandthecorrespondingtechniquesutilizedforachievingprofessionalhu-man-levelAIs;2)summarizethemainstreamframeworksandtechniquesthatcanbeproperlyreliedonfordevelopingAIsforcomplexhuman-computergames;3)raisethechallengesordrawbacksofcurrenttechniquesinthesuccessfulAIs;and4)trytopointoutfuturetrendsinhuman-computergamingAIs.Finally,wehopethatthisbriefreviewcanprovideanintroductionforbeginnersandinspirein-sightforresearchersinthefieldofAIinhuman-computergaming.

Keywords:Human-computergaming,AI,intelligentdecisionmaking,deepreinforcementlearning,self-play.

Citation:Q.Y.Yin,J.Yang,K.Q.Huang,M.J.Zhao,W.C.Ni,B.Liang,Y.Huang,S.Wu,L.Wang.AIinhuman-computer

gaming:Techniques,challengesandopportunities.MachineIntelligenceResearch,vol.20,no.3,pp.299-317,2023.

/10.

1007/s11633-022-1384-6

1Introduction

Human-computergaminghasalonghistoryandhasbeenamaintoolforverifyingkeyartificialintelligencetechnologies

[1

,

2

].TheTuringtest[

3

],proposedin1950,wasthefirsthuman-computergametojudgewhetherama-chinehashumanintelligence.Thishasinspiredresearch-erstodevelopAIsystems(AIs)thatcanchallengeprofes-sionalhumanplayers.AtypicalexampleisadraughtsAIcalledChinook,whichwasdevelopedin1989todefeattheworldchampion,andsuchatargetisachievedbybeatingMarionTinsleyin1994[

4

].Afterward,DeepBluefromIBMbeatthechessgrandmasterGarryKasparovin1997,settinganewerainthehistoryofhuman-com-putergaming

[5

].

Inrecentyears,wehavewitnessedtherapiddevelop-

Review

ManuscriptreceivedonAugust18,2022;acceptedonOctober19,2022;publishedonlineonJanuary7,2023

RecommendedbyAssociateEditorMao-GuoGong

Coloredfiguresareavailableintheonlineversionat

https://link.

/journal/11633

oTheAuthor(s)2023

mentofhuman-computergamingAIs,fromtheDQNagent

[6

],AlphaGo

[7

],Libratus

[8

],andOpenAIFive[

9

]toAl-phaStar[

10

].TheseAIscandefeatprofessionalhumanplayersincertaingameswithacombinationofmoderntechniques,indicatingabigstepinthedecision-makingintelligence

[11–13

].Forexample,AlphaGoZero[

14

],whichusesMonteCarlotreesearch,self-play,anddeeplearn-ing,defeatsdozensofprofessionalgoplayers,represent-ingpowerfultechniquesforlargestateperfectinforma-tiongames.OpenAIFive[

9

],usingself-play,deeprein-forcementlearning,andcontinualtransferviasurgery,becamethefirstAItobeattheworldchampionsataneSportsgame,displayingusefultechniquesforcompleximperfectinformationgames.

AfterthesuccessofAlphaStarandOpenAIFive,whichreachtheprofessionalhumanplayerlevelinthegamesStarCraftandDota2,respectively,itseemsthatcurrenttechniquescansolveverycomplexgames.Espe-ciallythebreakthroughofthemostrecenthuman-com-putergamingAIsforgamessuchastheHonorofKings

[15

]andMahjong

[16

]obeyssimilarframeworksofAlphaStarandOpenAIFive,indicatingacertaindegreeofuniver-

springer

300MachineIntelligenceResearch20(3),June2023

salityofcurrenttechniques.So,onenaturalquestionarises:Whatarethepossiblechallengesofcurrenttech-niquesinhuman-computergaming,andwhatarethefu-turetrends?Thispaperaimstoreviewrecentsuccessfulhuman-computergamingAIsandtriestoanswerthequestionthroughathoroughanalysisofcurrenttech-niques.

