




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第第頁三角函數(shù)教學課件(4篇)三角函數(shù)是比較困難的一個章節(jié),對于同學們來說不是很好掌握。這次漂亮的我為親帶來了4篇《三角函數(shù)教學課件》,可以幫助到您,就是本文范文我最大的樂趣哦。
高考數(shù)學三角函數(shù)重點考點篇一
根據(jù)條件確定函數(shù)解析式
這一類題目經(jīng)常會給出函數(shù)的圖像,求函數(shù)解析式y(tǒng)=Asin(x+)+B。
A=(最大值-最小值)/2;
B=(最大值+最小值)/2;
通過觀察得到函數(shù)的周期T(主要是通過最大值點、最小值點、"平衡點'的橫坐標之間的距離來確定),然后利用周期公式T=2/來求得;
利用特殊點(例如最高點,最低點,與x軸的交點,圖像上特別標明坐標的點等)求出某一;
最后利用誘導公式化為符合要求的解析式。
常用的三角函數(shù)誘導公式篇二
三角函數(shù)誘導公式一:
任意角α與-α的三角函數(shù)值之間的關(guān)系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
三角函數(shù)誘導公式二:
設α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
三角函數(shù)誘導公式三:
利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
三角函數(shù)誘導公式四:
設α為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
三角函數(shù)誘導公式五:
利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
三角函數(shù)誘導公式六:
π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
注意:在做題時,將a看成銳角來做會比較好做。
高考數(shù)學三角函數(shù)重點考點篇三
由解析式研究函數(shù)的性質(zhì)
常見的考點:
求函數(shù)的最小正周期,求函數(shù)在某區(qū)間上的最值,求函數(shù)的單調(diào)區(qū)間,判定函數(shù)的奇偶性,求對稱中心,對稱軸方程,以及所給函數(shù)與y=sinx的圖像之間的變換關(guān)系等等。
對于這些問題,一般要利用三角恒變換公式將函數(shù)解析式化為y=Asin(x+)的形式,然后再求相應的結(jié)果即可。
在這一過程中,一般要先利用誘導公式、二倍角公式、兩角和與差的恒等式等將函數(shù)化為asinx+bcosx形式(其中常見的是兩個系數(shù)a、b的比為1:1,1:1),然后再利用輔助角公式,化為y=Asin(x+)即可。
角函數(shù)公式大全篇四
三角函數(shù)常用公式:(^表示乘方,例如^2表示平方)
正弦函數(shù)sin=y/r
余弦函數(shù)cos=x/r
正切函數(shù)tan=y/x
余切函數(shù)cot=x/y
正割函數(shù)sec=r/x
余割函數(shù)csc=r/y
以及兩個不常用,已趨于被淘汰的函數(shù):
正矢函數(shù)versin=1-cos
余矢函數(shù)vercos=1-sin
同角三角函數(shù)間的基本關(guān)系式:
平方關(guān)系:
sin^2()+cos^2()=1
tan^2()+1=sec^2()
cot^2()+1=csc^2()
積的關(guān)系:
sin=tan*cos
cos=cot*sin
tan=sin*sec
cot=cos*csc
sec=tan*csc
csc=sec*cot
倒數(shù)關(guān)系:
tancot=1
sincsc=1
cossec=1
直角三角形ABC中,
角A的正弦值就等于角A的`對邊比斜邊,
余弦等于角A的鄰邊比斜邊
正切等于對邊比鄰邊,
三角函數(shù)恒等變形公式
兩角和與差的三角函數(shù):
cos(+)=coscos-sinsin
cos(-)=coscos+sinsin
sin()=sincoscossin
tan(+)=(tan+tan)/(1-tantan)
tan(-)=(tan-tan)/(1+tantan)
輔助角公式:
Asin+Bcos=(A^2+B^2)^(1/2)sin(+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
倍角公式:
sin(2)=2sincos=2/(tan+cot)
cos(2)=cos^2()-sin^2()=2cos^2()-1=1-2sin^2()
tan(2)=2tan/[1-tan^2()]
三倍角公式:
sin(3)=3sin-4sin^3()
cos(3)=4cos^3()-3cos
半角公式:
sin(/2)=((1-cos)/2)
cos(/2)=((1+cos)/2)
tan(/2)=((1-cos)/(1+cos))=sin/(1+cos)=(1-cos)/sin
降冪公式
sin^2()=(1-cos(2))/2=versin(2)/2
cos^2()=(1+cos(2))/2=vercos(2)/2
tan^2()=(1-cos(2))/(1+cos(2))
萬能公式:
sin=2tan(/2)/[1+tan^2(/2)]
cos=[1-tan^2(/2)]/[1+tan^2(/2)]
tan=2tan(/2)/[1-tan^2(/2)]
積化和差公式:
sincos=(1/2)[sin(+)+sin(-)]
cossin=(1/2)[sin(+)-sin(-)]
coscos=(1/2)[cos(+)+cos(-)]
sinsin=-(1/2)[cos(+)-cos(-)]
和差化積公式:
sin+sin=2sin[(+)/2]cos[(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年統(tǒng)計學考試重要概念總結(jié)題及答案
- 如何上架直播課件
- 2024年計算機基礎(chǔ)考試模擬試題及答案
- 幼兒園戶外步行安全教育
- 重點傳染病防控課件模板
- 寵物營養(yǎng)學科目復習試題及答案
- 小數(shù)加減混合運算
- 2024年二手車評估師的行業(yè)規(guī)范與考試試題及答案
- 2024年美容師考試職業(yè)技能與知識運用試題及答案
- 語言能力與文學鑒賞的關(guān)系自考試題及答案
- 廢蓄電池回收管理制度
- 0-3歲嬰幼兒保育與教育智慧樹知到期末考試答案章節(jié)答案2024年甘肅財貿(mào)職業(yè)學院
- DL∕T 5344-2018 電力光纖通信工程驗收規(guī)范
- 洗煤廠洗煤技術(shù)人員題庫
- 開展志愿服務培養(yǎng)奉獻精神三篇
- 【公司招聘與選拔中存在的問題與優(yōu)化建議探析2500字(論文)】
- 2024年高考語文閱讀之魯迅小說專練(解析版)
- SL 288-2014 水利工程施工監(jiān)理規(guī)范
- 5WHY分析法培訓課件
- (高清版)TDT 1031.6-2011 土地復墾方案編制規(guī)程 第6部分:建設項目
- 國企素質(zhì)測評試題及答案
評論
0/150
提交評論