Basedonthecurrentbreakthroughofhuman-com-putergamingAIs(mostpublishedinjournalssuchasSci-enceandNature),wesurveyfourtypicaltypesofgames,i.e.,boardgameswithGo;cardgamessuchasheads-upno-limitTexashold'em(HUNL),DouDiZhu,andMah-jong;firstpersonshootinggames(FPS)withQuakeIIIArenaincapturetheflag(CTF);real-timestrategygames(RTS)withStarCraft,Dota2,andHonorofKings.ThecorrespondingAIscoverAlphaGo

[7

],AlphaGoZero[

14

],AlphaZero

[17

],Libratus[

8

],DeepStack

[18

],Dou-Zero[

19

],Suphx

[16

],FTW

[20

],AlphaStar

[10

],OpenAIFive[

9

],JueWu1

[15

],andCommander

[21

].Abriefsummaryisdis-playedin

Fig.

1

.

Theremainderofthepaperisorganizedasfollows.InSection2,wedescribethegamesandAIscoveredinthispaper.Sections3–6elaborateontheAIsforboardgames,cardgames,FPSgames,andRTSgames,respectively.InSection7,wesummarizeandcomparethedifferenttech-niquesutilized.InSection8,weshowthechallengesincurrentgameAIs,whichmaybethefutureresearchdir-ectionofthisfield.Finally,weconcludethepaperinSection9.

2TypicalgamesandAIs

Basedontherecentprogressofhuman-computergam-ingAIs,thispaperreviewsfourtypesofgamesandtheircorrespondingAIs,i.e.,boardgames,cardgames,FPSgames,andRTSgames.Tomeasurehowhardagameistodevelopprofessionalhuman-levelAI,weextractsever-alkeyfactorsthatchallengeintelligentdecision-mak-ing[

22

],whichareshownin

Table1

.

Imperfectinformation.Exceptfortheboardgames,almostallthecardgames,FPSgames,andRTSgamesareimperfectinformationgames,whichmeansthatplayersdonotknowexactlyhowtheycometothecurrentstates,e.g.,currentfaceinHUNL.Accordingly,playersneedtomakedecisionsunderpartialobservation.Thisleadstomorethanonenodeinaninformationsetifthegameisexpandedintoatree.Forexample,theaver-ageinformationsetsforthecardgamesHUNLandMah-jongare103and1015,respectively.Moreover,comparedwithperfectinformationgamessuchasGo,asubgameinanimperfectinformationgamecannotbesolvedisolatedfromeachother[

23

],whichmakessolvingtheNashequilib-riumofimperfectinformationgamesmoredifficult

[24

].

Longtimehorizon.Inreal-timegames,suchas

StarCraft,Dota2,andHonorofKings,agamelastssever-alminutesandevenmorethananhour.Accordingly,an

1Anameknownbythepublic.

springer

AIneedstomakethousandsofdecisions.Forexample,Dota2gamesrunat30framespersecondforabout45minutes,resultinginapproximately20000stepsinagameifmakingadecisioneveryfourframes.Incontrast,playersincardgamesusuallymakefewerdecisions.Thelongtimehorizonleadstoanexponentialincreaseinthenumberofdecisionpoints,whichbringsinaseriesofproblems,suchasexplorationandexploitation,whenop-timizingastrategy.

In-transitivegame.Iftheperformanceofdifferentplayersistransitive,agameiscalledatransitivegame[

25

].Mathematically,ifvtcanbeatvt?1andvt+1canbeatvt,vt+1outperformsvt?1.Then,agameisstrictlytransitive.However,mostgamesintherealworldarein-transitive.Forexample,inasimplegame,“Rock-Paper-Scissor”,thestrategyisin-transitiveorcyclic.Commonly,mostgamesconsistoftransitiveandin-transitiveparts,i.e.,obeythespinningtopsstructure

[26

].Thein-transitivecharacterist-icmakesthestandardizedself-playtechnique,widelyusedforagentabilityevolution,failtoiterativelyap-proachtheNashequilibriumstrategy.

Multi-agentcooperation.Mostboardgamesandcardgamesarepurelycompetitive,wherenocooperationbetweenplayersisrequired.AnexceptionisDouDizhu,whichneedstwoPeasantplayersplayingasateamtofightagainsttheLandlordplayer.Incontrast,almostallreal-timegames,i.e.,FPSgamesandRTSgames,relyonplayers'cooperationtowinthegame.Forexample,fiveplayersinDota2andHonorofKingsformacamptofightagainstanothercamp.EventhoughStarCraftisatwo-payercompetitivegame,eachplayerneedstocon-trolalargenumberofunits,whichneedtocooperatewelltowin.Overall,howtoobtaintheNashequilibriumstrategyorabetter-learnedstrategyundermulti-agentcooperationisahardproblembecausespeciallydesignedagentinteractionoralignmentneedstobeconsidered.

Insummary,differentgamessharedifferentcharacter-isticsandaimtofinddifferentkindsofsolutions,sodis-tinctlearningstrategiesaredevelopedtobuildAIsys-tems.InSections3–6,wewillseethatbehindthegametypesistheevolutionoftechniquesthataredesignedforperfectinformation,imperfectinformation,andmorecomplexreal-timeandlong-timehorizonimperfectin-formationgames.So,ataxonomybasedondifferentkindsofgamesisutilized.Finally,inthispaper,theAIscover:AlphaGo,AlphaGoZero,andAlphaZerofortheboardgameGo;Libratus,DeepStack,DouZero,andSuphxforcardgamesHUNL,DouDiZhu,andMahjong,respect-ively;FTWfortheFPSgameQuakeIIIArenaincap-turetheflagmodel;AlphaStar,Commander,OpenAIFive,andJueWuforStarCraft,Dota2andHonorofKings,respectively.

3BoardgameAIs

TheAlphaGoseriesisbuiltbasedonMonteCarlo

StarCraft

StarCraft

AlphaStar

JueWu

Commander

DouZero

Suphx

Heads-upNo-limitTexashold′em

Mahjong

DouDiZhu

Cardgame

Q.Y.Yinetal./AIinHuman-computerGaming:Techniques,ChallengesandOpportunities301

Go

Nature

AlphaGo

game

Board

Go

Nature

AlphaGoZero

Go,chess,Shogi

Science

AlphaZero

RTSgame

Dota2HonorofKings

Nature

NeurIPS

ICML

arXiv

OpenAIFive

Nov2019Dec2019

Dec2020Jul2021

Jul2021

Jan2016

Oct2017Dec2018

May2019

Apr2020

Jan2018

May2017

Libratus

DeepStack

FTWQuakeIIIArenain

Science

Science

ICML

arXiv

Sciencecapturetheflagmode

FPSgame

Fig.1GamesandAIssurveyedinthispaper

Table1Characteristicsoffourtypicalkindsofgames

Games

Boardgames

Goseries

HUNL

Cardgames

DouDiZhu

Mahjong

FPSgames

CTF

StarCraft

RTSgames

Dota2

HonorofKings

Imperfectinformation

×

?

?

?

?

?

?

?

Longtimehorizon

?

×

×

×

?

?

?

?

In-transitivegame

?

?

?

?

?

?

?

?

Multi-agentcooperation

×

×

?

×

?

?

?

?

treesearch(MCTS)[

27

,

28

],whichiswidelyutilizedinpre-viousGoprograms.AlphaGocameoutin2015andbeatsEuropeanGochampionFanHuiby5:0,whichwasthefirsttimethatanAIwonagainstprofessionalplayersinafull-sizegame,GowithoutRenzi.Afterward,anad-vancedversioncalledAlphaGoZerowasdevelopedusingdifferentlearningframeworks,whichneedsnopriorpro-fessionalhumanconfrontationdataandreachessuperhu-manperformance.AlphaZerousesasimilarlearningframeworktoAlphaGoZeroandexploresageneralrein-forcementlearningalgorithm,whichmastersGoalongwithanothertwoboardgames,chess,andShogi.Abriefsummarizationisshownin

Fig.

2

.

3.1MCTSforAlphaGoseries

OneofthekeyfactorsoftheAlphaGoseriesisMCTS,whichisatypicaltreesearch-basedmethod.Generally,asimulationofMCTSconsistsoffoursteps,repeatedhun-dredsandthousandsoftimesforonestepdecision.Thefourstepsconsistofselection,expansion,evaluation,andbackup,whichareoperatedinatreeasshowninthelowerrightcornerof

Fig.

2

.Intheselectionstep,aleafnodeissetstartingfromtherootnode,i.e.,thestatewhereanactionneedstobedecided,basedontheevalu-ationofthenodesinthetree.Nextistheexpansionofthetreebyaddinganewnode.Finally,startingfromtheexpandednode,arolloutisperformedtoobtainavalue

forthenode,whichisusedtoupdatethevaluesofallnodesinthetree.

IntheAlphaGoseries,traditionalMCTSisimprovedviadeeplearningtolimitthewidthanddepthofthesearchsoastohandlethehugegametreecomplexity.Firstly,intheselectionstage,anodeisselectedbasedonthesumoftheactionvalueQandabonusu(p).Theac-tionvalueistheaveragenodevalueofallsimulations,andthenodevalueistheevaluationofanodebasedonthepredicationofthevaluenetworkandtherolloutres-ultsbasedontherolloutnetwork.Thebonusispropor-tionaltothepolicyvalue(probabilityofselectingpointsinGo)calculatedviathepolicynetwork,butinverselyproportionaltothevisitcount.Secondly,intheexpan-sionstage,anodeisexpandedanditsvalueisinitializedthroughthepolicyvalue.Finally,whenmakinganestim-ateoftheexpandednode,therolloutresultsbasedontherolloutnetworkandthepredictedresultsbasedonthevaluenetworkarecombined.AsnotedinAlphaGoZeroandAlphaZero,therolloutisremovedandtheevalu-ationoftheexpandednodeisbasedsolelyonthepredic-tionresultsofthevaluenetwork,whichwillbeexplainedinthefollowingsubsection.

3.2LearningforAlphaGoseries

3.2.1LearningforAlphaGo

LearningofAlphaGoconsistsofseveralsteps.Firstly,

springer

302MachineIntelligenceResearch20(3),June2023

AlphaGo

Humanexpertdata

Policy(p)

Rollout

policy

Self-play

RL

policy

Self-play

Value

(v)

AlphaGoZero

AlphaZero

SimilarwithAlphaGoZero

>except

Trainingdetails:1)Nodataaugmentandboardpositiontransform;2)

Purelyself-play;3)Otherdetails.

Policy&Valueinitialization(p)(v)

Update

Update

Policy&Value(p)(v)

Self-playSelf-play

MCTS

EmbeddedtocalculateQandu(basedonpandv)

Selection

Expansion

Policy

(p)

Evaluation

Rollout

policy

Backup

Value

(v)

Q+u(p)

max

Q+u(p)

max

Trainedandthenembeddedto

calculateQandu(basedonpandv)

Fig.2AbriefframeworkoftheAlphaGoseries

asupervisedlearningpolicynetworkandarolloutpolicynetworkaretrainedwithhumanexpertdata,whichout-putstheprobabilityofthenextmovepositionbasedon160000gamesplayedbyKGS6to9danhumanplayers.Thedifferencesbetweenthemaretheneuralnetworkar-chitecturesandfeaturesused.Specifically,thesupervisedpolicyconsistsofseveralconvolutionallayersusinga19×19×48imagestackof48featureplanesasinput,whereastherolloutpolicyisjustalinearsoftmaxpolicyusingsomelessfast,incrementallycomputed,localpat-tern-basedfeatures.Withtheabovehigh-qualitydata,averygoodinitiationofthesupervisedlearningpolicynet-workisobtained,whichreachesamateurlevel,i.e.,aboutamateur3dan(d).

Withthesupervisedlearningpolicynetworktrained,areinforcementlearningpolicynetworkisinitialized(withthesamenetwork)andthenimprovedthroughself-play,whichusesthenetworkofthecurrentversiontofightagainstitspreviousversions.Basedonconventionalpolicygradientmethodstomaximizethewinningsignal,thereinforcementlearningpolicynetworkreachesbetterperformancethanthesupervisedlearningnetwork,i.e.,an80%winningrateagainstthesupervisedlearningpolicy.

InthethirdstepofAlphaGo,avaluenetworkistrainedtoevaluatethestate,whichsharesthesamefea-turesandneuralnetworkarchitecturewiththesuper-visedlearningpolicynetworkexceptforthelasttwolay-ersduetodifferentoutputdimensionalities.Especially,adatasetconsistingof30millionstate-outcomepairsiscol-locatedthroughtheself-playofthereinforcementlearn-ingnetwork.Then,aregressiontaskisdevelopedbymin-

springer

imizingthemeansquarederrorbetweenthepredictedresultofthevaluenetworkandthecorrespondingout-come(winorlosssignal).Withthevaluenetwork,MCTScanreachabetterperformancethanjustusingthesuper-visedlearningpolicynetwork.Finally,thewell-trainedsupervisedlearningpolicy,valuenetwork,androlloutnetworkareembeddedintoMCTS,whichreachesapro-fessionallevelof1to3dan(p).

3.2.2LearningforAlphaGoZeroandAlphaZero

UnlikeAlphaGo,whosepolicynetworkandvaluenet-workaretrainedthroughsupervisedlearningandself-playbetweenthepolicynetworks,AlphaGoZerotrainspolicyandvaluenetworksthroughself-playofMCSTem-beddedinthecurrentversionofthenetworks.Besides,differentneuralnetworkarchitecturesareadoptedcom-paredwithAlphaGo,i.e.,residualnetworks.Asfortheinput,moresimplifiedfeaturesareusedwithoutconsider-ingthehumanplayerexperience.AlphaZerosharesthesamelearningframeworkasAlphaGoZero.Overall,theyconsistoftwoalternatingrepetitionsteps:automaticallygeneratingdata,policyandvaluenetworkstraining.

Whengeneratingtrainingdata,self-playofMCTSisperformed.MCTSembeddedinthecurrentpolicyandvaluenetworksisusedtoselecteachmoveforthetwoplayersateachstate.Generally,MCTSselectsanactionbasedonthemaximumcount,butAlphaGoZeromakesitaprobabilitytoexploremoreactionsbynormalizingthecount.Accordingly,state-moveprobabilitypairsarestored.Finally,whenagameends,thewinningsignal(+1or–1)isrecordedforvaluenetworktraining.

Relyingonthecollectedstate-moveprobabilityandwinningsignal,thepolicyandvaluenetworksaretrained.

Q.Y.Yinetal./AIinHuman-computerGaming:Techniques,ChallengesandOpportunities303

Morespecifically,thedistancebetweenthepredictedprobabilityofthepolicynetworkandthecollectedprob-abilityforeachstateisminimized.Besides,thedistancebetweenthepredictedvalueofthevaluenetworkandthewinningsignalisminimized.Theoveralloptimizationob-jectivealsocontainsanL2weightregularizationtopre-ventoverfitting.

3.2.3Learningdifferences

BasedonMCTS,deeplearning,reinforcementlearn-ing,andself-playarenicelyevolvedintheAlphaGoseries,asshownin

Fig.

2

.Themaindifferenceisthelearningframeworksutilized,elaboratedinthefollowingparagraphs.Tosumup,AlphaGouseshumanexpertdatatoobtainthesupervisedpolicynetwork,basedonwhichself-playbetweensupervisedpolicynetworkisper-formedtoobtainreinforcementlearningpolicyandthesubsequentvaluenetworkbasedonsimilarself-playofre-inforcementlearningpolicy,andallthetrainednetworksareembeddedintoMCTSfordecisionmaking.However,AlphaGoZerousesnohumanexpertdataandtrainsthepolicyandvaluenetworksbasedondatageneratedthroughself-playofMCTSembeddedinthecurrentver-sionofpolicyandvaluenetworks.AlphaZerosharesthesametrainingframeworkasAlphaGoZero,exceptforseveralsmalltrainingsettings.

Apartfromthetrainingframework,thereareseveralfactorsinwhichAlphaGoZerodiffersfromAlphaGo.Firstly,norolloutpolicynetworkisusedtoevaluatetheexpandednode,andthebenefitisaspeedupoftheMCTSsimulation.Withthehigherqualitydatagener-atedbythenewlearningframework,valuesofleafnodescanbebetterestimatedwithoutusingarolloutpolicy.Besides,nohumanexpertdataareutilizedfordeepneur-alnetworktraining.Secondly,thepolicyandvaluenet-worksinAlphaGoZerosharemostoftheparameters(convolutionallayers)insteadoftwoseparatenetworks,whichshowsabetterElorating[

29

].What'smore,resid-ualblocks,asapowerfulmodularfordeeplearning,isutilizedinAlphaGoZero,andshowsmuchbetterper-formancethanjustusingconvolutionalblocksasinAl-phaGo.Finally,theinputtothepolicyofAlphaGoZeroisa19×19×17imagestackinsteadofthe19×19×48imagestack,whichrarelyuseshumanengineeringfea-turescomparedwithAlphaGo,e.g.,thedesignedladdercaptureandladderescapefeatures.

AlphaZeroaimstodevelopamoregeneralreinforce-mentlearningalgorithmforvariousboardgamessuchasGo,chess,andShogi.SincetherulesofchessandShogiareverydifferentfromGo,AlphaZeromakesseveralchangestothetrainingdetailstofittheabovegoal.AsforthegameGo,therearetwomaintrainingdetailsthataredifferentfromAlphaGoZero.Firstly,nodataaug-mentandtransformationssuchasrotationorreflectionofthepositionsareapplied.Secondly,AlphaZerousesapureself-trainingframeworkbymaintainingonlyasingleneuralnetworkinsteadofsavingabettermodelineach

iterationoftraining.

4CardgameAIs

TheCardgame,asatypicalin-perfectinformationgame,hasbeenalong-standingchallengeforartificialin-telligence.DeepStackandLibratusaretwotypicalAIsystemsthatdefeatprofessionalpokerplayersinHUNL.Theysharethesamebasictechnique,i.e.,counterfactualregretminimization(CFR)[

30

].Afterward,researchersarefocusingonMahjongandDouDiZhu,whichraisenewchallengesforartificialintelligence.Suphx,developedbyMicrosoftResearchAsia,isthefirstAIsystemthatout-performsmosttophumanplayersinMahjong.DouZero,designedforDouDiZhu,isanAIsystemthatwasrankedfirstontheBotzoneleaderboardamong344AIagents.Abriefintroductionisshownin

Fig.

3

.

4.1DeepStackandLibratusforHUNL

HUNLisoneofthemostpopularpokergamesintheworld,andplentyofworld-levelcompetitionsareheldeveryyear,suchastheWorldSeriesofPoker.BeforeDeepStackandLibratuscameout,HUNLwasaprimarybenchmarkandchallengeofimperfectinformationgameswithnoAIsthathaddefeatedprofessionalplayers.

4.1.1CFRforDeepStackandLibratus

Sincebeingproposedin2007,CFRhasbeenintro-ducedinpokergames.CFRminimizescounterfactualre-gretforlargeextensivegames,whichcanbeusedtocom-puteaNashequilibrium.Generally,itdecomposesthere-gretofanextensivegameintoasetofadditiveregrettermsoninformationsetsthatcanbeminimizedinde-pendently.Duetothehighcostoftimeandspace,basicCFRisnotapplicabletoHUNL,whichismuchmorecomplexthanlimitedpoker.VariousimprovedCFRap-proacheshavebeendeveloped,consideringimprovingcomputingspeedorcompressingtherequiredstoragespace

[31

,

32

].Forexample,basedonCFR,continue-resolv-ing[

18

],andsafeandnestedsubgamesolving[

8

],arek

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論